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Abstract—Soil moisture retrieval from SAR images is always af-
fected by speckle noise and uncertainties associated to soil parame-
ters, which impact negatively on the accuracy of soil moisture esti-
mates. In this paper a soilmoistureBayesian estimator frompolari-
metric SAR images is proposed to address these issues. This esti-
mator is based on a set of statistical distributions derived for the po-
larimetric soil backscattering coefficients, which naturally includes
models for the soil scattering, the speckle and the soil spatial het-
erogeneity. As a natural advantage of the Bayesian approach, prior
information about soil condition can be easily included, enhancing
the performance of the retrieval. The Oh’s model is used as scat-
tering model, although it presents a limiting range of validity for
the retrieval of soil moisture. After fully stating the mathematical
modeling, numerical simulations are presented. First, traditional
minimization-based retrieval is investigated. Then, it is compared
with the Bayesian retrieval scheme. The results indicate that the
Bayesian model enlarges the validity region of the minimization-
based procedure. Moreover, as speckle effects are reduced by mul-
tilooking, Bayesian retrieval approaches the minimization-based
retrieval. On the other hand, when speckle effects are large, an im-
provement in the accuracy of the retrieval is achieved by using a
precise prior. The proposed algorithm can be applied to investi-
gate which are the optimum parameters regarding multilooking
process and prior information required to perform a precise re-
trieval in a given soil condition.

Index Terms—Bayesian methods, inverse problems, radar appli-
cations, soil moisture, synthetic aperture radar.

I. INTRODUCTION

S URFACE soil moisture content plays a key role in the in-
teraction between the land surface and the atmosphere, and

accurate knowledge about this variable is of interest for a va-
riety of reasons. First, it is strongly related to vegetation devel-
opment. Second, it determines the partitioning between rainfall
into infiltration and runoff, which is strongly related to erosion
of top soil through leaching. Third, when soil moisture is high,
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infiltration decreases and the risk of floods due to rainfall in-
creases. And finally, soil evaporation and transpiration depends
on soil moisture and therefore it influences the heat and mass
transfers between the Earth and the atmosphere [1].
Following this demand of information, there is a systematic

effort to develop maps of soil moisture of the Earth’s surface.
Orbiting microwave synthetic aperture radar (SAR) systems
offer the opportunity of monitoring soil moisture content at dif-
ferent scales and under almost any weather condition, through
the known sensitivity that the backscattered signal exhibits to
soil parameters, including, among others, soil moisture and soil
roughness [2]. Polarimetric SAR systems are able to transmit
and receive radiation that is linearly polarized in the horizontal
( ) and vertical ( ) planes (relative to the plane defined by the
wave vector and the normal to the surface being illuminated),
giving rise to four intensity images , , , and of
the target of interest [3].
However, the relation between backscattered signal and soil

parameters is not straightforward, and consequently there are
still no operational SAR-derived soil moisture products. There
are twomain reasons for this: (1) the scattering processes that re-
late backscattering to soil properties (moisture, roughness, and
others) are difficult to model [4], and (2) the necessary input pa-
rameters are difficult to measure in the field [5], [6]. The former
is mainly related to the SAR imaging system whereas the latter
to soil parameters heterogeneity.
Moreover, usually there are several combinations of surface

parameters producing the same SAR observations. As a conse-
quence, any retrieving scheme is an ill-posed inverse problem.
Accordingly, soil parameters retrieval remains challenging, and
soil moisture products derived from remotely-sensed SAR data
are still poorly accurate [7].
Restricting this study to bare soils, surface soil mois-

ture presents a high degree of spatial variability at different
scales, even for relatively small areas. This is associated to
water-routing processes, radiative effects and heterogeneity
in soil characteristics [5]. On the other hand, heterogeneity
of surface roughness arises from both man-made and natural
factors: tillage system, soil texture and soil type among others
[6].
When using SAR images for retrieving soil properties, the

speckle phenomenon, characteristic of SAR images, further hin-
ders soil moisture retrieval. Speckle leads to a grain-like appear-
ance of SAR images decreasing their contrast and radiometric
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quality [3]. It is characteristic of the coherent nature of the SAR
imaging system, can be modeled as a multiplicative noise and it
is usually reduced in a post-processing stage by: (1) averaging
neighboring pixels (multilooking process) at the expense of spa-
tial resolution [8] or (2) using adaptive filters [9], to reduce ra-
diometric uncertainties without losing spatial resolution, but at
the expense of introducing artifacts. It is important to note that
the process of averaging to reduce radiometric uncertainties im-
plicitly assumes that soil properties within the average window
are constant, which is usually not the case in most of the bare
soils. Therefore, a trade-off between averaging and soil proper-
ties heterogeneity is usually accepted. However, heterogeneity
of soil properties and speckle are usually considered as inde-
pendent problems, whereas they are indeed a part of the same
inference problem.
In this general framework, soil moisture retrieval over bare

soils from SAR images can be considered an inference problem,
where one essentially wants to infer soil condition given a set
of measured backscatter coefficients and ancillary information.
Polarimetric methods [10], [11], change detection procedures
[12]–[14], possibilistic approaches [15], [16], radar backscatter
modeling (theoretical and semi-empirical) [17]–[19], [4] and
Bayesian approaches [20]–[22] are among the retrieval method-
ologies offered in the literature.
Polarimetric methods are based on modeling the backscatter

response in terms of a certain polarimetric matrix decomposi-
tion (see [23] for a review) and taking into account the amplitude
as well as the phase difference of the measured backscattering
coefficients. Although polarimetry looks promising, a major ef-
fort is still needed to achieve an operational soil moisture re-
trieval algorithm using these techniques. Such algorithm was
only developed in closed form for the Small Pertubation Model
[11], which has a highly restrictive range of validity for the
normalized RMS height ( , where is the
wavenumber, the wavelength and the RMS height), lim-
iting operational soil parameter retrieval to very smooth sur-
faces. Therefore, this method is not suitable for real applica-
tions, where it is usually found values of for L-band
(i.e., ). In addition, speckle noise is not taken into ac-
count, although a polarimetric SAR speckle noise model was
developed in [10].
Change detection methods exploit the availability of tem-

poral series of SAR acquisitions from space platforms to
monitor near-surface soil moisture content globally. The ra-
tionale behind this method is that temporal changes of surface
roughness, canopy structure, and vegetation biomass occur
over longer temporal scales than soil moisture changes, ex-
cluding periods of cultivation. Therefore, variations in surface
backscatter observed with a short repeat cycle are expected to
mainly reflect changes in soil moisture, since other parameters
affecting radar backscatter can be considered fairly constant.
Clearly, this sort of technique is constrained to spaceborne
sensors with short-repeating cycles [12].
The possibilistic methods make use of an alternative set of

axioms called fuzzy logic. As an advantage, they enable and
require the use of prior information, which is used to improve

the retrieving of soil parameters. On the other hand, they do not
take into account speckle and they are computationally intensive
[15].
Regarding radar backscatter modeling approaches, a wide

range of forward models, ranging from semi-empirical to the-
oretical, physically-based models have been developed in order
to assess the dependency of soil parameters to backscattered
signal. These models are important to understand the physics
related to soil backscattering. They can also play a key role in
the retrieval of soil condition from SAR measurements if an in-
verse problem approach is used [24], [25].
Physical Optics model (PO), Geometrical Optics model

(GO), the first-order Small Pertubation Model (SPM) and the
Integral Equation Model (IEM) [4] with its further improve-
ments and updates [26]–[28] are the analytical electromagnetic
backscattering models available. Their strength lies in the fact
that they are derived from the well-established electromagnetic
theory. However, the first three of them have been derived
considering some specific assumptions and therefore have a
limited applicability in terms of surface roughness. Although
IEM is valid for a wider range of surface roughness conditions,
the complexity of the model and the inherent relationship
between soil parameters and soil backscattering make difficult
to perform a direct retrieval.
Semi-empirical models are among the most popular for soil

moisture retrieval applications. This is related to their simple
algebraic formalism, that allows a straightforward retrieval
scheme being the usual ones the direct inversion [18] and min-
imization (look-up table) procedures [19], [29]. The standard
approach for the development of these models is to measure soil
backscattering at different polarizations, incidence angles and
soil conditions using scatterometers, for deriving a model by
means of these measurements. In all the semi-empirical models
available [17]–[19], only the mean value of the backscattering
coefficient as a function of soil parameters is modeled, disre-
garding the spread around the average value and its causes.
This gives rise to characteristic artifacts where several values
of soil moisture estimated from scatterometer data correspond
to the same soil moisture measured on the field [20]. Reasons
for mismatches between model estimations and measured data
include system measurement errors, the inhomogeneity of soil
parameters within a given system resolution cell (or from one
cell to the next) and the difficulty to measure soil parameters
on the field [6], [30], [20]. Regarding this, the most difficult
parameter to measure and to interpret is the surface correlation
length [6]. Concerning the Oh’s model [19], a simplified al-
ternative version was modeled ignoring the correlation length,
motivated by the insensitivity of the ratio on this
roughness parameter.
To the authors’ knowledge, it was not until Haddad et al.

[20] that a systematic way to include uncertainties in a forward
model based on Bayes’ theorem was presented for the retrieval
of soil parameters. The Bayesian framework has the relevant
feature of naturally including many sources of uncertainty as
well as many sources of information about the variables in-
volved in the retrieval. Whereas the radar backscatter models
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give rise to several combinations of surface parameters that map
the same SAR observations, the Bayesian algorithm appropri-
ately assimilates prior information on geophysical parameters
in order to constrain the inversion of forward models. Despite
these outstanding features, in their original paper Haddad et al.
[20] only included as error source a term related to model un-
certainties, and used only uniform distributions as prior. In addi-
tion, the potential of such Bayesian methodology is pointed out
in [21] where data from active and passive sensors were merged
in order to retrieve soil moisture. Nevertheless, up to date there
is no model that incorporates multilooking speckle noise as an
error source.
In this paper, we propose a Bayesian retrieval methodology

which incorporates in a natural way soil parameters hetero-
geneity and speckle as sources of uncertainty that degrade the
estimated soil moisture. Such a Bayesian approach (1) needs
only a forward model, (2) gives the optimal estimator for
the soil moisture and its error, (3) can include as many error
sources as required and (4) can include prior information in a
systematic way. The methodology will be presented using a
simplified version of the Oh’s model [19] as the forward model.
The present paper has been divided as follows. In Section II

a brief description of the general properties of scatterom-
eter-based semi-empirical forward models is presented, focused
on Oh’s model and the multiplicative model. Section III is de-
voted to present the statistical model, and Bayesian estimators
are derived. Numerical results are reported in Section IV.
Finally, Section V presents the main conclusions derived from
this study.

II. SCATTEROMETER-BASED SEMI-EMPIRICAL
FORWARD MODELS

A. Oh’s Model

One of the most widely used semi-empirical soil scattering
models is the one developed by Oh [19], where model expres-
sions are physically-based, butmodel parameters are fitted using
data from an extensive database of polarimetric radar scatterom-
eter measurements over bare soils. In its simplified version,
where the correlation length is disregarded, the Oh’s model re-
lates backscattering coefficients and certain bare soil properties
through a set of three analytical functions , that can be sym-
bolically expressed as [19, eqs. (1),(2) and (4)],

(1)

where is the backscattering (measured) coefficients and
the subscript , 2, 3 stands respectively for the -, -
and -polarizations. The backscattering coefficients are
functionally related to the volumetric soil moisture content
( ) and the normalized surface soil RMS height
(where is the wavenumber and the RMS

height) throughout the functions . This model also depends
on the system incidence angle , which is a known parameter.
Throughout this paper, it will be assumed that . The
Oh’s model is constrained to the range and

, although a better agreement between the
model and the experimental results is obtained for
[19]. Explicitly from [19, eqs. (1),(2) and (4)],

(2)

(3)

(4)

Concerning the functions, it is worth mentioning that they
are not independent of each other, since by (1) there are three
equations and only two variables. Then, providing that and
are given, it always holds

(5)

(6)

thus indicating that both and backscattering coefficients
are a rescaled version of , where the derivation of functions
and is straightforward from (4) and (3), respectively. This

is a consequence of the deterministic nature of the Oh’s model.
From (2), (3) and (4), it is easy to show that the backscattering
coefficients for , and increase monotonically with
and , but with different slopes in each variable; for a bare

soil, is always greater than and the latter greater than
. Any retrieval scheme using Oh’s model is based on the dif-

ferential sensitivity exhibited by the backscattering coefficients
to and . The dynamic range in dB of the backscattering co-
efficients ((2)–(4)) is given in a nested way from the simplified
formulation of the Oh’s model, constrained to and for

:

(7)

(8)

and

(9)

The inequations (7), (8) and (9) define a region where Oh’s
model is valid (Oh’s model validity region). Only points

within this region may be used to retrieve
using Oh’s model.

Considering the aim of this work, differences between the
backscattering coefficients measured from SAR systems and the
ones measured from ground-based scatterometers have to be an-
alyzed. First, the ground-based scatterometer footprint is small;
the actual size varies for different experiments and sensors, but
it is always of the order of a few squared meters. This is jus-
tified assuming that the soil properties on which measured mi-
crowave backscattering depends (soil moisture and roughness)
are constant inside the sampled area. Therefore, it is reasonable
to assume that the backscattering coefficient of the study area is
a function of a single soil moisture value and roughness profile.
In other words, the terrain scattering properties within the foot-
print can be considered constant. Second, it is easy to average
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several measurements upon the same surface’s target and thus
reduce the speckle noise.
On the other hand, SAR system resolution is larger (of the

order of hundreds of ) and even larger if we want to average
and increase the number of looks to reduce speckle. Therefore,
any retrieval scheme based on SAR data that uses scaterom-
eter-based models should deal with the heterogeneity of soil
properties and speckle. This will lead to non-constant soil scat-
tering properties in the averaging window and/or non-negligible
speckle noise, which in any case will degrade soil moisture re-
trieval.

B. Multiplicative Model

The multiplicative model is generally used to model the SAR
response of a target as a function of the combined effect of ter-
rain backscattering and speckle noise. Specifically, the model
states that the observed intensity value in every pixel of a SAR
image is the outcome of a random variable , called return, de-
fined as the product between the random variables and ,
where represents the random variable modeling the varia-
tions of terrain backscattering properties and represents the
random variable modeling the speckle noise; i.e., [3].
Different probability density distributions (PDF) for and

for yield different models for the observed data . For homo-
geneous regions, the terrain scattering properties are assumed
constant. Therefore, the distribution of is a rescaled version of
the distribution of , which is usually assumed as Gamma-dis-
tributed with parameters ( , ) and mean value [3],

(10)

where is the equivalent number of looks and is the
Gamma function. Since , as approaches to
infinity, the radiometric uncertainty becomes negligible.
The basic hypothesis that governs the modeling of inhomoge-

neous regions ( ) is that they can be modeled by a
convenient distribution. In our case, we will propose a PDF for
that arises as the result of inter-pixel soil parameters hetero-

geneity. Indeed, if soil parameters changes from pixel to pixel,
soil backscattering (which is a function of soil parameters) will
also change accordingly. In order to account for backscattering
variability arising from soil parameters heterogeneity, we will
derive the corresponding PDF using Oh’s model, for all the po-
larizations.
By means of the multiplicative model, we can include two

independent sources of SAR image inhomogeneity: soil spatial
variability and speckle. This idea can be formalized as follows.
First, we will assume that and are independent. Second,
that the average properties of the return will be determined
by the average properties of both and , since by virtue of
the multiplicative model,

(11)

Suitable distributions for and will be introduced in
Sections III-C and III-D.

III. STATISTICAL MODEL

A. Bayesian Approach

The deterministic forward model developed by Oh can be
extended to a stochastic model following [20]. In doing so, we
can include in the forward model both the terrain heterogeneity
and speckle through the multiplicative model,

(12)

where is the random variable which represents the return
and the subscript stands for the different polarizations, as stated
before. and are independent random variables that model
the heterogeneity of the target backscattering and the speckle
noise, respectively.
We assumed that the target response to the backscatter is mod-

eled through the Oh’s model by ( ,
2, 3), where the are the same as in (1) and represent here
the deterministic way in which the random variable depends
on the random variables and (which represent the ’s
and ’s of the target). In other words, an heterogeneous soil
will produce a wide range of possible outcomes of , pro-
vided a wide range of soil moisture and roughness values were
presented in the soil. On the other hand, an extremely homo-
geneous soil (i.e., a certain mean value with a very
low variance) will produce a very narrow probability density
function for . This statement is mathematically grounded by
means of a Taylor expansion, namely

, where and are the
expected or mean values of and within the resolution
cell and higher order terms are neglected. Therefore,

as long as the variance remains low, for all ,
2, 3. In addition, following [3] the speckle adds only a multi-
plicative noise so that ( , 2, 3). This approach
leads into a proper average behavior for the returns in terms
of the forward Oh’s model since under the
assumption of independence of and .
From the set of (12) and using Bayes’ theorem, an expres-

sion for the conditional (“posterior ”) probability of measuring
and given measurements of returns , and can be

obtained,

(13)

where is the probability of mea-
suring a certain set of returns given measurements
of and (the “likelihood ”), is the prior joint density
function of and (where it is included all the prior informa-
tion about and ) and works as a normalizing
factor and it is the probability of a certain set to
be measured. Then, providing the conditional density function
(13) is exact, the optimal unbiased estimator of that has the
minimum variance is the mean of (13) [31],

(14)
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and similarly the squared standard deviation of this estimator
will be:

(15)

where an explicit expression for (13) must be found in order to
calculate and . The integration domain in (14)
and (15) spans the same range of where the forward
Oh’s model was originally constrained, except for which is
taken to be as discussed in Section II-A. The standard
deviation can be used as a measure of the error of the
estimate .

B. Derivation of the Likelihood

The posterior distribution in (13) can be
computed as follows. First, using recursively the definition of
conditional probability yields

(16)

where in the right term the given and were suppressed
for simplicity. In (16), is calculated using the change
of variables theorem upon (12) ( ) and the assumption of
independence between and ,

(17)

In order to calculate the remaining two terms in (16), it might
be noted that replacing by and for in (5) and (6)
the following relationships concerning hold

(18)

(19)

Replacing this set of equation in (12) and then equating for
and one obtains

(20)

(21)

Finally, given and and using again the change of vari-
ables theorem upon (20) and (21) separately, the remaining con-
ditional probabilities are

(22)

(23)

where ( ) is the joint distribution of the ratio of two
multilooked random variables that are affected by speckle. The

likelihood in (16) is constructed then by multiplying (17), (22)
and (23).

C. Modeling the Terrain Backscatter

Natural variability of soil moisture are always present at dif-
ferent scales, and thus also at the scale of SAR systems [32].
In general, this implies that soil moisture inside a field cannot
be considered constant; i.e., the field is heterogeneous in terms
of soil moisture. Soil roughness can also be framed within this
description. In agricultural fields, roughness is generated artifi-
cially by tilling and naturally by wind and water erosion. More-
over, soil surface roughness is very dependent on soil type [33].
In order to define the PDF of arising from randomness in
and , a forward model is needed. It is important to re-

mark that errors introduced by the forward model set a lower
bound of uncertainty in any retrieval scheme. In the approach
developed in this paper, forward model uncertainties were not
considered, because the focus is placed on addressing the rela-
tive contribution of prior information and multilooking process
on the retrieval errors.
This mapping will be completely defined by the functions

from (1) that associate soil backscattering with soil parameters
(i.e., the forward model). To compute this mapping, we will use
a three-step procedure given in [34, §2.12]. Such a procedure
allows to find the distribution of a general function
which depends on two random variables and of known
distribution. In our case, we are interested on the computation of
the distribution of used in (17) as when
the soil moisture and roughness are considered random
variables and , respectively. Ignoring the subscript 1,
such computation states that

(24)

where is the cumulative distribution function of
the random variable and the integration domain is

. Then is readily
obtained by deriving (24) with respect to . In what follows,
it would be assumed that and are uncorrelated and
Gaussian random variables, so that where

and . Therefore, the
heterogeneity of the soil parameters within a SAR pixel is
controlled throughout the variance and . The Gaussian
assumption is not restricting or fundamental in any way, and
the procedure can be also applied to different distributions for
and , even empirical ones. On the other hand, under this

assumption the computation of (24) can be only performed
numerically.

D. Modeling the Speckle Noise

Statistical properties of multilook polarimetric data are quite
different from those of single-look data [8]. Therefore, in order
to model the expected speckle phenomena, we need to know the
probability density function of polarimetric data as a function of
the number of looks . In the case of multilook intensity values,
the corresponding distribution is that of (10) and is used in
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(17). On the other hand, the probability density function of the
ratio of two multilook polarimetric data sets which are
not independent is required in (22) and (23). Such a distribution
was derived by Lee et al. [8]:

(25)

where ( ), is the number of looks,
is the correlation between the numerator and the denominator
and is the ratio of the expected value of
and . In order to determine the expected value of the returns
only by the expected value of the forward model, we stated that

( , 2, 3) and then . Thus the expected value
of is determined only by as follows from (11). The ratio dis-
tribution also depends on the correlation between the numerator
and the denominator . This is very important, since when nu-
merator/denominator correlation increases, the variance of the
distribution decreases [8]. As expected, when increases the
distribution becomes narrower and thus the variance of the esti-
mates decreases, leading to a more precise retrieval. Up to this
point, we presented all the mathematics needed in a Bayesian
retrieval scheme. In the next sections we present the results of
numerical simulations.

IV. NUMERICAL RESULTS

A. Minimization Estimate

Since Oh’s model is not directly invertible, in [19] it is pre-
sented an algorithm for retrieving soil moisture and roughness
from a set of measured backscattering coefficients ,
and through a minimization procedure. Such a procedure
is based on the simultaneous solution of model (2), (3) and (4),
leading to the following non-linear expression [19, eq. (6)],

(26)
where is directly obtained after solving (2). For a
given , the estimated value of is the one that
minimizes this expression, namely . It is important to note
that (26) can be solved only for the values of
that are allowed by the forward model, specifically those values
that lie within the region bounded by inequations (7), (8) and
(9). This means that this approach is not robust to high statis-
tical fluctuations in the backscattering coefficients, that are com-
monly found in real applications.
Assuming a certain value for ( ) and
, when applying to the entire -space a root-finding

procedure applied on (26) gives rise to the contour lines de-
picted on Fig. 1. Although the levels of the contour lines span
the entire range of Oh’s model (0.04 – 0.291 ), only
the levels corresponding to 0.05, 0.10, 0.15, 0.20 and 0.25 (in
units of ) are drawn. The linear trend of the contour
lines is consistent with the fact that at fixed , the dynamical
range of the minimization estimates from (26) is governed by
the ratio , which takes constant values over lines in
the entire -space. To corroborate the inversion, the

Fig. 1. Soil moisture estimated on the -plane (at fixed
) from Oh’s model, in units of . The light gray area encloses

the pairs where the model is valid.

exact values of were computed using the deterministic for-
ward Oh’s model (1), constrained to the assumption that

(’ ’ marks in Fig. 1). The levels of the exact values
agree with those of the minimization estimates.
Every value of yields in a value of in-

side Oh’s model validity region, as expected, whereas for the
values of lying outside that region the inversion
technique cannot produce a retrieval. The latter situation could
be related to shortcomings of the forward model, landcover un-
certainties (i.e., the target is not completely bare soil), speckle
noise and/or system fluctuations. In an operational implementa-
tion, the spurious estimations related to the landcover can be re-
duced using ancillary information about landcover status. Nev-
ertheless, it is important to remark that even bare soil can pro-
duce values of outside the Oh’s model validity
region, due to speckle and system fluctuations.
The estimation procedure from (26) produces a single value

of given a set of measured values . No an-
cillary information about soil status (previous or estimated by
other means) is allowed. Moreover, it is implicitly assumed that
image radiometric uncertainties are very low, since small fluc-
tuation of measured values can produce strong variations in soil
moisture estimation. Therefore, in order to successfully use this
type of retrieval, a speckle reduction technique is mandatory.

B. Bayesian Estimate

An alternative method for the estimation of , which is suit-
able for taking into account the speckle, arises when using the
expressions (14) and (15). In order to test the goodness of the
Bayesian approach, a uniform prior is used as in (13).
This kind of prior represents the lack of knowledge about soil
condition. Specifically, it is taken and

as reasonable priors, covering the range
of Oh’s model.
Fig. 2 shows a contour plot of the estimate for

soil moisture, as a function of the measured values of
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Fig. 2. Comparison between the soil moisture estimated using Oh’s model
and the Bayesian retrieval approach, in units of . The parameters
adopted by the simulation are: , , ,

and .

and with , for and .
The light shaded area represents Oh’s model validity region,
where the contour lines of soil moisture derived from the
Oh’s model are also shown. The remaining model parameters
are , ,
and . When using the Bayesian method-
ology, the retrieved soil moisture values cover the entire

-space, although the extreme values (the ones
that are far away fromOh’s model validity region (shaded area))
will present a very low probability of occurrence associated.
The high spread shown by the contour lines is consistent with
the high variance of the speckle noise for this small number of
looks ( ).
In Fig. 2 the results of both estimations (minimization and

Bayesian) are compared. It is readily seen that and
do not coincide. Since the prior is uniform, this discrepancy is
related to the chosen values of model parameters , and .
The choice of , corresponds
to a very homogeneous soil, which corresponds to low variance
is the soil backscattering . However, corresponds to a
high variance in the speckle , which ultimate leads to a poor
soil moisture estimation. This statement is reflected in the con-
tour lines of one-sigma standard deviation of depicted
on Fig. 3 and calculated by means of (15). The standard devi-
ation reaches a relative high value (about 2/5 of the dynamic
range for soil moisture) of in everywhere.
Fig. 4 shows the contour lines retrieved after increasing the

number of looks to . When significant multilooking is
present, the Bayesian retrieval looks more compact around the
contour lines of Oh’s model indicating, to some extent, a correct
asymptotical behavior. It could be seen that the ’ ’ marks and
the Bayes’ contour lines agree, especially for the levels of 0.10,
0.15 and 0.20 in units of . Of course, since the mini-
mization and Bayesian estimators are different, an overlap of the
contour lines is not expected. In the same way, Fig. 5 depicts the
contour lines of one-sigma standard deviation of calcu-
lated by means of (15) for . In this case, the standard

Fig. 3. One-sigma standard deviation of for a number of looks ,
in units of . The parameters adopted by the simulation are:

, , and .

Fig. 4. Comparison between the soil moisture estimated using Oh’s model and
the Bayesian retrieval approach, in units of . The parameters adopted
by the simulation are: , , ,

and .

deviation ranges between a minimum of and
reaches a maximum value of . The relative im-
provement in the case shown in Fig. 3 is due to the increasing
number of looks, which is a way to reduce the uncertainties due
speckle in soil moisture estimation.

C. Including Prior Information

If prior information is on hand, the Bayesian retrieval scheme
can include it straightforwardly. Prior information can be avail-
able from historical records, estimations from other sensors, in
situ data and/or contextual information about soil texture/use.
Using this information, suitable distributions for the prior dis-
tributions of soil moisture and roughness can be estimated.
As an example, we now assumed that the prior distribution

for soil roughness in the study area is Gaussian distributed
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Fig. 5. One-sigma standard deviation of for a number of looks
, in units of . The parameters adopted by the simulation are:

, , and .

Fig. 6. Bayesian retrievals of soil moisture using Gaussian and uniform dis-
tributions as prior information for soil roughness, as a function of the number
of looks , in units of . Uniform prior is used for soil
moisture. The true value from Oh’s retrieval is shown along with the -line,
thus indicating theminimum uncertainty that every retrievalmight have. The pa-
rameters adopted by the simulation are: , ,

and .

and we will assess the performance of the re-
trieval as a function of the number of looks. We start using
a simulated from and

through the functions ((2)–(4)). In the
following paragraph, the behavior of the retrieval when the
precision (spread) of the prior varies will be analyzed.
Fig. 6 shows the estimated for the Bayesian retrieval using

uniform and Gaussian distributions as priors for soil roughness,
where the latter distributions are centered at the true value

and the precision takes values of 0.05, 0.1 and 0.25. A
uniform prior is used for soil moisture. For the
number of looks , all the estimates tend to the true value
of within the range, which
is the intrinsic heterogeneity of the soil given by . This true
value is also the estimated derived from Oh’s model ( ),

which does not depend on since Oh’s model does not take into
account speckle. As expected, the retrieval schemes weights the
likelihood using the prior, and different rates of convergence are
reached. However, two regions are readily determined. On one
hand, a region for large , where it is observed that the retrieval
with uniform prior converges faster than when a Gaussian prior
is used. On the other hand, a precise prior is preferable for low
( ), where it is observed that approaches

to the true value faster (i.e., with a higher
slope) than an imprecise one ( ) and even faster
than when a uniform prior is used. In other words,
when variance from speckle is significant (low values of ), a
precise prior improves the retrieval by strongly restricting the
possible values of , whereas for large any prior performs
equally well, specially the uniform one. For , the error

is less than , where for the error is
about 0.06 – 0.07 .
In Fig. 6, a small overestimation of is observed (

) for large ( ). Further numerical simu-
lations suggest that this bias is related to the choice of the priors.
In the particular case of Fig. 6, the roughness priors were nor-
mally distributed centered at the true value of whereas a uni-
form prior for soil moisture was employed. In these cases, the
Bayesian retrieval scheme may suggest an overestimation of the
true soil moisture values. On the other hand, when a Gaussian
assumption for soil moisture is made (results not shown) over-
estimation as well as underestimation is found for . In
more general cases, where the priors are neither necessary nor-
mally distributed nor centered around the true value, a more
complex behavior was observed which deserves further anal-
ysis.

V. CONCLUSION

Surface soil moisture estimation from SAR data is a com-
plex task. This is related to many issues, but the spatiotemporal
dynamics of soil moisture and the low dynamic ranges of soil
backscatter involved are among the most important ones. Solu-
tions to this complex problem should include better and more
tested forward and inverse models. However, it is important to
understand that inverse models should address in some way the
two phenomena that most degrade the retrieval: speckle and
soil spatial heterogeneities. In order to address these issues, a
Bayesian methodology has been proposed.
In this methodology, a model for the soil backscattering and

a model for the speckle are combined using the framework of
the multiplicative model and Bayes’ theorem. Therefore, this
methodology is able to take into account terrain features as well
as speckle noise to achieve a robust retrieval of soil parameters
from SAR data. This Bayesian methodology: (1) needs only a
forward model (as the Bayesian approach itself is the inversion
procedure applied to forward model data), (2) gives an estima-
tion of soil parameters as well as their associated error, (3) can
include as many error sources as necessary, and (4) can include
prior information in a systematic way.
To illustrate the retrieval scheme, a simplified formulation of

Oh’s model was used throughout this work. Furthermore, the
speckle was modeled using appropriate distributions. Using rea-
sonable hypothesis about functions and model parameters, the
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retrieval scheme was tested in different scenarios by means of
numerical simulations.
For any soil condition, when the number of looks is low and

uniform priors for soil parameters are used, the retrieval errors
are large. However, when significant multilooking ( )
is present, the retrieval error decreases. The relative improve-
ment due to the increasing of is displayed by the one-sigma
contour lines, where error decreases from to

.
The effect on the retrieval of different prior distributions was

also studied. Comparing Gaussian and uniform priors gives rise
to two well-defined behavior for the soil moisture estimates in
terms of the number of looks . For large ( ), both uni-
form andGaussian priors work well (i.e., convergence is assured
within the intrinsic variance of the soil moisture). For low values
of ( ), a precise prior (i.e., ) determines a
rate of convergence higher than an imprecise one (i.e.,

). A small overestimation is observed ( )
for large ( ). This bias could be related to the the choice
of the priors.
In summary, the proposed soil moisture retrieval scheme

takes as inputs the measured soil backscattering coefficients,
soil ancillary parameters and the number of looks, among
others. Soil ancillary parameters are related to the expected dis-
tribution of soil parameters within the SAR pixel. So defined,
soil moisture estimation converges to the expected behavior
when , and , confirming that the
standard Oh’s model regime is reached.
Due to its conception, the presented model is able to study the

performance of different retrieval schemes for different types of
soils and/or different soil moisture spatial distributions. Further-
more, since soil variance increases with scale, multilooking will
reduce speckle variance but also will increase observed soil pa-
rameters variance , thus ultimately degrading the re-
trieval. Therefore, the proposed scheme is a useful tool to inves-
tigate, given an error requirement, which is the optimum number
of looks for soil moisture retrieval in a given soil condition (de-
gree of heterogeneity).
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