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a b s t r a c t

Spatio-temporal variability of turbidity in the Río de la Plata (RdP) estuary (Argentina) at seasonal and
inter-annual timescales is analyzed from 15 years (2000e2014) of MODIS data and explained in terms of
river discharges and the El Ni~no Southern Oscillation (ENSO). Satellite estimates were first validated
using in situ turbidity measurements and then the time series of monthly averages were analyzed to
assess the seasonal and inter-annual variability of turbidity. A strong seasonal variability was found in the
upper and middle estuary with high turbidity fromMarch to May and low turbidity from June to January.
It was found that this variability is highly correlated to the seasonal cycle of the water discharge of the
Bermejo river with a one-month delay between its peak and turbidity in the upper RdP estuary. On inter-
annual time scales the influence of ENSO shows low turbidity amplitudes in the upper and middle es-
tuary during moderate El Ni~no years, while the opposite pattern is observed in some La Ni~na years. A
dilution effect during El Ni~no years is observed given that the main tributaries, which provide ~92% of the
liquid discharge, show water discharge increases due to excess in rain, while the Bermejo river, which
provides ~70% of the solid discharge and only 2% of the liquid discharge to the RdP, does not show this
inter-decadal periodicity. In turn, increased turbidities are observed when negative RdP water discharge
anomalies occurred, but this is not always related to La Ni~na events, since these events are not the only
predictor for drought in this region.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Rivers carry nutrients, sediments and pollutants into the coastal
ocean affecting the biological, geochemical and physical func-
tioning of the coastal environment. Estimates of the global sus-
pended sediment flux to the oceans range between 15 and 20
109 tons y�1 (Walling and Webb, 1996), 95% of which are provided
by rivers and the remaining 5% by glaciers, sea-ice, icebergs, wind,
and coastal erosion (Syvitski, 2003). The magnitude of the sedi-
ment load transported by rivers has important implications for the
functioning of the natural Earth system. For example, sediments
affect light penetration into the water column controlling primary
production systemwhich in turn controls the higher trophic levels.
.I. Dogliotti), kruddick@
.edu.ar (R. Guerrero).
Cohesive sediments, which include primarily clay and organic
fractions, act as a carrier for contaminant transport in riverine and
estuarine systems given their high sorptive capacity for many
chemicals. Thus knowledge of sediments distribution are important
for a number of applications including the control andmitigation of
pollution, understanding of fisheries, evaluation of particulate
organic carbon exported by rivers to the sea, biogeochemical
modeling, and optimization of dredging operations.

Understanding and monitoring the distribution of sediments
coming from rivers and their temporal variability is complex in
coastal environments where the distribution and fluxes of sus-
pended sediments are highly variable and vary over a broad spec-
trum of temporal and spatial scales. This variability renders most
traditional field sampling methods inadequate to study sediment
dynamics in complex coastal waters (Miller et al., 2003) making
satellite sensors the most suitable tools available to map the river
influence on the adjacent ocean, especially in the Río de la Plata
(RdP) estuary given its large scale (~3.5� 104 km2). Remote sensing
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data have been used to describe the spatio-temporal variability of
suspended particulate matter (SPM) of different river plumes and
to relate it to the main hydro-climatic forcing (e.g. Devlin and
Schaffelke, 2009; Falcini et al., 2012; Schroeder et al., 2012; Loisel
et al., 2014; Petus et al., 2014; Fabricius et al., 2016). In a previous
work, Moreira et al. (2013) characterized the RdP annual mean SPM
concentration distribution using 10 years of satellite data
(2002e2012), studied its variability on seasonal time scale and
identified the physical mechanisms. They found that in the upper
and middle estuary the SPM increases in the austral fall (March-
eMay), reached a peak in austral winter (JuneeAugust), and
decreased to minimum values in austral summer (Decem-
bereFebruary). For all large scale measurements of SPM, either in
situ or satellite, it is necessary to use an optical proxy. Here water
turbidity (T), defined by the International Standards Organisation
as particulate side-scattering at 860 nm, has been chosen because it
is known to be highly correlated to SPM concentration (Boss et al.,
2009). T can easily be converted into SPM using a linear conversion
factor, but is preserved here as the primary variable because esti-
mation of T from water reflectance is very reliable (Dogliotti et al.,
2015) and because the optical parameter T maybe be useful not just
as a proxy for SPM but also, in its own right, for studies of under-
water light climate for phytoplankton and marine animals.

The objective of the present study is to quantify the variability of
turbidity in the RdP on seasonal and inter-annual timescales and
explain this variability in terms of the water discharges of the
various upstream rivers, which are in turn influenced by inter-
decadal events like El Ni~no Southern Oscillation (ENSO). This is
achieved by the analysis of 15 years (2000e2014) of MOderate
Resolution Imaging Spectroradiometer (MODIS) data (Aqua and
Terra). Satellite estimates are first validated using in situ turbidity
measurements and then time series of monthly composites are
analyzed to assess the seasonal and inter-annual variability of
turbidity and its relation with Oceanic Ni~no Index (ONI) and the
water discharge of RdP tributaries. Regarding the seasonality and
spatial distribution, differences and similarities with previous
findings, such as the study of Moreira et al. (2013), are analyzed and
discussed.

2. Study area

The La Plata basin is the second major hydrographical basin of
South America after the Amazon and the fifth largest in the world
(UNESCO, 2007). It covers approximately 3170 � 106 km2 (Tossini,
1959) distributed in five countries (Argentina, Brazil, Bolivia,
Uruguay and Paraguay) and drains to the Atlantic Ocean through
the Paran�a Delta and RdP estuarine system (Fig. 1A). The RdP river
currently delivers awater discharge estimated at ~670 km3 per year
(annual mean discharge of ~22,500 m3 s�1), of which about 79% is
supplied by the Parana River and the remaining 21% by the Uruguay
River. The RdP carries around 160 � 106 metric tons per year of
suspended sediment to the Atlantic, 68% of which is contributed by
the upper Paran�a-Paraguay Basin (Depetris and Griffins, 1968). In
particular, the Bermejo River with average sediment concentrations
of 8000 g m�3, amongst the highest in the world, discharges ca. 100
106 tons yr�1 to the Paraguay River (Pedrozo and Bonetto, 1987;
Brea and Spalletti, 2010) providing most of the sediment load
arriving to RdP as found from erosion rates, and silt- and clay-size
mineralogy studies (Depetris and Griffins, 1968; Drago and Amsler,
1988; Sarubbi, 2007).

The RdP estuary has a northwest to southeast oriented funnel
shape approximately 320 km long that can be divided in three re-
gions: upper, middle and outer regions (Fig. 1C). The upper estuary
includes the Paran�a Delta front and extends to the Buenos Aires-
Colonia line; it is a very shallow area (between 1 and 4 m depth)
and has a fluvial regime. The middle estuary extends to the Punta
Piedras-Montevideo line. This transition zone has generally fresh
waters, but a marine influence can be detected along the northern
margin along the Uruguay coast with higher tidal influence and
seawater penetration (Boschi, 1988). The outer region extends up to
the limit with the ocean, defined by the Punta Rasa-Punta del Este
line, and has an estuarine regime with variable salinity ranging
from 10 to 25 psm (Guerrero et al., 2010). Shelf marine waters
penetrate the estuary along the bottom and freshwater flows sea-
wards on the surface forming a two-layer quasi-permanent salt-
wedge structure which can be mixed to varying degrees depend-
ing on wind and current intensities (Guerrero et al., 1997). At the
near bottom salinity front, the flocculation of suspended matter at
the tip of the salt wedge and the resuspension of sediment through
tidal current friction at the bottom results in the development of a
turbidity front with mean location strongly related to the bottom
topography (Frami~nan and Brown, 1996). At the southern coast, in
the Samboromb�on Bay, the mean frontal position coincides with
the 5 m depth contour, and to the north it follows the Barra del
Indio shoal, a shallow bar that runs along a line from Punta Piedras
to Montevideo (Fig. 1C). In the RdP, the main forcing that influences
water circulation are continental runoff, tides, and winds. The es-
tuary is characterized by a low tidal amplitude (<1 m) (Simionato
et al., 2004b), a fast reaction to atmospheric forcing due to its
shallow water depth (Simionato et al., 2006, 2007, 2010; Meccia
et al., 2009), and weak seasonality of river discharge. At longer
time scales the precipitation in the southeast of South America is
known to be related to the El Ni~no Southern Oscillation (ENSO)
(Ropelewski and Halpert, 1987, 1989; Aceituno, 1988; Diaz et al.,
1998). Rainfall anomalies in northeastern Argentina, southeastern
Brazil and Uruguay tend to be positive from November of El Ni~no
years to February of the following years and negative from July to
December of La Ni~na years (Ropelewski and Halpert, 1987, 1989).
Many studies have examined the association between ENSO and
river discharge in the La Plata basin. Studies focusing on the Paran�a
(Mechoso and P�erez Iribarren,1992, Depetris et al., 1996; Robertson
and Mechoso, 1998; Robertson et al., 2001; Berri et al., 2002;
Camilloni and Barros, 2003), Uruguay (Mechoso and P�erez
Iribarren, 1992), and Paran�a and Uruguay rivers together (García
and Mechoso, 2005) showed that the two main fluvial compo-
nents, i.e. the Paran�a and Uruguay rivers, exhibit a strong interan-
nual oscillationwhich is in phase with El Ni~no events (Pasquini and
Depetris, 2007). Both rivers show flow increases during ENSO
warm events (or El Ni~no) and normal to low water discharges
during cold events (or La Ni~na). In turn, the Bermejo and Pilcomayo
rivers, two small tributaries of the Paraguay river, were found not to
follow the El Ni~no-like interannual periodicity (Pasquini and
Depetris, 2007), in contrast to the others RdP tributaries. ENSO
events affect precipitation in the southeast region of South Amer-
ica, i.e. mainly the headwaters of the Paran�a and Uruguay rivers,
while the Pilcomayo and Bermejo upper catchments are located to
the west, close to the Andes (see Fig. 1A), and thus are not affected.

3. Data and methods

3.1. Satellite data

MODIS-Aqua (MA) andMODIS-Terra (MT) images were obtained
from the NASA Ocean Color web site (http://oceancolor.gsfc.nasa.
gov). Level 1A files covering the RdP region from 2000 to 2014 for
Terra and from 2002 to 2014 for Aqua sensors were downloaded.
Images were processed using the freely available SeaDAS 7.02
software to obtain remotely sensed reflectance (Rrs) using the near-
and shortwave-infrared (NIR-SWIR) switching atmospheric
correction algorithm (Wang, 2007; Wang and Shi, 2007) and
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Fig. 1. A) Map of La Plata drainage basin. The rivers, main cities, locations of gauging stations used in this study (in red) and the RdP estuary area (black rectangle) are indicated. B)
Bathymetry map with the location of the 26 sampled sites during the oceanographic cruises (all blue dots) and the fixed instrument at Pilote Norden (red cross). The location of
MODIS-Aqua (squares) and MODIS-Terra (stars) match-ups are also indicated; C) MODIS quasi-true-color image of the RdP estuary where the Upper, Middle and Outer regions of the
estuary are indicated (delimited by the dashed lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of cruises and fixed site, date of sampling, turbidity range [mini-
mumemaximum], and number of match-ups. The number of cloud-free images are
indicated between parentheses.

# St. Dates T Range Match-ups (images)

[FNU] MODIS-A MODIS-T

IFR-1 26 23e28 Nov 2009 4e211 0 0
IFR-2 26 17e19 Mar 2010 6e180 0 0
IFR-3 26 23e25 Jun 2010 5e462 5 (2) 1 (1)
IFR-4 26 23e27 Aug 2010 2e110 1 (1) 2 (1)
IFR-5 26 25e28 Oct 2010 2.3e132 4 (1) 1 (1)
IFR-6 24 15e17 Dec 2010 4.5e627 1 (1) 0

P. Norden 15 min. 8 Apre27 Aug 2010 16e681 24 (63) 26 (46)
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masking clouds using the 2130 nm band. The STRAYLIGHT and HILT
flags were not used as masks because the highly reflective (turbid)
waters and sensor saturation at 667, 748 and 869 nm bands erro-
neously mask most of the RdP estuary. Turbidity (T) was then
estimated using the switching band semi-analytical algorithm
described in Dogliotti et al. (2015). Using the approach described in
that paper, T can easily be converted into Suspended Particulate
Matter (SPM) concentration by using local, linear conversion fac-
tors, like SPM ¼ 0.73 � T in Moreira et al. (2013), and so all con-
clusions from the present study apply equally to turbidity and SPM.

To analyze the algorithm performance (match-up analysis), field
data collected during six oceanographic cruises and from a fixed
tower were used (see details below). Satellite-derived T were
extracted from cloud-free Level 2 daily images acquired during
each cruise and for each sampled site using the median value in a
3 � 3 pixel box centered at the location of each site if at least 6 out
of the 9 pixels were valid pixels according to the standard flags.
Homogeneity was tested and a match-up was considered valid if
the coefficient of variation (standard deviation to mean ratio) was
less than 0.2. Regarding the temporal window between satellite
overpass and field measurements, a ±3 hs windowwas used for the
cruise data, while a±5min temporal windowwas used for the fixed
instrument that collected data every 15 min.

For the time series analysis, MODIS-Aqua (2002e2014) and
MODIS-Terra (2000e2014) daily images were mapped to a cylin-
drical equidistant projection at 0.0833� spatial resolution (~1 km)
and monthly averaged turbidity maps were obtained. In order to
illustrate the relative annual change in turbidity, the inter-annual
turbidity anomaly maps were calculated as the difference be-
tween the yearly mean of each complete calendar year and the
composite annual mean of all 15 calendar years analyzed.
3.2. Field data

In situ surface turbidity measurements, used to evaluate satel-
lite retrievals, have been collected during oceanographic cruises
and from an in-water instrument located in a fixed site in the frame
of the FREPLATA Project (Simionato et al., 2011). Six oceanographic
campaigns (named IFR-1 to 6) have been performed between
November 2009 and December 2010 (Table 1). Near surface water
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samples (2e4m)were collected in 26 stations (dots in Fig.1B) using
a pump and turbidity measurements were performed on board
using a portable HACH 2100P ISO turbidimeter which records
values between 0 and 1000 Formazin Nephelometric Units (FNU).
High frequency turbidity measurements were also collected at a
fixed site named Pilote Norden (PN) located at 34�37.770 S -
57�55.184’ W (red cross in Fig. 1B). At this site a NKE SMATCH TT
Multiparameter probe with a Seapoint Optical Sensor (wavelength
of light source 880 nm), mounted at about 2 m above the river bed,
collected turbidity data every 15 min for 5 months (Table 1). The
sensor was calibrated with Formazin at the laboratory before
deployment.

3.3. River discharge data

A time series of monthly water discharge of the RdP corre-
sponding to the period 1931e2014 was obtained from Borús and
Giacosa (2014). These values are not directly measured but esti-
mated from measurements of the three main tributaries, i.e.
Uruguay, Paran�a de las Palmas and Paran�a Guazú, in locations close
to their outlet. Monthly mean water discharge of four tributary
rivers for the 2000e2014 period were obtained from the Integrated
Hydrologic Database provided by the Argentine Subsecretaría de
Recursos Hídricos (http://www.hidricosargentina.gov.ar/). The
water discharge of the Uruguay river (Paso de los Libres station, at
29� 430 16,9000 S - 57� 040 56,9000 W) and of three tributaries of the
Paran�a River were analyzed (see Fig. 1A for locations of gauging
stations): 1) Upper Paran�a (Itatí station located at 27� 150 58,5000 S -
58� 140 39,5000 W), 2) Paraguay (Puerto Pilcomayo station, at 25� 250

12,0000 S - 57� 390 02,2000 W), and 3) Bermejo (El Colorado station, at
26� 200 03,4000 S - 59� 210 44,7000 W).

3.4. Oceanic Ni~no Index (ONI) data

The Oceanic Ni~no Index (ONI) values were downloaded from the
Climate Prediction Center webpage of the National Oceanic and
Atmospheric Administration (NOAA) (http://www.cpc.ncep.noaa.
gov). The index is calculated from the sea surface temperature
Fig. 2. Scatter plot of satellite-derived vs. measured turbidity (FNU) from: A) the samples co
for MODIS-Aqua (grey symbols) and MODIS-Terra (black symbols) are indicated. The dashe
(SST) anomalies as the three month running average in the region
Ni~no 3.4 (Equatorial Pacific). A warm (El Ni~no) event occurs when
this anomaly is positive (above 0.5 �C) and a cold (La Ni~na) event
occurs when it is negative (below �0.5 �C). The magnitude of the
anomaly determines the intensity of the events. Even though there
is no official ENSO strength definition, a further classification
generally employed (e.g. http://ggweather.com/enso/oni.htm) will
be used here, i.e. weak events occur when the SST anomaly is be-
tween 0.5 and 0.9 �C;moderate events between 1 and 1.4 �C; strong
events between 1.5 and 1.9 �C, and very strong are those which
exceed 2 �C.

4. Results and discussion

4.1. Validation of the remote sensing algorithm

In order to validate T derived from ocean color sensors, i.e.
including atmospheric correction performance, we compare in situ
measurements of T with simultaneous satellite-derived T. Even
though a limited number of cloud-free match-ups were obtained
during the cruises (11 and 4 for Aqua and Terra sensors, respec-
tively), the sites covered a large extent of the estuary (squares in
Fig. 1 A) and a considerable range of T values (20e200 FNU). For the
fixed instrument, a total of 63 and 46 images of MA and MT,
respectively, were processed for the 5 month period (Table 1). After
applying the quality control criteria (see methods) and rejecting
conditions of suspicious haze and remaining cloud contamination,
24 and 26 match-ups were finally retained for MA and MT
respectively. Comparison of satellite-derived and field measure-
ments for the cruises and fixed instrument showed a good agree-
ment for both sensors with points well distributed along the 1:1
line (Fig. 2).

Statistical analysis gives regression slope close to 1 and low
intercept of the linear regressions, except for IFR cruises match-ups
with MT for which only 4 observations are available (Table 2). In
general, good results are obtained when both data sets for each
sensor are pooled together and consequently a sufficient number of
observations are considered (N~30). In general, satellite-derived
llected during the oceanographic cruises (IFR), and B) the fixed station (PN). Match-ups
d line shows the 1:1 relationship.
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Table 2
Equation and statistics of the linear regressions between satellite-derived and field T
[FNU] measurements for cruises (IFR) and fixed station at Pilote Norden (PN) for
MODIS-Aqua and MODIS-Terra sensors. The slope, intercept, determination coeffi-
cient (R2), root mean square (RMSE, FNU), bias (%), and mean absolute relative
percentage difference (APD %) are presented for each data set, sensor (Aqua and
Terra), and all data sets for each sensor. N is the number of observations.

Slope Intercept R2 RMSE Biasa (%) APDb (%) N

IFR-Aqua 1.26 �12.16 0.92 7.55 3.0 15.6 11
PN-Aqua 0.73 18.8 0.69 7.80 18.7 23.9 24

All-Aqua 0.96 7.52 0.79 5.39 13.8 21.3 35

IFR-Terra 0.63 25.29 0.79 9.16 5.7 17.0 4
PN-Terra 0.91 6.62 0.83 2.93 7.0 17.3 26

All-Terra 0.87 8.58 0.83 3.64 6.9 17.3 30

a bias ¼ 1
N
P�

Tsat�Tsitu

Tsitu

�
� 100.

b APD ¼ 1
N
P jTsat�Tsituj

Tsitu � 100.

Fig. 3. Daily time series of satellite-retrieved turbidity from MODIS Terra (blue) and
Aqua (red) and in situ turbidity values measured at Pilote Norden fixed station and
collected at the closest time of satellite overpass (black). Error bars of the satellite data
correspond to the standard deviation of the 3 � 3 pixel window centered at the Pilote
Norden location. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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values from both sensors slightly overestimated field data as indi-
cated by the low but positive bias generally found (6.9% and 13.8%
for MT and MA, respectively). The mean absolute relative per-
centage differences (APD), i.e. regardless of the sign, in the satellite-
derived turbidity values are 17.3% and 21.3% for MT and MA,
respectively. The slopes of the linear regressions were close to one
(0.87 and 0.96 for MT and MA, respectively) and small intercept is
found for both sensors (8.58 and 7.52 for MT and MA, respectively).
Linear regressions explained around 80% of the variance and the
root mean square errors (RMSE) were low (3.64 and 5.39 FNU for
MT and MA, respectively). From these results it can be concluded
that both MA and MT estimates are in good agreement with field
measurements in the RdP turbid waters.

The time series of daily MA and MT retrievals were well corre-
lated with in situ data collected at the closest time of satellite
overpass at PN location (r ¼ 0.8 for both MA and MT). They both
reproduce the peculiar features observed in the field measure-
ments in 2010, i.e. particularly low values all year long, specially
during the months MarcheApril when the maxima is clearly
observed in 2009 and 2011, and a relative maxima in July 2010.
Error bars in Fig. 3 show the spatial uncertainty of satellite data.
4.2. MODIS-Aqua and -Terra time series

To evaluate the possibility of merging both data sets, cloud-free
images from MA and MT sensors collected the same day were
compared; time difference between satellite passages ranged be-
tween 3 and 4 h. The relative difference between MA and MT
sensors (considering their daily average) was in general about 20%
varying temporally and spatially, reaching up to 100% in the highly
variable regions close to the turbidity front (Barra del Indio shoal)
and where the highest turbidity values are found (Punta Piedras).
As an example, T maps derived from MA and MT on 25th February
2003 and the their relative difference are shown in Fig. 4.

On this day, time difference between Terra and Aqua acquisi-
tions was ~4 hs and the highest relative difference can be observed
in the region of the turbidity front (along the Barra del Indio shoal
between Punta Piedras and Montevideo) and close to Punta Pied-
ras. Also high differences can be observed in the outer estuary,
seaward of the Barra del Indio shoal to the east of the surface
turbidity maximum where a strong decrease of turbidity is gener-
ally observed (T < 10 FNU) mainly due to flocculation and deposi-
tion of sediments at the tip of the bottom salinity front (Moreira
et al., 2013). Further analysis was performed between MA and MT
monthly composites by extracting time series of monthly mean
turbidity at different sites in the upper and middle estuary. As an
example, the T time series of both sensors at Pilote Norden (PN) are
shown in Fig. 5. Both data sets showed the same seasonal cycle and
inter-annual variability. The high frequency variability found in
daily images a few hours apart is attenuated when averaging over
many images per month. The differences in values between the
monthly time-series that can still be observed between sensors is
most likely related to differences in the time of satellite acquisition,
which can be due to either the river dynamics in itself or to dif-
ferences in the time of sampling of the tidal cycle. The linear rela-
tionship between MA and MT monthly mean values in the upper
and middle estuary area corresponding to the 15 years had a slope
of 0.99 (not shown), thus suggesting no clear bias between the
sensors estimates. It is also noted that, whereas quality problems
for MODIS Terra associated with calibration of blue bands are re-
ported to affect long-term trends of oceanic chlorophyll a time
series (Kwiatkowska et al., 2008), these problems do not affect
estimation of turbidity and SPM from MODIS Terra using the red,
near infrared and SWIR bands.

Therefore, for the time series analysis monthly averages from
Terra spanning between March 2000 and July 2002 and from Aqua
sensor spanning between August 2002 and December 2014 were
used allowing the analysis of 15 years of consistent remotely
sensing data.
4.3. Seasonal variability

To analyze the seasonal variability of RdP sediments, monthly
mean turbidity maps have been calculated based on MT and MA
2000e2014 daily time series (see Data and Methods section for
details). Monthly turbidity maps show clear spatial and temporal
variability over the whole estuary (Fig. 6).

In the upper and middle part of the estuary, turbidity increases
from January to April/May, with higher values in the southern coast
(Argentina) compared to the northern coast (Uruguay), and de-
creases from June to September. Relatively high values all through
the year can be observed in the region associated with the mean
position of the maximum turbidity front along the Barra del Indio
shoal and a persistent maximum throughout the year can be clearly
observed in Punta Piedras, a region highly correlated with an area



Fig. 4. Daily turbidity image of 25 February 2003 derived from MODIS Terra (left) and Aqua (center), and the relative percentage difference image between Aqua and Terra (right). In
the latter, pixels with T < 5 FNU are masked because of the noise-related detection limit.

Fig. 5. Monthly time series of turbidity from MODIS-Terra (blue) and MODIS-Aqua (red) at Pilote Norden (see location in Fig. 1B). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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of maximum tidal currents and dissipation by bottom friction
(Simionato et al., 2004a). In order to clarify the spatial variability
and its relation to the seasonality, the month when the maximum
and minimum turbidity value is more frequent and the percentage
of occurrence was estimated for each pixel during the 2000e2014
period (Fig. 7).

The spatial distribution of the month when the turbidity
maximum and minimum are most frequent shows a clear pattern
along the axis of the estuary. In the upper and upper-middle es-
tuary the turbidity maximum occurs most frequently in March
(50e60% of years considered), in the lower-middle estuary it occurs
in AprileMay (40e50%), while it is highly variable in the outer
region of the estuary (Fig. 7A and C). Finally, in the Samboromb�on
bay the maximum occurs in November. It's worth noting that the
outer region and Samboromb�on bay show the lowest observed
frequency (20e30%). In turn, the minimumvalue is most frequently
observed in AugusteSeptember in the upper estuary, in October in
most of the middle estuary with peaks in July along the southeast
margin, in January in the turbidity front area, and in May-June-July
in Samboromb�on bay (Fig. 7B). This spatial distribution in the upper
and middle estuary suggests that the timing of the maximum and
minimum value could be related to the RdP discharge. To better
illustrate the seasonality in different regions and its relation to the
mean river outflow, the mean annual cycle was extracted from six
sites located in the upper estuary (UE), northern margin (NM),
southern margin (SM), Punta Piedras (PP), and two sites along the
Barra del Indio shoal (BIa and BIb). The median value of 11 � 11
pixel window centered at each site and the mean RdP outflow are
plotted in Fig. 8.

The monthly mean variations in general show a marked sea-
sonal cycle in all sites, but less pronounced in the northern part of
the Barra del Indio shoal close to the Uruguayan margin (BIb Fig. 7).
In general, T values increased from January to May with maxima in
MarcheApril and minima in SeptembereOctober. It should be
noted that along the Argentine coast close to Punta Piedras tur-
bidities weremuch higher and themonth of occurrence of themain
peak was highly variable (Fig. 7A and C) as seen also in Fig. 6. As
mentioned before, along the Uruguayan coast (NM and BIb) T
values are much lower and their seasonal fluctuations have smaller
amplitude than along the Argentine coast (e.g. SM and PP). This



Fig. 6. Multi-annual monthly mean turbidity maps for the 2000e2014 period using MODIS-Terra (Mar 2000eJul 2002) and MODIS-Aqua (Aug 2002eDec 2014) data. The along-
estuary section UL, used to present results later in Fig. 12, is shown in the top left image.
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asymmetrical spatial distribution of the sediments is in agreement
with previous works (L�opez Laborde and Nagy, 1999; Moreira et al.,
2013). Moreira et al. (2013) relate this differential pattern to the fact
that most of the solid discharge comes from the Paran�a River
(which flows along the southern coast) compared to the Uruguay
River (which flows along the northern coast), and that stronger
tidal currents occur along the southern coast of the estuary
inducing more re-suspension of sediments and thus higher con-
centration of suspended matter. The RdP outflow presents weak
seasonal variability with relative maxima in May and Octo-
bereNovember (Fig. 8). Statistically significant correlation co-
efficients between the RdP mean runoff and the T long-term
monthly mean values at UE (r ¼ 0.51), NM (r ¼ 0.81), SM (r ¼ 0.7),
PP (r ¼ 0.51), BIa (r ¼ 0.72) and BIb (r ¼ 0.68) have been found
(Fig. 8). Thus, the RdP runoff seems to partially account for the
seasonal variability of turbidity in different parts of the estuary.
However, the large standard deviations around the monthly means
(from 70% to 100% of the mean discharge) suggests high inter-
annual variations as will be analyzed later. Therefore, further
analysis was performed here regarding the water discharge of
different tributaries of RdP.

Time series of monthly T at Pilote Norden (PN) in the upper RdP
(see Fig. 1B for locations) and percentage of water discharge respect
to the total RdP water discharge of four tributaries of RdP are
presented in Fig. 9 (see Fig.1A for locations of gauging stations). The
plots showno clear correlation between time series of turbidity and
any of the Uruguay (%QU), Upper Paran�a (%QUP) or Paraguay (%QP)
rivers' percentage runoff, while the seasonal variability of turbidity
does closely match the percentagewater discharge variations of the
Bermejo River (%QB) (Table 3).
The highest solid discharges supplied by the Upper Bermejo

basin coincide with peak Bermejo liquid discharge, reaching the
annual maximum during the rainy season in FebruaryeMarch
(Cotta, 1963). In turn, the T time series at the upper RdP peaks in
MarcheApril, around a month after the Bermejo highest water
discharge (Fig. 9). A statistically significant cross-correlation
(highest peak) between Bermejo outflow and the 15 years
monthly T time-series at PN (0.62) was found with a positive lag at
1 month, thus increasing the correlation coefficient from 0.72 to 0.8
when a one-month lag is considered (Table 3). This time difference
of one month is in agreement with previous mean estimates of the
sediment travel time (Simionato et al., 2009; Moreira et al., 2013).
However, the amplitude of the T time series at PN does not seem to
correlate with the amplitude of Bermejo river water discharge, the
mean annual discharge of which is just ~2% of total RdP runoff
(~450 m3 s�1). This inter-annual variability of peak T in the RdP will
be further analyzed in section 4.4.

The turbidity mean seasonal pattern described in the present
study is not completely in accordance with what was previously
found by Moreira et al. (2013) also using remote sensing data. That
paper analyzed 10 years of MODIS-Aqua data (2002e2012) of total
suspended matter using the OC5 algorithm (Gohin et al., 2005;
Gohin, 2011) and found that in the upper and middle estuary the
suspended matter concentration increases in the austral fall
(MarcheMay) which was related with the Bermejo water
discharge, but reached a peak in austral winter (JuneeAugust),
decreasing to minimum values in austral summer (Decem-
bereFebruary). The discrepancy between these and our results is



Fig. 7. Spatial distribution of the month when the maximum (A) and minimum (B) turbidity is most frequently observed based on monthly turbidity maps from MODIS-Aqua and
Terra images for the period 2000e2014. Spatial distribution of the percentage of occurrence of maximum (C) and minimum (D) for the corresponding month. In the upper left figure
the locations of points used for subsequent time series analysis are denoted: Upper Estuary (UE), Northern Margin (NM), Southern Margin (SM), Punta Piedras (PP), and Barra del
Indio (BIa and BIb) sites.
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most likely related to differences in the processing of the satellite
data. Moreira et al. (2013) used standard level 2 reflectance data,
which were processed using the NASA standard atmospheric
correction algorithm (Stumpf et al., 2003; Bailey et al., 2010). It has
been previously shown that the standard atmospheric correction
completely fails to retrieve water reflectance in most of the RdP
turbid waters mainly due to sensor saturation of the bands 667, 748
and 869 nm used for the atmospheric correction and the incorrect
estimation of the marine contribution in the near infrared in these
extremely turbid waters (Dogliotti et al., 2011). Thus, the highest
values of suspended matter were probably missing from their
analysis due to failure of the atmospheric correction procedure.
Moreover, the authors removed values higher than 98 g m�3 thus
excluding the highest values which are known to occur and which
have been previously measured in this region (Urien, 1966, 1967;
C.A.R.P.,1989; Dogliotti et al., 2014, 2015). Actually, the match-up
analysis performed in Moreira et al (2013, their Fig. 3a). showed a
clear underestimation of field measurements at high concentra-
tions. Moreover, a more detailed match-up analysis using the same
database showed a poor performance of the OC5 algorithm in this
region (Camiolo et al., 2016). The time series of continuous in situ
turbidity measurements measured in Pilote Norden and used in
both the Moreira et al. (2013) and the present study was collected
between April and August 2010 and showed relatively high T values
in April and July. The satellite-derived time series used in the pre-
sent study shows that 2010 was an exceptional year with relatively
low T values observed all year long and the expected maximum in
AprileMay, clearly observed in 2009 and 2011 and in most of the
years, is not present in 2010 (Fig. 3). This is related to the effect of a
moderate El Ni~no event that took place that year, as described in
the next section.
4.4. Inter-annual variability

To describe the inter-annual variability of turbidity in the RdP,
time series of monthly T at selected sites (PN, NM, and SM, see
Figs. 1A and 7A), annual turbidity anomaly maps, and a space-time
plot of monthly T along a section are analyzed. The section runs
from 58�300 Wat the upper region of the estuary through 56�30’W
well outside the turbidity plume, running through the middle of
the river (UL section indicated in Fig. 6 - JAN).

The T time series at the three selected sites located in different
parts of the upper and middle estuary reveal strong inter-annual
variability with largest amplitude in 2009 and 2012 and smallest
amplitudes in 2003, 2007 and 2010 (Fig. 10). The lowest T ampli-
tudes are related to high RdP outflow in 2003 and 2007



Fig. 8. Monthly mean time-series (average over 2000e2014) of RdP mean outflow (Borús and Giacosa, 2014) and standard deviation (blue line and bars), and turbidity (black) at the
Upper Estuary (UE), Northern Margin (NM), Southern Margin (SM), Punta Piedras (PP), and Barra del Indio (BIa and BIb) sites (see location in Fig. 7). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Satellite-derived turbidity time series at PN (red) and monthly percentage of RdP total outflow water discharge of Upper Paran�a (Itatí), Paraguay (Pto. Pilcomayo), Uruguay
(Paso de los Libres), and Bermejo (El Colorado) rivers (Subsecretaría de Recursos Hídricos). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 3
Pearson correlation coefficient (r) between the percentage of the water discharged
by the each of the tributaries considered (%Qi) respect to the RdP total water
discharge (%Qi ¼ Qi/QRdP x 100) and T time-series at PN. UP: Upper Paran�a, PA:
Paraguay, U: Uruguay, B: Bermejo, and RdP: Río de la Plata. All correlations are
statistically significant at 99%, and * at 95%).

%QUP %QPA %QU %QB (lag¼1month)

r 0.36 0.22* �0.40 0.72 (0.80)
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(~40,000m3 s�1) and 2010 (~50,000m3 s�1), when the outflowwas
about twice themean outflow (22,500m3 s�1). In turn, the largest T
amplitudes were related to low RdP outflow in 2000
(12,000 m3 s�1), 2004 (12,900 m3 s�1) 2008 (15,000 m3 s�1), 2009
(11,500 m3 s�1) and 2012 (13,800 m3 s�1).

Annual turbidity anomalies show the strong inter-annual vari-
ability previously observed and confirm that its spatial distribution
is similar in the upper and middle estuary, but show an inverse
pattern around the Barra del Indio region in all of the years except
in 2000, 2003, 2012 and 2013 (Fig. 11). In turn, in the outer estuary



Fig. 10. Monthly time series (2000e2014) of T (FNU - black) at PN (dashed), NM (solid) and SM (dotted) and RdP outflow (103 m3 s�1) (blue). Mean river outflow (22,500 m3 s�1) is
indicated (red an) (Borús and Giacosa, 2014). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Annual anomaly turbidity maps illustrating the inter-annual variability.
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the variability was much lower, except in 2002 (along the Uruguay
coast) and in 2010 and 2011 (along the Samboromb�on coast) when
positive anomalies were observed. In the upper andmiddle estuary,
positive anomalies can be observed in 2000, 2006, 2008, 2009 and
2012, being strongest in 2009 and 2019 (>150 FNU). In turn,
negative anomalies can be observed in 2001, 2002, 2003, 2005,
2007, 2010, 2011, 2013 and 2014 with minimum values in 2003,
2007 and 2010 (<�100 FNU). The inverse pattern of the Tanomalies
in the frontal region seems to be related to the influence of the
magnitude of the river outflow on the extension of the river plume.
As a response to larger river outflow (negative T anomaly in the
upper/middle estuary) the plume extension increases resulting in
positive T anomalies around Barra del Indio given that sediments
reach farther. In turn, when the river outflow is low (positive T
anomaly in the upper/middle estuary) a retraction in the river
plume is expected resulting in negative T anomalies around Barra
del Indio. It should be noted that these are annual anomalies that
show a general pattern, i.e. this inverted pattern which are clearly
observed in monthly anomaly maps (not shown) are attenuated by
averaging in the annual maps, and that the extension of the plume
is not only determined by the river outflow, but also by the wind
stress (Piola et al., 2008).

Turbidity, RdP outflow anomaly and the Oceanic Ni~no Index
(ONI) along the section UL are presented in Fig. 12. As seen previ-
ously in Fig. 6, along the upper and middle estuary (from 58�30’ to
57�W) the well-defined seasonal pattern of high turbidity from
February to May can be observed in most of the years, while more
variable turbidity and a less clear seasonality is observed in the
outer region east of 57�W (Fig. 12 left panel). Moreover, the inter-
annual variability of peak turbidity is clearly observed and seems
to be related to the RdP outflow anomaly and in turnwith the ENSO
cycle (Fig. 12 right panel). Large RdP outflow in 2003, 2007 and
2010, when turbidity was low, occur during moderate and weak El
Ni~no events in the corresponding years (Fig. 12). In turn, higher
turbidity can be observed in years where RdP outflow mean values
were lower than themean and are related with weak andmoderate
La Ni~na events in 2000, 2008, 2009, and 2012 (Fig. 12). As an
exception, the high turbidity observed in 2004 associated to low
RdP outflow (12,900 m3 s-1) is not related to a La Ni~na event.

Eastern South America is particularly subject to ENSO-triggered



Fig. 12. left) Space-time plot of T (FNU) along section UL for the period 2000e2014 (see Fig. 6 for location); center) monthly RdP outflow anomaly (103 m3 s�1) (Borús and Giacosa,
2014). Positive (negative) outflow anomaly related with high T values are shown in blue (red); right) Oceanic Ni~no Index 3-month running average values. Weak (WK) and moderate
(MOD) El Ni~no (La Ni~na) events related to positive (negative) outflow anomaly are shown in light-blue (pink). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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floods. It has been shown that the two main components of the La
Plata basin, the Paran�a and Uruguay rivers, show a strong inter-
annual oscillation in phase with El Ni~no events (Pasquini and
Depetris, 2007), with increased water discharge during ENSO
warm events (El Ni~no) and normal to low discharges during cold
events (La Ni~na). However, the Bermejo and Pilcomayo Rivers are
exceptions and do not show this periodicity (Pasquini and Depetris,
2007). Therefore, the inter-annual pattern found in this work can be
explained by the fact that the Bermejo river that contributes with
most of the sediments (~70%) is not affected by the ENSO cycle,
while the main tributaries that provide more than 97% of the RdP
liquid discharge (Paran�a and Uruguay rivers) are highly influenced
by the increased rains during El Ni~no events. This produces an in-
crease in the water discharging to the Atlantic Ocean through the
RdP, but not in the amount of sediments, which are mainly pro-
vided by the Bermejo River, thus producing a dilution effect in the
RdP during El Ni~no events (Figs. 3 and 10). This is confirmed by the
strong correlation found between the percentage of the water
discharged by the Bermejo river respect to the RdP total water
discharge (%QB), which can be considered as an index of the solid
respect to the liquid discharge of RdP, and the T time-series at PN
with a correlation coefficient r ¼ 0.72 and 0.8 when no lag and a 1-
month lag were considered respectively (Table 2). In turn, higher
amplitude in the turbidity seasonal cycle can be observed in years
when RdP water discharge is lower than average and is more
pronounced in some years associated with La Ni~na events, like
2000, 2007, 2008, and 2011 (Figs. 11 and 12). However, the relation
between increases in turbidity and La Ni~na events is not so direct as
that for the El Ni~no events because La Ni~na events are not the only
predictor for drought in this region (Mechoso and P�erez Iribarren,
1992).

5. Conclusions

The results presented in this study show the usefulness of a long
time series of reliable satellite-derived data to study spatio-
temporal variability and long term change of turbidity in the RdP
provided that remote sensing algorithms suitable for extremely
turbid waters are chosen, e.g. a SWIR based atmospheric correction
(Wang and Shi, 2007) and a turbidity retrieval algorithm which
switches to near infrared wavelengths in the most turbid waters
(Dogliotti et al., 2015). Turbidity retrievals with uncertainties of 21
and 17% from MODIS Aqua and MODIS Terra data, were found.
Based on a long time series of quality controlled data, the seasonal
dynamics of the RdP showed that, in the upper and middle river,
variations of turbidity are highly correlated with the Bermejo river
runoff, with maxima in MarcheApril (around a month after the
peak Bermejo liquid and solid discharge) and minima in
AugusteSeptember. This seasonality does not completely agree
with previous findings (Moreira et al., 2013), but this difference is
probably related to the use of inappropriate remote sensing algo-
rithms (which are known to fail in highly turbid waters) in the
previous work. Additional long-term field measurements are
needed in this region to confirm the findings in the present study.

At a longer time scale, high inter-annual variability in turbidity
has been observed and related to the ENSO cycle. Low amplitude
and turbidity values have been observed in El Ni~no years and high
amplitude and turbidity values during some La Ni~na years. This
pattern is explained here by the different responses of the tribu-
taries to this inter-decadal event. While the solid flux, essentially
from the Bermejo river, is not significantly affected by the ENSO
cycle, the water discharge from the other tributaries is significantly
affected, giving a consequent dilution of turbidity and SPM
concentration.

Other studies using long time series of satellite derived SPM
data have shown that the variability of sediment input is mainly
controlled by the river discharge (Loisel et al., 2014; Petus et al.,
2014). However, the peculiar characteristics of the La Plata basin,
which covers almost the whole width of the continent, draining
tributaries with very different characteristics that respond to
different hydrologic regimes, showed a more complex relation
between SPM and the water discharge of the main and tributary
rivers as well as their response to climatic forcing such as the ENSO
cycle. Given that SPM is the variable of main interest in sediment
transport studies, future work will aim at deriving SPM maps from
satellite-derived turbidity by finding local relations between these
variables. To achieve this, field measurements of both SPM and T at
different places and time of year are essential to asses its spatial and
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temporal variability.
The results presented here highlight the utility of long time

series of remote sensing data in assessing and monitoring changes
of key environmental parameters and in understanding sediment
transport dynamics. The current methodology may be of use in
understanding the spatial, seasonal and interannual variability of
turbidity and suspended particulate matter in other estuaries and
river plumes.
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