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Abstract 

The last two years have seen a dramatic increase in the applications of optical remote 
sensing for turbid coastal and inland waters, driven largely by the availability of free, high 
quality and high resolution satellite data from Landsat-8 and Sentinel-2. It is now possible 
to regularly and systematically map the distribution and dynamics of suspended particles 
and certain impacts of human activities close to shore and inside ports, estuaries and 
inland waters. Commercial missions such as Pléiades, Worldview and Rapideye also offer 
new possibilities for remote sensing of aquatic processes at even higher spatial resolutions 
(~1m). The exploitation of such data brings new algorithmic challenges and opportunities 
including: the use of SWIR bands for atmospheric correction in turbid waters; the challenge 
of lower signal:noise specifications and possible spatial binning techniques; the exploitation 
of extremely high resolution panchromatic bands; the assessment of the impact of sub-pixel 
scale effects for medium resolution ocean colour missions; the need to remove/filter 
sunglint and surface wave effects; the possibility to resolve patchy distributions (suspended 
matter, surface foam, algal blooms, floating vegetation, etc.); problems of data 
contamination by cloud and object shadows; and the validation of narrow swath sensors. 
The state of the art of high resolution remote sensing of water colour is reviewed here and 
the many emerging opportunities and algorithmic challenges are outlined using examples 
from Landsat-8, Sentinel-2 and Pléiades. 

1. Introduction 

“Ocean Colour” remote sensing, as implied by the name, used to be concerned with the 
processing and exploitation of remote sensing data of the oceans. This data generally 
derived from the “mainstream” ocean colour sensors, such as SeaWiFS, MODIS, MERIS, 
VIIRS and OLCI, with typical spatial resolution of 300m-1200m, approximately daily data, 
typically 8-18 spectral bands and a high signal noise ratio for accurate radiometric 
performance over dark water targets. Since the launch of SeaWiFS, there has been a 
growing interest in using such data for coastal and inland water applications because of the 
strong relevance to human activities. A new revolution has occurred thanks to the free and 
easily available high resolution data from Landsat-8 (30m multispectral, launched 2013-02-
11) and Sentinel-2 (10-60m multispectral, launched 2015-06-23). Many new processes, 
particularly those relating to human activities, can be seen at 10-30m that were not 
previous visible at 300m. Some opportunities for new applications based on these datasets 
are described and the new challenges for data processing are summarised. 



2. Application Opportunities 

Improvement in spatial resolution from ~300m (OLCI) to ~30m (Landsat-8) or ~10m 
(Sentinel-2) makes possible remote sensing of many new human activities or impacts in 
coastal, estuarine and inland waters. 

For example, for most large ports the spatial distribution of water properties such as 
suspended particulate matter (SPM) concentration cannot be mapped at 300m resolution, 
but can be resolved adequately with 30m resolution data or commercially-available 1-2m 
data. This opens up new possibilities for understanding sediment transport into/out of ports 
(Figure 1) and estuaries and optimising dredging and/or monitoring activities. The SPM 
around ports and other offshore constructions, such as wind farms (Q. Vanhellemont and 
Ruddick 2014), platforms and artificial islands, can also now be easily mapped and better 
understood. Indeed for many such constructions it is necessary to carry out an 
Environmental Impact Study and/or continuous monitoring, which may now be facilitated, 
for the aspects relating to suspended sediments and their transport, by remote sensing. 
The spatial extent of impacts from sand and gravel extraction (Van Lancker et al. 2013) can 
also be more easily understood. Dredging companies can use high resolution remote 
sensing to clearly establish natural sources of SPM and thus facilitate and demonstrate 
compliance with environmental regulations. Governmental authorities can use remote 
sensing to identify illegal SPM disposal activities (Vanhellemont and Ruddick 2015).  

Whereas SPM mapping (including atmospheric correction) can be achieved with quite 
simple remote sensors, e.g. with a red band and a near infrared band (Stumpf and 
Pennock 1989; Neukermans et al. 2009), mapping of chlorophyll (CHL) sets more stringent 
requirements on the spectral band set. In turbid waters, where non-algae particle 
absorption can mask algae particle absorption in the blue-green spectral range, it is 
necessary to have spectral bands inside the red (~665nm) chlorophyll a absorption feature 
and just outside, e.g. 705-709nm, as on MERIS and OLCI. The Sentinel-2 band set does 
have bands at 665nm (10m) and 705nm (20m) which are appropriate for CHL mapping in 
turbid waters, thus offering an impressive improvement in spatial resolution from 300m 
(MERIS/OLCI) to 20m (Vanhellemont and Ruddick 2016; Toming et al. 2016), provided that 
radiometric noise at these bands does not degrade performance. This opens up new 
opportunities for CHL mapping close to the coast, which is useful for water quality reporting 
in the context of the European Union Water Framework Directive (Bresciani et al. 2011; 
Gohin et al. 2008), and in many estuaries, ports and inland waters.  

A third family of commonly used aquatic parameters from optical remote sensing consists 
of parameters relating to underwater transparency or light attenuation, including 
monochromatic or spectral or broadband diffuse attenuation coefficient (“Kd”), euphotic 
depth, horizontal visibility, etc. (Doron et al. 2007). Such parameters are needed by, for 
example, ecosystem modellers (Lacroix et al. 2007), professional divers, and marine 
scientists, limnologists and managers of coastal and inland water quality managers. The 
higher spatial resolution offered by satellites such as Landsat-8 and Sentinel-2 may be of 



particular use to understanding small scale variability, e.g. around the bases of windmills 
where divers carry out monitoring or maintenance. 

Extremely high biomass plankton blooms and floating vegetation  and cyanobacteria scum 
(Dierssen, Chlus, and Russell 2015; Hu 2009; Matthews, Bernard, and Robertson 2012) 
are often patchy in space  and much easier to detect at high spatial resolution, e.g. (Van 
Mol et al. 2007) and Figure 2. Floating vegetation can be both environmentally important, 
as a habitat for certain species, and of socio-economic importance, e.g. as a nuisance to 
shipping (Williams 2005). 

Benthic vegetation and important habitats such as corals are also often patchy in space. 
There is a longstanding tradition of using remote sensors such as Landsat for mapping 
seagrass beds and corals (Dekker et al. 2006; Mumby et al. 1997). The release of free and 
easily available data from Landsat-8 and Sentinel-2 will dramatically improve the amount of 
imagery that can be used in such studies and hence improve understanding of any 
temporal variability of benthic habitats. 

Finally, many manmade objects become visible at 10-30m including ships, offshore 
platforms, jetties, bridges, pipelines, aquaculture sites, etc. These objects may impact on 
the aquatic environment in diverse ways – the highest resolution data can show both the 
objects and the optical aspects of their environmental impact.  

3. Scientific Opportunities 

In addition to the new applications that have been developed from the now freely and easily 
available high resolution satellite data, there are new opportunities for improving 
observation, and hence scientific understanding, of small scale aquatic processes. For 
example, phytoplankton distributions may have significant patchiness at spatial scales of a 
few metres, which may be related to small scale physical-biological interactions (Franks 
and Walstad 1997). The patchiness of SPM at length scales of a few metres or less has 
been observed in many turbid estuaries and coastal waters (Figure 3). The physical 
processes causing such patchiness are not entirely clear. Oceanic and estuarine fronts are 
often marked by a sharp line of foam and/or floating debris because of convergence in 
surface currents (Bowman and Iverson 1978). The optical impacts of other physical 
processes occurring at scales between 1m and 300m, such as surface gravity waves, can 
now be measured very systematically. 

Mass exploitation of high resolution optical imagery is likely to lead to a better 
understanding of such processes in their own right as well as a better representation of 
such subpixel scale effects in medium resolution ocean colour imagery. As an example of 
such potential, Figure 4 shows near-simultaneous (62 seconds apart) imagery from two 
different viewing angles, one with strong sunglint, the other without. 

4. Data Processing Challenges  

The advent of mass processing of high resolution imagery for water bodies brings new 
challenges for data processing algorithms. There are currently no standard level 2 water 



products for missions such as Landsat or Sentinel-2 because these were designed only for 
land targets.  However, free software is now available to perform an automated 
Atmospheric Correction (AC) for these sensors, e.g. ACOLITE, SeaDAS, BEAM/sen2cor. 

At high spatial resolution, some processes that are subpixel scale for 300-1000m imagery 
become spatially resolved and require a different treatment: 

Spatial variability of skyglint from wind waves and swell with typical length scales of 1-
30m become very obvious in high resolution imagery because of the change in Fresnel 
reflectance associated with different skylight incidence angles, possibly combined with 
different brightnesses of the reflected sky – see Figure 5. The spatial average of such 
waves is generally removed from medium resolution imagery in the AC. An AC allowing 
pixel-by-pixel (PP) variation of aerosol (and skyglint) reflectance, e.g. by simple differencing 
of red and near infrared wavelengths, can be reasonably effective in removing skyglint from 
waves. However, PP AC algorithms will generally suffer from noise and AC algorithms for 
high noise sensors, such as L8 and S2, generally need some spatial smoothing of the 
atmospheric correction bands (Vanhellemont and Ruddick 2015; Vanhellemont and 
Ruddick 2016). Since both sensor noise and wind waves have length scales at or close to 
the pixel size but different spectral correlations (noise is spectrally uncorrelated, wave 
effects are spectrally correlated if bands are simultaneously acquired) it can be difficult to 
remove both wave effects and noise in the AC, while preserving the real spatial variability 
of water reflectance.  

Spatial variability of sunglint also becomes very obvious in high resolution imagery if 
viewing close to the specular reflection direction, e.g. Figure 4. Sunglint can have very 
small spatial scales, e.g. cm capillary waves, and is not totally spatially resolved even in 1m 
imagery. The spectral variation of sunglint can be calculated on an image-by-image or 
moving window basis assuming that other processes (water, aerosols) have less variability 
at short length scales (Hochberg, Andrefouet, and Tyler 2003; Hedley, Harborne, and 
Mumby 2005). Using this information on the spectral variation of sunglint it is still necessary 
to estimate the amplitude of sunglint reflectance for each high resolution pixel. The problem 
here is quite similar to the problem of estimating the amplitude of aerosol and/or skyglint 
reflectance and can be approached by identifying a reference wavelength where water 
reflectance is known to be zero or easily calculated (Gordon and Wang 1994; Wang and 
Shi 2005; Quinten Vanhellemont and Ruddick 2015) or by multi-spectral inversion of a 
coupled water-atmosphere model (Steinmetz, Deschamps, and Ramon 2011).  

Cloud shadows become much more problematic in high resolution imagery. At 300-1000m 
resolution cloud shadows are generally removed along with cloud edge pixels by simple 
spatial enlargement of detected clouds or are sometimes removed in dark waters as low 
radiance pixels. At 10-30m resolution such a crude approach would remove too much 
useful data and a less conservative approach would miss many cloud shadow 
contaminated pixels giving very bad data to users. Since cloud shadow pixels can look 
spectrally identical to other clear sky water pixels, spectral tests are insufficient for 
detection and it is necessary to use information on sun location and, if available, cloud 



height to project detected clouds horizontally to cloud shadow pixels. Such geometric 
algorithms can be combined with more complicated object search algorithms (Zhu and 
Woodcock 2012), although the latter can be confused by regions of high spatial variability 
of water reflectance. A reasonable approach (Pringle, N., Vanhellemont, Q., and Ruddick, 
K. 2015) seems to be to assume a conservatively high cloud top height, possibly higher for 
cirrus clouds, and project clouds away from sun, flagging all pixels as cloud shadow 
contaminated. 

It is noted that cloud shadow pixels do contain information on the atmosphere and on water 
level direct/diffuse irradiance that might be useful for AC purposes (Chang et al. 2007). 
However, an operational AC algorithm cannot rely on the presence of cloud shadow pixels 
and the shadowing of atmospheric reflectance at different heights and the different 
transmittances of thick and thin clouds can complicate exploitation of cloud shadow pixels. 

Terrain (e.g. mountain shadows over fjords and lakes) and building/object shadows 
can also be difficult to detect automatically. As with cloud shadows spectral tests are 
generally insufficient and extraneous information from high resolution Digital Terrain 
Models (DTM), if available, may help in the detection of mountain shadows. Removal of 
shadows from fixed land-based structures (buildings at the coast, offshore platforms, 
windmills) and moving objects (ships, even port cranes) is even more problematic and may 
require algorithms to detect spatial heterogeneity … with the accompanying risk of 
removing real aquatic processes. 

Adjacency effects can contaminate remote sensing data because of violation of the AC 
assumption that atmosphere and air-water interface reflectance for any target pixel can be 
calculated using a horizontally uniform water and atmosphere around the target pixel. 
Adjacency processes include both the “Fresnel land mask” reduction of air-water interface 
reflectance and the forward scattering of photons from land surfaces into the sensor field of 
view (Santer and Schmechtig 2000). The latter process gives particularly severe 
contamination of pixels for near infrared based extrapolative aerosol corrections and for 
clear water pixels close to vegetated land. Early indications from mass processing of L8 
and S2 imagery suggest that adjacency effects are less problematic than was originally 
expected, possibly because these sensors have SWIR bands that can be used for AC and 
that are less sensitive to adjacency effects. 

The lower signal:noise ratio (SNR) of the current generation of high resolution (1-30m) 
sensors can be critical for water applications. This will be especially problematic for dark 
waters such as CDOM-rich lakes and open ocean waters, where the noise may be 
comparable to or greater than the water-leaving radiance itself. The sensor noise will often 
set a detection limit for parameters such as SPM or CHL concentration. SNR can be 
improved by spatial binning of data, but obviously at the cost of reducing spatial resolution. 

Sensors designed for land applications generally have much broader and possibly 
asymmetric spectral bands than specified for water applications and some spectral 
variability of water reflectance may be unresolved. A central wavelength approach often 



adds considerable uncertainty and band-shifting adaptations are therefore required to the 
standard ocean colour retrieval algorithms (Lee 2009), and for validation purposes. 

Panchromatic bands, e.g. available on Landsat-8, provide an extreme case of broad 
spectral bands. For cases where broadband water reflectance variability is essentially 
determined by a single parameter, such as particulate backscatter or SPM concentration, it 
is possible to adopt simple band-sharpening approaches (G. Neukermans, Ruddick, and 
Greenwood 2012) to effectively exploit the even higher spatial resolution of such bands. 

Vicarious calibration and validation are complicated by the reduction in matchups with in 
situ data arising from the narrow swath and consequent low temporal resolution of data 
from high spatial resolution sensors. This is particularly critical in the first few years of a 
mission. The deployment of autonomous instruments on permanent structures is clearly 
required, e.g. BOUSSOLE (Antoine et al. 2008), MOBY (Clark et al. 2003), AERONET-OC 
(Zibordi et al. 2009), Smartbuoys (Mills et al. 2003), etc. 

5. Conclusions 

The public release of free, high resolution (10-30m) data from Landsat-8 and Sentinel-2 
opens up the possibility of many new applications in coastal, estuarine and inland waters. 
Human impacts, for example relating to sediment transport or pollution events, are more 
visible at such length scales. Some biological processes, such as patchy plankton blooms 
and floating algae, also become more easily detectable at high resolution. These new data 
sources also raise new challenges for algorithm developers because of the need to deal 
with low signal:noise ratio, wide spectral bands,  cloud, terrain and object shadows, and 
spatially resolved (or partially resolved) skyglint and sunglint from surface waves. 
Traditional ocean colour processing approaches, including strictly pixel-by-pixel 
atmospheric correction algorithms need to be refined, e.g. including information on a pixel 
neighbourhood to reduce noise. In fact, while applications and data processing algorithms 
have been largely driven since the mid-1990s by the medium resolution “ocean colour” 
sensors, the terminology “ocean colour” no longer covers the majority of aquatic 
applications of optical remote sensing and it is time to speak more broadly about “water 
colour”. Finally, the political impact of publicly available high resolution imagery of waters 
throughout the world may be considerable in regions with environmental problems to hide, 
e.g. Figure 6.  
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Figures 

 

Figure 1. Pléiades imagery on 2014-07-17 of Blankenberge yacht harbour as RGB 
composite (top) and Turbidity map (bottom), showing suspended sediments entering 
harbour. Data © CNES (2014), distributed by AIRBUS DS, processed by RBINS using 
PONDER processor. 

 

  



 

Figure 2. Landsat 8 image of 2015-02-23 West of Montevideo, showing (left) RGB 
composite of Top of Atmosphere data and (right) pixels in green detected as floating algae 
or cyanobacteria scum according to the Floating Algae Index modified for Turbid (FAIT) 
waters – for details of processing see (Dogliotti et al, this volume). Data courtesy of USGS, 
processed by IAFE using ACOLITE. Many of the patches detected are small (~1 30m pixel 
wide) and cannot be detected on lower resolution imagery. 

 

 

Figure 3. Patchy distribution of SPM seen in water near Zeebrugge from (left) Pléiades 
image of 2014-09-08, data © CNES (2014), distributed by AIRBUS DS, processed by 
RBINS. and (right) digital camera photo taken from Research Vessel Belgica on 2015-04-
15. The physical process causing these patches is not well understood. 

 

  



 

Figure 4. Rayleigh-corrected RGB Pléiades image of the La Plata Estuary and the 
Fishermans Pier of Buenos Aires on 2016-04-21 taken 62 seconds apart with different 
viewing zenith angles. The effect of sunglint can be seen clearly in the bottom image and 
can be precisely calculated. Data © CNES (2016), distributed by AIRBUS DS, processed 
by RBINS. 
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Figure 5. Sentinel 2A image of 2016-05-01 in coastal waters near Goeree showing (left) 
RGB image with swell waves, breaking wave foam and foam along a front and (right) SPM 
concentration with corresponding artefacts. Data supplied by ESA, processed by RBINS 
using ACOLITE. 

 

Figure 6. (left) Oil slick from drilling activities (shiny, grey) and Duckweed (bright green) in 
Lake Maracaibo, Venezuela seen in Landsat-8 image of 27.2.2014; (right) red 
discolouration of Daldyakan river, Russia seen in Sentinel-2A image of 2016-08-28 – see 
also “In Siberia, a ‘Blood River’ in a Dead Zone Twice the Size of Rhode Island”, New York 
Times, 8 Sept 2016. Data supplied by USGS and European Space Agency, processed by 
RBINS using ACOLITE. 
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