
Motivation and Framework 

£Remotely sensed soil moisture (SM) studies have mainly focused on retrievals using 
 (MW) sensors. 

£Argentina is strongly involved in MW satellite mission developments: 1) SACD/Aquarius mission, 
2) SAOCOM radar SM mission under development by CONAE ( ). The 

 of this mission is the retrieval of SM in the , a huge area dedicated to 
agriculture and cattle raising. 
£SM products from different missions (passive and active) are available, but the lack of an 
appropriate in situ network for SM validation has hampered their use for monitoring purposes 
(droughts and floods) in the  and their assimilation in atmospheric and meteorological 
models. 
£The current development of an Aquarius soil moisture product using a bayesian scheme based on a 
zero order Radiative Transfer (RT0) approach (see oral presentation in SM session WE3.06)

Objective

To evaluate available global time series of 
the passive SM products derived from AMSR-E, ASCAT, and SMOS over the Pampas Plains. To this 
end, we will use methods that do not require in situ networks (not available in this area): a) analysis of 
anomalies, b) error estimation using Triple Collocation (TC).
Specifically, we want to answer the following question: 

The Pampas Plains

Argentina's Pampas (27-40º S, 57-67º W) is a wide plain of over 50 million ha of fertile lands suitable 
for cattle and crop production. Figures 1 a) and b) show a land cover map of the area [1], and the spatial 
distribution of the difference between precipitation (P) and evapotranspiration (EP) means (mm) of the 
period 1970-2006 for the month of October (growing season), as a reference of the moisture 
characteristics of the area, drier in the west and wetter in the east. Although this spatial distribution is 
present along the whole growing period, the P-EP values and distribution varies month to month [2]. 
Most of the Pampas region is significantly affected by cyclical drought and flood episodes that impact 
both crop and cattle production. Different ecological regions cover the area, each one has specific 
characteristics regarding  precipitation patterns and agricultural practices.
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the performance and relative agreement of the estimations of 

how does one evaluate product quality in view 
of the lack of in situ data at their required spatial scale using TC? 
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Data and Methods
Table 1 summarizes the data sets used and the period analyzed. 
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Time Series Comparison
Figure 3 shows standarized seasonal anomaly composites for the period 2010-2011. As seen, the three 
algorithms present very similar spatial patterns (previously unnoticed in Fig. 2), which are consistent 
with ancillary information that indicates dry (wet) conditions over the west (east) of the study region 
respectively. This qualitative statement is supported by the highly significant (at the 99% confidence 
level) positive correlation coefficients between each pair of standardized seasonal anomaly composites, 
as shown in Table 2.

Figure 1.  a) Pampas Plains land cover categories (adapted from [1]) polygons in red indicate counties boundaries 
and b) an example of the spatial distribution of the P-EP for the period 1970-2006 for the month of October (adapted 

from [2]).

Figure 3. Standarized seasonal anomaly composites for the period 2010-2011 of (left to right): ASCAT, AMSR-
E/LPRM and SMOS.
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Sensor  Products Period Orbit 

AMSR-E LPRM L3 SM product, V. 5 gridded 

0.25deg lat/lon, optical depth (VOD) , 

Units[vol/vol] 

2010-2011 Descending 2:30 AM 

SMOS L.MEB L2 SM  product, V.551 DGG ISEA 

25km grid Units[vol/vol] 

2010-2011 Ascending 7:30 AM 

ASCAT TU WEIN SM product, V. 1.2 WARP 5.5, 
soil saturation 0-100, convert to 

Units[vol/vol] 

2010-2011 Descending 10:00 AM 

Figure 4. TC error estimates for the period Jan-2010 to Oct-2011 for (left to right): ASCAT, AMSR-E/LPRM and 
SMOS, scaled to ASCAT.

Table 1. Data sets for anomaly correlations and TC error analysis.

 

 Correlation p-value 

SMOS vs LPRM 0,7605 <0,01 

SMOS vs ASCAT 0,6192 <0,01 

ASCAT vs LPRM 0,6088 <0,01 

Table 2. Spatial anomaly correlation coefficients and corresponding p-values.

  ASCAT SMOS LPRM 

Mean 0,0200 0,0631 0,0662 

MADN 0,0054 0,0117 0,0138 

SD 0,0151 0,5166 0,4149 

 
Table 3. Mean, MADN (normalized median absolute deviation), SD (standard deviation) of the TC error estimates, 

from the ASCAT,  . AMSR-E/LPRM and SMOS, scaled to ASCAT.

Figure 2. Average Soil Moisture Values for the period October 2010 of (left to right): ASCAT, AMSR-E/LPRM and 
SMOS. (P  olygons in black indicate counties boundaries)

Two of the products (AMSR-E/LPRM [3] and SMOS [4]) are derived from different passive microwave 
systems, and although both algorithms are based on radiative transfer RT0 algorithms, they differ 
significantly in the way the RT0 is solved for the two unknowns (SM and vegetation optical depth 
(VOD)). The third product, ASCAT SM,  is obtained from an active microwave sensor and the retrieval 
is based on a time series approach. 

Not only daily absolute values differ considerable in SM values between products, but also monthly 
means show considerable differences. As an example, the October 2010 monthly means for the three 
products are shown in Figure 2. In this example, ASCAT shows very uniform low values, SMOS shows 
low values but some differences between the west and east (as expected) and LPRM shows a similar 
spatial pattern but overall higher values.

It is important to remark several points,

1. The triple collocation (TC) technique, developed by [5], is being used in this paper to estimate the 
root mean square error (RMSE) of the  products. This technique is used here to estimate the RMSE of the 
soil moisture anomaly time series generated by ASCAT, SMOS and AMSR-E (LPRM). Specifically, TC 
estimates the standard deviation of the error term of a given soil moisture anomaly time series with 
respect to the true soil moisture anomaly time series (not known).

2. The soil moisture anomaly time series were defined as the deviations of the original time series from 
their seasonal climatology. 

3. For each data set, the seasonal climatology was calculated as a 31 day moving average, where the 
averages are based on data from the whole period of study for the 31 day window surrounding each day 
of the year. 

4. The SM products are gridded differently and thus, to allow comparisons, SMOS and ASCAT data 
sets were resampled to match the 0.25° spatial grid of LPRM.  Areas where SM products are known to 
have bad performance (such as coastal areas, salt fields, and water bodies) were screened prior to 
performing any analysis on the data. Additionally, all data sets were filtered using a 5 days moving 
window. 

5. ASCAT was chosen as the reference data set in the shown figures. All the combination were 
analized. 

Figure 5. (a) Correlation coefficient between AMSR-E/LPRM and SMOS soil moisture anomaly time series. (b) 
Difference in AMSR-E/LPRM and SMOS TC error, scaled to ASCAT.
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Comments
Several remarks regarding the analysis carried out for ASCAT, SMOS and LPRM SM estimations in the 
Pampas Plains can be underlined:
¥There are difficulties in comparing SM absolute values (already known). 
¥Although quantitatively different, all three SM products present very similar and highly correlated 
spatial anomalies.
¥For the period analized, ASCAT presented the best performance regarding TC RMSE estimates.
¥Differences regarding the performance of the products are possibly related to land covers and 
growing seasons. Further studies are in progress to quantify errors considering specific land covers and 
their temporal state (growing season versus bare soil conditions) and also dry years versus wet years. 

The fact that average SM values present large visual discrepancies and spatial anomalies are highly 
correlated, point to a TC analysis. Figure 4 shows the TC error estimates. Domain average calculations 
shown in Table 3 reveal that the ASCAT soil moisture anomaly time series exhibits the lowest average 
RMSE of the three data sets. This is also the case when the TC error analysis is performed on the same 
three data sets, but using either LPRM or SMOS as the reference data set (results of this analysis are not 
shown due to the length constraints).  Therefore, using TC as the performance metric, ASCAT is the 
product which presents the lowest RMSE with respect to the true soil mositure anomaly time series.

In order to study the overall spatial dispersion of the TC RMSE estimates two measures of statistical 
dispersion are also included in Table 3. From them several conclusions can be derived,
ªLarge differences between the standard deviation (the classical estimator of dispersion) and the 
MADN (a more robust estimator of dispersion), point to the presence of outliers in all three data sets 
(also seen in the anomalies).
ª The spatial patterns of all three TC RMSE estimates are consistent with the land cover map (Figure 
1(a)), that is, higher errors correspond to forest areas (vegetation attenuation of soil signal ), areas close 
to the coast (border errors) and highlands. 
ªSimilarities in the spatial error patterns of LPRM and SMOS algorithms are observed in the good 
visual correspondence between their TC RMSE maps (Figure 4). This is further indicated by the close 
values obtained for the domain mean, MADN and SD RMSE estimates shown in Table 3.

To further explore the validity of applying a TC analysis in this area and for these datasets, we compared 
a map of the correlation coefficients between AMSR-E/LPRM and SMOS soil moisture anomaly time 
series with the difference between their TC errors. Results are shown in Figure 5. Red (blue) shading 
indicates that LPRM TC error is greater (smaller) than the SMOS TC error. The maps show a good visual 
correspondence between areas which exhibit low correlation values (shaded blue in Figure 5 (a)) and 
areas with high absolute difference in the TC error estimates (shaded dark red or dark blue in Figure 5 
(b)). Therefore both assessment techniques provide similiar qualitative information, regarding the 
mutual agreement of the given pair of soil moisture datasets.
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