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ABSTRACT

Soil moisture retrieval from SAR data presents two main sources of
uncertainty: terrain heterogeneity and speckle noise. In this paper,
these issues will be addressed by using a Bayesian approach. Such
a Bayesian approach (1) needs only a forward model (no retrieval
model required), (2) gives the optimal unbiased estimator for the
soil moisture and its error and (3) can include as many error sources
as required. Through numerical simulations, a standard Oh retrieval
procedure and the Bayesian approach were tested for different num-
ber of looks (n = 3 and n = 64). The results indicate that for a
large number of looks the region of validity of both approaches are
similar. Furthermore, contrary to the Oh model retrieval procedure
which is only valid in a bounded region of the (hh, vv, hv)-space,
the Bayesian approach gives an estimation of soil moisture and its
error for any combination of hh, vv and hv, so enlarging the region
where the retrieval is possible.

Index Terms— Soil moisture, Bayesian retrieval approaches,
radar remote sensing

1. INTRODUCTION

Orbiting microwave synthetic aperture radar (SAR) systems offer
the opportunity of monitoring soil moisture content (SMC) at dif-
ferent scales and under any kind of weather conditions, through the
known sensibility that the backscattered signal exhibits to soil pa-
rameters, including soil moisture. In this framework, soil moisture
retrieval can be considered an inference problem, where one essen-
tially wants to infer soil condition given a set of measured backscat-
ter coefficients and ancillary information.

A wide range of forward models, ranging from experimental re-
lationships to physically-based models have been developed in or-
der to assess the dependency of soil parameters to the backscattered
signal. These models are important to understand the soil backscat-
tering physics, but they are also a key tool to the retrieval of soil
condition from SAR measurements.

One of the limiting problems of SAR-based soil moisture re-
trieval is the unsatisfactory performance of retrieval models. Rea-
sons for mismatches between model parameters and measured data
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include instrument error, the heterogeneity of the target’s surface,
the difficult to measure in the field the roughness parameters input
to the models [1][2][3]. In the case of semi-empirical models, the
standard modeling approach based on scatterometers is to describe
the average behaviour of the signal as a function of soil parameters,
disregarding the spread around the average value and its causes [3].
This is true for all the semi-empirical models published, and give
rise to artifacts characterized by several soil moisture estimates that
correspond to the same soil moisture measurement [3].

Furthermore, another phenomenon degrades SAR-based soil
moisture retrieval: speckle noise. It is a multiplicative noise that
leads to a grain-like appearance of SAR images that decreases their
contrast and therefore their quality [4]. It is characteristic of SAR
images, and it is usually reduced in a post-processing stage by av-
eraging neighboring pixels (multi-looking process) at the expense
of spatial resolution. Nevertheless, averaging implicitly assumes
that soil properties inside the average window are constant, which
is usually not the case. Therefore, a tradeoff between multilooking
and soil heterogeneity is usually accepted.

In the classical approaches aforementioned, the retrieval model
and the speckle noise are considered as independent problems,
whereas they are indeed part of the same retrieval problem. In this
investigation, we analyze a Bayesian retrieval methodology which
incorporates in a natural way the speckle and the terrain heterogene-
ity as a source of uncertainty that degrades the output value predicted
by the forward models. This approach will allow us to investigate
the total uncertainty in estimated soil moisture (associated both to
terrain hetergeneity and speckle) as a function of the number of
looks. In this paper, only the effect of speckle is being considered.
Such a methodology will be presented using a simplified version of
the Oh model [5] as the forward model.

2. RETRIEVAL APPROACH

2.1. Oh Model

The most widely accepted semi-empirical soil scattering model is the
one developed by Oh [5], where model expressions are physically-
based, but model parameters are derived from an extense database
of polarimetric radar scatterometer measurements. Such a model
relates backscattering returns and certain soil properties through a set
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of three analitycal functions fi, and can be symbolically expressed
as [5, eqs. (1),(2) and (4)],

zi = fi(m, ks) (i = 1, 2, 3), (1)

where zi is the backscattering (measured) return and the subscript
i = 1, 2, 3 stands respectively for the hh, vv and hv-polarizations.
The returns zi are functionally related to the volumetric soil moisture
content m (cm3/cm3) and the normalized surface soil RMS height
ks (where k = 2π/λ is the wavenumber and s the rms height)
throughout the functions fi. This model also depends on the inci-
dence angle, which is a known parameter. The Oh model is con-
strained to the range 0.04 ≤ m ≤ 0.297 and 0.13 ≤ ks ≤ 6.98,
although the later has a better agreement between the model and the
experimental results for ks ≤ 3.5 [5].

Concerning the fi functions, it is worth mentioning that, provid-
ing that m and ks are given, they are not independent of each other,
since by (1) there are three equation and only two variables, then it
holds

f1 = f̃1(m, ks)f2 (2)

f3 = f̃3(m, ks)f2, (3)

Through a minimization procedure, Oh established an algorithm
for retrieving soil moisture and roughness from a set of measured
returns z1, z2 and z3 (hh, vv and hv respectively). Assuming a
certain value for z3 = −25dB (hv), when applying to the entire
z1, z2-space such a procedure gives rise to the contour lines depicted
on Fig. 1.

Fig. 1. Soil moisture m estimated on the (z1,z2)-plane (at fixed
z3 = −25dB) from Oh model. The light gray area encloses the
pairs (z1,z2) where the model is valid.

2.2. Bayesian Approach

The deterministic forward model developed by Oh can be extended
to a stochastic model following [3]. In doing so, we can include in
the forward model both the terrain heterogeneity and speckle. The
model that naturally incorporates both the terrain backscattering and
the speckle is the multiplicative model,

Zi = XiYi (i = 1, 2, 3), (4)

where Zi is the random variable which represent the return zi
and again the subscript i stands for the different polarizations. Xi

and Yi are independent random variables that model the heterogene-
ity of the target backscattering and the speckle noise respectively.

From the point of view of the radar backscattering signal, we as-
sumed that the target response to the backscatter is modeled through
the Oh model by Xi = fi(M,KS), where fi represents here the
deterministic “typical” or average way in which the random variable
X depends on the random variables M and KS (which represent
the m and ks of the target). In other words, an heterogeneous soil
will produce a wide range of possible outcomes x of X , provided
a wide range of soil moisture and roughness values were presented
in the soil. On the other hand, an extremely homogeneous soil (i.e.
a certain mean value of (m, ks) with a very low standard deviation)
will produce a very narrow probability density function for X . So
it is reasonably to state that E[Xi] = fi(m̄, k̄s), for all i = 1, 2, 3,
where m̄ and k̄s are the expected or mean values of M and KS.
We assume that the speckle adds only a multiplicative noise so that
E[Yi] = 1 (i = 1, 2, 3). This approach leads into a proper average
behaviour of the returns Zi in terms of the Oh’s forward model since
E[Zi] = fi under the assumption of independence of X and Y .

From the set of equations (4) and using Bayes’ theorem, an ex-
pression for the conditional (“posterior”) probability of measuring
m and ks given measurements of returns z1, z2 and z3 is,

P (m, ks|z1, z2, z3) = PZ1Z2Z3(z1, z2, z3|m, ks)PMKS(m, ks)

PZ1Z2Z3(z1, z2, z3)
,

(5)
where PZ1Z2Z3(z1, z2, z3|m, ks) is the probability of measuring a
certain set (z1,z2,z3) of returns given measurements of m and ks
(the ”likelihood”), PMKS is the prior joint density function of m
and ks (where it is included all the a priori information about m
and ks) and P (z1, z2, z3) works as a normalizing factor and it is the
probability of a certain set (z1,z2,z3) to be measured. Then, provid-
ing the joint density function is exact, the optimal unbiased estimator
of m that has the minimum variance is the mean of (5) [6],

mmean =

∫∫
D

mP (m, ks|z1, z2, z3)dksdm (6)

and similarly the standard deviation of this estimator will be:

mstd =

∫∫
D

(m−mmean)
2P (m, ks|z1, z2, z3)dksdm (7)

where an explicit expression for (5) must be found in order to
calculate mmean and mstd. The integration domain D in (6) and
(7) spans the same range of (m, ks) where the model was originally
constrained, except for ks which is taken to be ≤ 3.5.

The distribution P (m, ks|z1, z2, z3) can be computed as fol-
lows. First, using recursively the definition of conditional probabil-
ity we have

PZ1Z2Z3(z1, z2, z3|m, ks) = PZ1(z1)PZ2|Z1=z1(z2)×
× PZ3|Z1=z1,Z2=z2(z3) (8)

where in the right term the given m and ks were suppressed for
simplicity. In (8), PZ1(z1) is calculated using the change of vari-
ables theorem upon (4) (i = 1) and the assumption of independence
between X and Y ,

PZ1(z1) =

∫ ∞

0

PX1(w)PY1(
z1
w
)
1

w
dw. (9)
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In order to calculate the remaining two terms in (8), it might be noted
that replacing m by M and ks for KS in (2) and (3) the following
relationships concerning Xi hold

X1 = f̃1(M,KS)X2 (10)

X3 = f̃3(M,KS)X2 (11)

Replacing this set of equation in (4) and then equating for Z2 and
Z3 one obtains

Z2 =
1

f̃1(M,KS)

Y2

Y1
Z1 (12)

Z3 = f̃3(M,KS)
Y3

Y2
Z2 (13)

Finally, using again the change of variables theorem upon (12) and
(13) the given m and ks the remaining conditional probabilities are

PZ2|Z1=z1(z2|m, ks) =
f̃1(m, ks)

z1
PY2

Y1

(
f̃1(m, ks)z2

z1
), (14)

PZ3|Z1=z1,Z2=z2(z3|m, ks) =
1

f̃3(m, ks)z2
PY3

Y2

(
z3

f̃3(m, ks)z2
),

(15)
where P Yi

Yj

(i �= j) is the joint distribution which corresponds to

the ratio of two multilooked random variables which are affected by
speckle.

3. MATHEMATICAL MODELING

From [4], the probability density function of a single multilooked
polarization sample measured in intesity is:

PY (y) =
nn

Γ(n)
yn−1e−ny

(16)

where n is the equivalent number of looks. Furthermore, the PDF of
the ratio of two multilooked samples measured in intensity was de-
rived by [refLeeCocientes] in terms of a Kibble’s bivariate gamma:

PU (u) =
Γ(2n)

Γ(n)Γ(n)

τn(1− |ρc|2)n(τ + u)un−1

[(τ + u)2 − 4τ |ρc|2u]n+1/2
(17)

where U = Yi
Yj

(i �= j), ρc is the correlation between the numera-

tor and the denominator and τ = E[Yi]
E[Yj ]

is the ratio of the expected

mean value of Yi and Yj . As expected, both these density functions
depend on n: when n increases, the distributions becomes narrower.
As we assumed that speckle only affects with an multiplicative noise,
then τ = 1. The ratio distribution also depends on the correlation
between the numerator and the denominator ρc. This is very impor-
tant, since when numerator/denominator correlation increases, the
variance of the distribution decreases [4].

The distribution PX is derived using the forward model f(m, ks)
and assuming a prior joint distribution for the random variable M
and KS, i.e. PM,KS . The receipt is given in [7],

FX(x) =

∫∫
Ax

PM,KS(m, ks)dmdks, (18)

where the FX(x) is the cumulative distribution function of the ran-
dom variable X and the integration domain is Ax = {(m, ks) :
f(m, ks) ≤ x}. Then PX(x) is obtained by deriving eq. 18 with
respect to x. In what follows, it would be assumed that M and KS
are uncorrelated and gaussian random variables, so that PM,KS =
PMPKS where PM ∼ N(μm, σm) and PKS ∼ N(μks, σks).

Up to this point, we presented all the mathemathics necessary
for a Bayesian retrieval scheme.

4. NUMERICAL SIMULATION

We are now able to perform a comparison between the retrieval ap-
proachs discussed so far: Oh model and Bayesian model. In order
to test the goodness of the approach, an uniform prior is used. This
kind of prior represent no knowledge about soil condition. M is an
uniform U [0.01− 0.35] and KS is an uniform U [0.1− 4.0]. Fig. 2
shows the isolines of soil roughness with n = 3, for z3 = −25dB.
The light shadow area represents the validity region of the Oh Model,
where the contour lines of soil moisture derived from the Oh Model
are also shown.

When using the Bayesian methodology, the retrieved soil mois-
ture values cover the entire (hh,vv,hv)-space, although the extreme
value (the ones that are far away from Oh model validity region
(shadow area)) will present a very low probability associated. The
high spread showed by the contour lines is consistent with a high
speckle noise for these small number of looks (n = 3).

Fig. 3 shows the contour lines retrieved after increasing the num-
ber of looks to n = 64. When significant multilooking is present,
the Bayesian retrieval looks more compact around the contour lines
of Oh model indicating, to some extent, a correct asymptotical be-
haviour. It could be seen that for low values of z1 and z2 (hh and
vv respectively), the contour lines of both retrieval approaches are
convergent.

In the same way, the contour lines of one-sigma standard devi-
ation of the estimated m can be calculated by means of eq. 7. The
results are not shown.

Fig. 2. Comparison between the soil moisture estimated using Oh
model and the Bayesian retrieval approach. The values adopted by
the simulation are: n = 3, σm = 0.005, σks = 0.01.

Fig. 4 depicts the asymptotic behaviour of estimated m as n
increases from 3 to 128 for z1 = −13dB, z2 = −12dB, z3 =
−24dB and σm = 0.005, σks = 0.01. The error bars correspond
to the one-sigma error calculated by (7). The dotted line is the esti-
mated m derivated from Oh model, which it does not depend on n
since Oh model does not take into account speckle. At n = 128, the
m estimate differs in about 2% (absolute error) with respect to the
limiting value given by the Oh model.

This remaining bias is related to the terrain heterogeneity (σm,
σks), which contributes to the total soil moisture error even when n
is large.
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Fig. 3. Comparison between the soil moisture estimated using Oh
model and the Bayesian retrieval approach. The values adopted by
the simulation are: n = 64, σm = 0.005, σks = 0.01.

5. CONCLUSIONS

Soil moisture retrieval from SAR data presents two main sources of
uncertainty: terrain heterogeneity and speckle noise. These issues
are being addressed by using a Bayesian approach, that rigorously
models these two phenomena. Such a Bayesian approach: (1) needs
only a forward model (no retrieval model required), (2) gives the op-
timal unbiased estimator for the soil moisture and its error and (3)
can include as many error sources as required. The Bayesian was
tested for different number of looks (n = 3 and n = 64). One of the
expected results is that for a large number of looks the contour lines
of both the Bayesian method and the standard Oh model become
closer. Furthermore, contrary to the Oh model retrieval procedure,
which is only valid in a bounded region of the (hh, vv, hv)-space,
the Bayesian approach gives an estimation of soil moisture for any
conbination of hh, vv and hv. Bayesian model also shows that, for
those (hh, vv, hv) values that are far from the region of validity of
the Oh model, the probability associated to the estimation is very
low. Therefore, the Bayesian approach has the possibility of enlarg-
ing the region of (hh, vv, hv) space where the retrieval is possible,
also providing the quality of this estimation. In addition, since every
Bayesian approach includes a prior, these information can be used to
avoid confusion related to landcover types. Work in progress is also
addressing a functional relation between number of looks and terrain
heterogeneity, in order to determine the best multilooking strategy.
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