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a b s t r a c t

This paper presents the results obtained after studying the relation between the statistical parameters
that describe the backscattering distribution of juncomarshes and their biophysical variables. The results
are based on the texture analysis of a time series of Envisat ASAR C-band data (APP mode, VV + HH
polarizations) acquired between October 2003 and January 2005 over the Lower Paraná River Delta,
Argentina. The image power distributions were analyzed, and we show that the K distribution provides
a good fitting of SAR data extracted from wetland observations for both polarizations. We also show
that the estimated values of the order parameter of the K distribution can be explained using fieldwork
and reasonable assumptions. In order to explore these results, we introduce a radiative transfer based
interaction model to simulate the junco marsh σ 0 distribution. After analyzing model simulations, we
found evidence that the order parameter is related to the junco plant density distribution inside the junco
marsh patch. It is concluded that the order parameter of the K distribution could be a useful parameter to
estimate the junco plant density. This result is important for basin hydrodynamic modeling, since marsh
plant density is the most important parameter to estimate marsh water conductance.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

Areas near rivers, or in low-lying coastal places, are in risk of
flooding. Periods of heavy rain, not necessarily in the area, can
lead to increases in the water level of streams and rivers to a
point where the main channels can no longer hold the volume of
incoming water. In wetland areas, it is claimed that this excess of
water can be taken by marshes located in the floodplain separated
from the mainstream channel by island levees. These marshes are
continuously exchanging water with the mainstream channel, but
in extreme flood conditions, when the river overflows, the net flux
goes in the marsh direction (Arihood and Sidle, 2006). When the
riverwater level returns to normal, this excess ofwatermoves back
to the mainstream channel. This capability is usually called the
‘‘marsh buffer effect’’ because its effect is analogous to a low pass
filter that ‘‘smoothes’’ the mainstream flux (Novitzki and Fretwell,
2002).

∗ Corresponding address: Instituto de Astronomía y Fisica del Espacio (IAFE), CC
67 - Suc. 28, (C1428ZAA) Ciudad Autonoma de Buenos Aires, Argentina. Tel.: +54
7890179; fax: +54 47868114.
E-mail addresses: verderis@iafe.uba.ar (F. Grings), ferrazzoli@disp.uniroma2.it

(P. Ferrazzoli), jacobo@dc.uba.ar (J. Jacobo Berlles).

0924-2716/$ – see front matter© 2009 International Society for Photogrammetry and
doi:10.1016/j.isprsjprs.2009.08.003
In the Lower Delta of the Paraná River in Argentina, marshes
are the most extended autochthonous vegetation. The species that
dominates themarsh vegetation is the juncomarsh (Schoenoplectus
californicus), and it covers up to 25% of the wetland area
(∼800 km2). These marshes are mainly located in islands along
the channels and they are responsible for the water buffer effect
on this wetland.
Water storage in floodplains is also a governing parameter in

continental scale hydrologic models (Keedy, 2000). Coe (2000) re-
ported that a wetland component could provide up to 50% of the
observed Nile River discharge in the Sudan. Furthermore, Richey
et al. (1989) estimated that the Amazon floodplain-to-mainstream
flux is about 25% of the annual discharge. These large percent-
ages suggest that inaccurate knowledge of floodplain storage and
discharge can lead to significant errors in hydrological models
(Alsdorf, 2002).
In order to characterize this buffer effect, there are two im-

portant magnitudes to be estimated: the marsh water storage ca-
pacity and the marsh hydraulic conductivity. Marsh water storage
capacity determination consists of the estimation of the volume
of water inside wetland islands; this can be done using remote
sensing data in several ways (Alsdorf, 2002; Coe, 2000; Keedy,
2000) and it has been estimated previously on the Paraná River
wetland for flooded and non-flooded conditions using both field
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data and Envisat ASAR images (Grings et al., 2006, 2008, 2009).
Characterization of hydraulic conductivity is a much more diffi-
cult task, which requires the estimation of the drag coefficient of
the vegetation in different areas of the watershed (Järvelä, 2004a).
Nevertheless, many authors have pointed out that the vegetation
drag coefficient in herbaceous vegetation ecosystems (like junco
marshes) depends mostly on the plant density (Järvelä, 2004a;
Nepf and Koch, 1999; Stone and Hung, 2002). As a result, the esti-
mation of junco plant density information at high spatial resolution
and at a regional scale is critical in the hydrodynamic modeling of
wetlands.
It was found that the mean σ 0 of a homogenous marsh area

is mostly related to a few marsh biogeophysical variables (Grings
et al., 2005, 2006, 2008). The question we address in this work
is: is there other substantial information that is available in the
marsh SAR image? In wetlands, it is common that inside a patch
dominated by a single marsh species (homogeneous in terms of
species), different marsh conditions are present. In the Paraná
River Delta, these different conditions of the marsh are usually
related to a non-homogeneous distribution of somebiogeophysical
variables, typically related to the different availability of water
and nutrients. Therefore, it is reasonable to assume that some
of the variability that is observed in an SAR image of a wetland
patch may be related to spatial inhomogeneities of one or more
of the main biogeophysical variables that determine the observed
σ 0. This idea has already been addressed, and is the base of the
interpretation of complex SAR image statistics of inhomogeneous
targets (Oliver and Quegan, 1998). Moreover, it has been shown
thatmost of the observed statistics can be interpreted as generated
by two unrelated processes encapsulated in a product model
(Oliver and Quegan, 1998). This product model states that the
observed SAR image is the result of the product of the target
backscatter with a speckle component. One underling hypothesis
of the multiplicative model is that the parameters characterizing
the backscattering distribution are related in some way to target
parameters (Blacknell, 1994; Oliver and Quegan, 1998). The
problem is that there is no general relation between the statistical
distribution of SAR data and the underlying physical interaction
between the wave and the ecosystem patch.
This hypothesis was further investigated recently (Wang and

Ouchi, 2005). Data acquired over a forest by PI-SAR were fitted to
a K distribution, and one of the estimated parameters was associ-
ated to the forest biomass. In (Wang and Ouchi, 2005), the authors
demonstrated that there is a strong positive correlation between
the K homogeneity parameter and the forest biomass, showing
that there is some kind of relation between the statistical parame-
ters that characterize forest patches and some of the biogeophysi-
cal variables of the terrain (biomass in this case). Furthermore, they
also provided a sound speculative interpretation of this relation,
which will be explored further in the present paper.
In this work, the SAR image power distributions of junco

marshes were analyzed, and we show that the K distribution pro-
vides a good fitting of SAR data for both HH and VV polarization.
We also show that the estimated values of the order parameter of
the K distribution are related to the junco plant density distribu-
tion. Taking up the ideas in Lee et al. (1994); Oliver and Quegan
(1998); Wang and Ouchi (2005), wemodeled the SAR return of the
juncomarsh to show that there is biophysical information in all the
statistical parameters that characterize a given marsh area.
The paper is structured as follows. In Section 2,we introduce the

statistical model of SAR backscattering. In Section 3, we illustrate
the method adopted to estimate the distribution parameters. In
Section 4, we show the results obtained by analyzing an Envisat
ASAR time series acquired over the lower Delta of the Paraná
River for both HH and VV polarizations. In Section 5, we give
a theoretical interpretation of the statistical model by using an
interaction model of the marsh area based on radiative transfer
theory. In Section 6, we discuss the results obtained in Section 4
taking into account the theoretical results developed in Section 5.
Finally, in Section 7 we show a comparison between the statistical
parameters estimated from ASAR images and simulated ones.

2. The statistical model

A multiplicative model is commonly adopted for SAR image
interpretation (Oliver and Quegan, 1998). This model assumes
that the observed intensity value in every pixel is the outcome
of a random variable Z , defined as the product between the
randomvariables X and Y , where X represents the randomvariable
modeling the variations of terrain scattering properties and Y
represents the random variable modeling the speckle; i.e. Z =
X · Y . Different distributions for X and for Y yield different models
for the observed data Z . For homogeneous regions, the terrain
scattering properties are constant. Therefore, the distribution of
Z is a rescaled version of the distribution of Y , which is usually
assumed, for intensity, as Gamma distributed with parameters
(n, 2n). In conventional notation, Y ∼ 0(n, n), where n is the
equivalent number of looks of the SAR image (Oliver and Quegan,
1998).
The basic hypothesis that governs the modeling of inhomoge-

neous regions is that their scattering properties are not constant,
though they can be modeled by a convenient distribution. In this
work, it will be assumed that X ∼ 0(α, β), where α is the shape
or homogeneity parameter and β is the scale parameter. This as-
sumption is not arbitrary, since Jakeman and Pusey (1976) show
that an inhomogeneous SAR sample in which the number of scat-
terers per pixel N is itself a random variable distributed inverse bi-
nomial will present a Gamma distribution. In this way, this model
includes two sources of image inhomogeneity: target spatial vari-
ability and speckle; the target variability is related to a fluctuation
in the number of scatterers inside every pixel (Jakeman and Pusey,
1976).
The K -distribution model for a radar clutter arises (Oliver and

Quegan, 1998) when a Gamma-distributed noise process modu-
lates a Gamma-distributed radar cross-section. It is important to
remark on an assumption of thismodel, which needs to be checked
in order to be used: the fluctuation of the target scattering proper-
ties should have a greater spatial scale than the speckle, so that
multilooking reduces the speckle without affecting the scattering
fluctuations (Oliver and Quegan, 1998).

3. Estimation of the parameters of the intensity K distribution

The parameters that define a K distribution can be estimated in
several ways (Blacknell, 1994; Frery et al., 1997; Lee et al., 1994;
Oliver and Quegan, 1998; Yanasse et al., 1994). In this work we
choose the straightforward estimation scheme presented in (Lee
et al., 1994). The estimator of β based on the first sample moment
of the data X = {x1, x2, . . . , xn} is

β̂ =
1
N

N∑
i=0

Xi = m̂1. (1)

This gives the sample mean. In order to obtain the moment’s
estimator of α it is necessary to use other moments of the
measured distribution (1/2, 2, etc.). One estimator for α using the
moment method is

α̂ =
m̂12(n+ 1)

n (m̂2 − m̂12)− m̂12
. (2)

To estimate the variances of the parameters, we use the boot-
strapping method (Cribari-Neto et al., 2002). This method consist
of the estimation of the parameter (i.e. β), using a sub-sample Xk
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Table 1
Envisat ASAR images used.

Mode Polarization Date Season

APP S1 VV/HH 16/10/2003 Spring
APP S1 VV/HH 20/11/2003 Spring
APP S1 VV/HH 04/03/2004 Summer
APP S1 VV/HH 08/04/2004 Autumn
APP S1 VV/HH 13/05/2004 Autumn
APP S1 VV/HH 09/12/2004 Spring
APP S1 VV/HH 13/01/2005 Summer

consisting of all the available data except the value in the k-
position,

Xk = X − xk

β̂k =

N−1∑
k=0

Xk = m̂1,k.
(3)

Then, the variance of the parameter (i.e. β) is estimated as

Var(β̂) =
1
N

N−1∑
j=0

(
β̂j − E(β̂)

)2
. (4)

For the ASAR dataset considered by us (see the next section),
the procedure followed for the estimation of the K parameters of a
given area was the following:

1. Selection of a known region within the SAR image where
fieldwork was available, corresponding to junco marshes
(Schoenoplectus californicus) and willow forest (Salix spp).

2. Extraction of the pixel values for different polarizations.
3. Decorrelation of the samples by eliminating all the pixels nearer
the overall correlation length (in fact the used model is only
valid for decorrelated samples).

4. Computation of the estimated moments of the distribution.
5. Estimation of α, β .
6. Estimation of Kolmogorov statistics using the parameters
estimated in step 5, in order to check if a samplewas distributed
as K(α, β, n).

4. Statistical analysis of ASAR data

This study uses a time series of Envisat ASAR precision image
products in Alternating Polarization mode (APP). For each date,
there is a multilook ground range digital image. The raw data are
acquired in bursts of alternating polarizations. The polarization
combinationused is the co-polarized sub-mode (one imageHHand
one image VV). Table 1 lists the 7 acquisitions (14 ASAR images,
all APP S1 mode – 19◦ incidence angle) that were processed and
analyzed for this work.
For juncomarsh, radar signatures were collected for both polar-

izations and for several flood conditions, as we verified by detailed
fieldwork, whichwas carried out simultaneously with Envisat data
acquisitions (Fig. 1).
A rigorous and systematic characterization of the target made

it possible to analyze the statistical distribution of target param-
eters. The extraction of quantitative information from multitem-
poral radar images involved several tasks. ESA BEST software was
used for calibration of the alternating polarization data. After cali-
bration, several junco and forest samples were extracted from the
calibrated ASAR images. Some representative junco backscattering
samples are shown in Fig. 2.
To obtain the parameters that characterize these distributions,

the procedure described in Section 3 was followed. Table 2 shows
the estimated values of α and β parameters for all the ASAR
acquisitions dates, polarizations and vegetation types. The last
column shows the acceptance or rejection of the experimental
sample distributions as K(α, β, n), using the Kolmogorov test with
a probability of 5%.
It is well known that β (the mean of the sample) is a good esti-

mator of the mean σ 0 of the area for a backscattering distributed
as Y ∼ 0(α, β) (Lee et al., 1994). The α parameter, known as the
shape parameter, is usually interpreted as the grade of homogene-
ity of the σ 0 of the area (Oliver and Quegan, 1998). It is important
to note that the homogeneity measured by the α parameter is due
to real spatial variations of the σ 0 of the extended target. The vari-
ability related to the speckle phenomenon is taken into account in
the parameter n.
Samples from five imageswere rejected, since they could not be

considered as distributed K(α, β, n), according to the Kolmogorov
test. All these images correspond to acquisition dates where
extreme environmental conditions were observed: a drought in
January 2005 and flooding in October andNovember 2003. In these
extreme environmental conditions, the interaction mechanism
that characterizes vegetation changes. In these cases, the variance
of the α estimator is very large, and no inference can bemade from
the data.
In Table 2, the estimated values of the β parameter are shown.

Aswementioned before, these values are related to the average σ 0
of the area. It can be seen that the values are relatively constant for
the forest samples for both HH and VV polarizations. For the junco,
the HH values are systematically higher than the VV values, and
this difference is strongly amplified in the case of flooding (October
and November 2003) as we have already shown in Grings et al.
(2006). The fact that the images corresponding to flooding events
cannot be considered as K distributed does not invalidate this
statement, since the sample mean is still a meaningful estimator
of the mean power.
Also in Table 2, estimated values of the α parameter are shown.

It can be seen that there is a wide dynamic range of values, ranging
from ∼20 to near 2. These values should be a measure of the
spatial inhomogeneity of σ 0 of the area. From Table 2, two main
conclusions can be extracted:

1. Generally, forest samples present a higher α value than junco
samples for both polarizations.

2. Generally, VV polarization presents a higher α value than HH
polarization for both vegetation types.

These twogeneral observations have an important relationwith
the results reported in Wang and Ouchi (2005). In that paper, it
was found that the estimated α value over a forest is directly
related to the forest biomass. Explaining this fact, the authors
stated that ‘‘the increase of the order parameter with biomass is not
surprising ’’, since ‘‘high-resolution SAR can, to some extent, resolve
tree structures’’ which are known to have different σ 0. Therefore,
the corresponding SAR images will not present homogeneously
distributed data and the K distributions of small order parameters
will describe these highly fluctuating values well. As the tree
biomass increases and the forests become dense, SAR images tend
to become statistically uniform, and the order parameter increases. In
the limit of very dense forests with very large biomass, the SAR images
appear as a statistically homogeneous classical speckle pattern, which
can be described by the K -distribution of very large order parameter
(Wang and Ouchi, 2005, page: 4342).
It is important to observe that images acquired by the 3 ×

3 m high-resolution PI-SAR L Band system were used in Wang
and Ouchi (2005). Therefore, the spatial inhomogeneity shown
by the σ 0 of a homogeneous extended target (all forest) was
explained by taking into account that in different resolution cells
different combinations of scattering sources, (soil, soil + trunk,
branch + leaves, etc.), all corresponding to the same extended
target, can be dominant. Since these scattering sources interact
differently with the incident electromagnetic wave, they will in
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Fig. 1. Multitemporal Envisat ASAR image of the Lower Paraná River Delta. The juncomarsh study areas are marked in black. Red: 04/03/2004, Green: 08/04/2004 and Blue:
13/05/2004. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. σ 0 histograms extracted from ASAR images corresponding to junco samples. Top: VV polarization. Bottom: HH polarization. From left to right: 04/03/2004,
08/04/2004 and 13/05/2004.
general have different σ 0 values and the resulting distribution of
the homogeneous area will present a small α value. When the
biomass increases, the relative weight of the total σ 0 of the two
target (i.e. soil and soil + trunk) combinations diminishes, and
scattering frombranches and leaves dominates. This leads to a high
α value in the resulting distribution.
In our experimental data, we observed a similar phenomenon,

at the C band and with two different vegetation structures. Our
first observation is that forest samples present higherα values than
junco samples. This result may be explained within the theoretical
frame indicated above. At the L Band and for low biomass (Wang
and Ouchi, 2005), a homogenous forest sample can be seen as an
inhomogeneous area in an SAR image. However, at the C band
(Envisat ASAR) a forest of almost any biomass will have a relatively
highα value, sincemost of the electromagnetic energywill interact
with the upper canopy. This is not the case for junco marshes,
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Table 2
Estimated parameters for different dates, polarizations and vegetation types. The values are presented in decreasing order of α. Junco samples= 320, forest samples= 350.
The distributions marked with an asterisk were rejected by the Kolmogov–Smirnov test (5% confidence level) as being K distributed.

ASAR acquisition parameters Estimated parameters
Date Polarization Target α β Kolmogorov test p-value

Oct03* VV forest 68.6± 182 0.17± 2E–5 0.398
Apr04* VV forest 54.5± 280 0.19± 2E–5 0.156
Jan05* HH Junco 37.4± 16 0.09± 4E–4 0.260
Nov03* VV forest 36.6± 125 0.15± 2E–6 0.189
Mar04 VV forest 19.4± 0.6 0.16± 2E–7 0.018
May04 HH forest 16.8± 0.4 0.12± 8E–8 0.015
Jan05* VV forest 14.0± 291 0.16± 2E–5 0.165
Dec04 VV forest 12.7± 0.4 0.17± 2E–7 0.019
Oct03 VV Junco 12.2± 0.4 0.16± 2E–7 0.017
May04 VV forest 11.7± 0.4 0.16± 2E–7 0.024
Apr04 VV Junco 11.4± 0.4 0.07± 4E–8 0.011
Jan05 HH forest 9.1± 0.4 0.13± 2E–7 0.029
Jan05 VV Junco 7.9± 0.4 0.07± 8E–8 0.011
Dec04 HH forest 7.2± 0.5 0.14± 4E–7 0.016
May04 VV Junco 6.7± 0.5 0.08± 5E–7 0.028
Nov03 VV Junco 6.4± 0.5 0.14± 5E–7 0.058
Mar04 HH forest 6.2± 0.5 0.16± 7E–7 0.066
Mar04 VV Junco 5.6± 0.5 0.08± 3E–7 0.051
Dec04 VV Junco 5.0± 0.5 0.09± 4E–7 0.018
Nov03 HH forest 4.5± 0.6 0.15± 2E–6 0.029
Apr04 HH forest 4.1± 0.6 0.13± 2E–6 0.029
Nov03 HH Junco 3.4± 0.6 0.44± 2E–5 0.011
Oct03 HH forest 3.1± 0.7 0.17± 5E–6 0.029
Mar04 HH Junco 3.0± 0.7 0.20± 8E–6 0.057
Apr04 HH Junco 2.7± 0.7 0.15± 6E–6 0.029
Oct03 HH Junco 2.4± 0.8 0.58± 8E–5 0.060
May04 HH Junco 2.4± 0.8 0.26± 2E–5 0.056
Dec04 HH Junco 1.0± 0.4 0.19± 7E–5 0.032
where the wave penetrates more easily down to the underlying
water where the spatial distribution of water and nutrients can
lead to a spatially inhomogeneous distribution of plant density
(Keedy, 2000; Novitzki and Fretwell, 2002; Parmuchi et al., 2002).
Taking into account that plant density is one of the variables that
influence the junco σ 0 (Grings et al., 2006; Pope et al., 1997), it is
not surprising that junco samples present a higher inhomogeneity
(lower α values) than forests.
Furthermore, we observe that, in general, VV polarization

presents higher α values than HH polarization. For the case of
junco, this result may be explained as a consequence of the dom-
inant scattering source (i.e. water/vegetation double bounce) and
its polarization properties. This aspect will be discussed in the next
section, with the aid of model simulation results.
Therefore, we can say: (1) that themajority of the ASAR samples

(non-extreme environmental events) extracted on forest and junco
marshes of the Paraná River Delta can be considered as K(α, β, n)
distributed, (2) that the α parameter is different for different
vegetation types and polarizations, and (3) that these differences
can be interpreted by carefully analyzing the samples, the auxiliary
data and the available fieldwork.

5. The interaction model

As we pointed out before, the inhomogeneity observed in
the σ 0 of an extended target should be related to the spatially
inhomogeneous distribution of a biophysical variable. In the case
of junco marsh, it has been shown that the σ 0 of juncos over a
flooded soil depends on a few biogeophysical variables (Grings
et al., 2006). They are: junco shoot height, junco plant density,
junco shoot radius, junco gravimetricwater content, junco tilt angle
distribution and junco dry matter density (Grings et al., 2006). Of
all these variables, the only one that is known to change spatially
is the junco plant density (JPD,m−2). Recent fieldwork showed that
the JPD distribution is not uniform inside a single marsh, and the
density values change with a correlation length of 50 to 100 m.
Considering that the ASAR APP pixel dimension is 12.5 m, this
change in the JPD has a correlation length larger than the one
expected for the speckle. Aswasmentioned before, inhomogeneity
of the JPD is not uncommon in wetlands. Considering all this, our
first hypothesis is that the observed σ 0 target variability is related
to plant density spatial variability, and that the α parameter is able
to map this inhomogeneity.
Our second hypothesis is that a model that is able to simulate

themean σ 0 of a juncomarsh patch given the correct environmen-
tal conditions should also be able to simulate the σ 0 patch distri-
bution given the JPD distribution as an input. In order to test this
assumption we use the electromagnetic model described in detail
in Bracaglia et al. (1995). This model was adapted to simulate the
average values of juncomarsh σ 0 in Grings et al. (2005, 2006, 2008,
2009). Basic information about the simulation procedure is sum-
marized below.
The radiative transfer model
The backscattering coefficient was simulated using the multi-

ple scattering model described by Bracaglia et al. (1995). The main
steps, as well as the specific aspects related to juncos, are summa-
rized below.

1. The medium is described as a lower half-space overlaid by
discrete dielectric elements (Fig. 3). The lower half-space
represents soil or water, depending on the flood conditions.
Juncomarshes are always flooded, although thewater levelmay
suffer variations. Therefore, the permittivity of the lower half-
space is equal to the water permittivity. The discrete dielectric
elements represent vegetation.

2. Junco shoots are described as dielectric cylinders under the
‘‘infinite length’’ approximation (Karam and Fung, 1988). The
height and the orientation of the cylinders are assumed to vary
within given ranges of values, according to statistical distribu-
tions derived by ground measurements (see Table 3). The ex-
tinction and bistatic scattering cross sections are computed, and
then discretized by means of a matrix representation.
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Fig. 3. Sketch of juncomarsh architecture derived from fieldwork. The model uses this architecture and radiative transfer theory to simulate the σ 0 of the juncomarsh.
Fig. 4. Scheme of the adopted simulation procedure.
Table 3
Input variable mean values.

Junco marsh biogeophysical variable value

Shoot height 180± 15 cm
Radius at 50 cm 0.35± 0.03 cm
Gravimetric moisture content 0.7± 0.05 g/g
Angular distribution 0–10 deg uniform
Dry matter density 0.15±0.03g/cm3
Surface RMS height (flooded soil) 0.1 cm
Surface correlation length (flooded soil) 10 cm

3. The previously computed matrices represent scattering and
extinction due to single elements at all incidence and scattering
angles. Then, the effects of single vegetation elements are
combined by using a numerical matrix algorithm.

4. Overall vegetation matrices are combined with soil (or water)
matrices, using the same numerical algorithm. The scattering
matrix of the overall medium is so obtained.

5. The backscattering coefficient may be computed by the scatter-
ing matrix, for the required incidence angle and polarization.

Details of the procedure are available in Bracaglia et al. (1995).
The last three steps are carried out for several values of shoot
density, and statistical averaging is finally applied.
We have used two sets of input variables: (1) SAR variables and

(2) biogeophysical variables. The SAR variables are related to the
system, and are the radar central frequency and the incidence angle
(19◦ for ASAR APP S1 mode). The biogeophysical inputs are: shoot
mean height (m), shoot mean diameter (cm), shoot orientation
(degrees) and the statistical distribution of shoot density (m−2).
A summary of these is given in Table 3. The shoot permittivity is
computed as a function of the moisture and the dry matter density
using the empirical model given by El-Rayes and Ulaby (1987).
Since we state that the only variable that changes spatially is

the junco plant density, our hypothesis is that all the observed
inhomogeneities in the σ 0 should be related to the distribution of
this variable. To test this hypothesis, we simulated the backscatter-
ing of a patch of juncomarshes. All the biogeophysical parameters
that characterize the environmental conditions are fixed or change
with small correlation lengths, except the plant density d, which is
Gaussian distributed in the sample, d ∼ N(µ, σ ). The assumption
of aGaussian distribution is based on available fieldwork over junco
marshes. Fig. 4 shows the adopted procedure. To obtain ameaning-
ful simulation, it is imperative to specify the numerical values of
the other biogeophysical variables that determine the juncomarsh
σ 0. These values were obtained from the fieldwork available and
are given in Table 3.
The key process in this simulation is the interaction model. In

previous works, we used this model to simulate the σ 0 of junco
for different environmental conditions, given the junco marsh
biogeophysical variables as input. Now, we want to use the same
model not only to predict a single σ 0 value, but the distribution
of σ 0 values of a junco patch given as input (1) all the spatially
homogeneous biogeophysical variables (shoot radius, height, tilt
and moisture content) and (2) the spatially heterogeneous JPD
distribution inside the patch.
Once we fix all the spatially homogeneous juncomarsh biogeo-

physical variables, the junco marsh σ 0 is only a function of JPD.
Therefore, there is a pair of ‘‘model transfer functions’’, one for each
polarization, which transforms the JPD values into σ 0 values.
These transfer functions for the VV and HH polarizations are

shown in Fig. 5. Both trends start with very low backscattering for
zero density, since the direct backscattering of the flat water sur-
face is very low. Then, the trends show amaximum for the density
that maximizes the relation between the junco soil–shoot double
bounce and the juncomarsh extinction coefficient (different for dif-
ferent polarizations; see (Grings et al., 2005)) and finally the trend
decreases monotonically, as expected when extinction dominates
over backscattering.
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Fig. 5. Simulated σ 0 of juncomarsh as a function of the JPD for VV (solid) and HH
(dashed) polarizations. These functions can be thought of as the transfer functions
of the radiative transfer interaction model.

6. Interaction model simulation results

Fig. 6 shows some of the simulated junco marsh σ 0 distribu-
tions, for a condition in which the input JPD values were Gaussian
distributed. It can be seen that we have different simulated distri-
butions for different marsh patch conditions, where the mean JPD
and the JPD standard deviation define every patch condition.
In general, it can be seen that higher values of the JPD mean

produce lower values of mean backscattering (β). This result
is expected, since we are operating in the decreasing part of
the model transfer function in Fig. 5. Also, the function is wide
when the SD is large. This is also expected, since a wider input
distribution corresponds to a wider output distribution. Next, we
fitted the simulated data shown in Fig. 6 to a Gamma distribution
0(α, β), in order to check if the hypothesis of aGamma-distributed
backscatter was a wise one. Table 4 presents the results of the
fitting process.
From Table 4 and Fig. 6, two main considerations can be

extracted. To first order, β is inversely proportional to the JPD
Table 4
Estimated Gamma parameters (α, β) for VV and HH polarizations as a function
of the JPD mean and JPD SD. The residual standard error, defined as sqrt(Σi(xi −
yi)2/nsamples), is also given.

JPD mean JPD SD VV HH
α β RMS α β RMS

50 10 39.36 0.51 0.0756 20.74 1.57 0.0507
50 15 18.18 0.51 0.0798 9.82 1.64 0.0537
50 20 10.74 0.52 0.0835 6.24 1.69 0.0563
50 25 7.03 0.51 0.0872 4.31 1.70 0.0588
60 10 26.88 0.42 0.0907 15.95 1.24 0.0612
60 15 12.20 0.43 0.0804 7.19 1.28 0.0537
60 20 7.27 0.44 0.0845 4.26 1.35 0.0568
60 25 4.94 0.45 0.0886 2.97 1.40 0.0595
70 10 21.59 0.34 0.0924 13.41 0.95 0.0623
70 15 9.72 0.35 0.0961 6.16 0.98 0.0648
70 20 5.64 0.36 0.0849 3.61 1.02 0.0568
70 25 3.82 0.38 0.0894 2.47 1.08 0.0600
80 10 18.50 0.27 0.0937 11.91 0.71 0.0630
80 15 8.42 0.28 0.0977 5.53 0.73 0.0657
80 20 4.89 0.29 0.1016 3.29 0.77 0.0685
80 25 3.28 0.30 0.0894 2.26 0.81 0.0600
90 10 16.56 0.22 0.0943 10.93 0.53 0.0632
90 15 7.58 0.22 0.0987 5.11 0.54 0.0663
90 20 4.44 0.23 0.1028 3.07 0.57 0.0693
90 25 3.00 0.24 0.1069 2.13 0.60 0.0723
100 10 15.23 0.17 0.0756 10.23 0.39 0.0507
100 15 7.01 0.17 0.0798 4.81 0.40 0.0537
100 20 4.14 0.18 0.0835 2.92 0.42 0.0563
100 25 2.81 0.18 0.0872 2.04 0.44 0.0588
110 10 14.27 0.13 0.0907 9.72 0.28 0.0612
110 15 6.60 0.13 0.0804 4.59 0.29 0.0537
110 20 3.91 0.14 0.0845 2.80 0.30 0.0568
110 25 2.67 0.14 0.0886 1.98 0.32 0.0595
120 10 13.54 0.10 0.0924 9.32 0.20 0.0623
120 15 6.28 0.10 0.0961 4.42 0.21 0.0648
120 20 3.74 0.10 0.0849 2.71 0.22 0.0568
120 25 2.57 0.11 0.0894 1.92 0.23 0.0600
130 10 12.97 0.07 0.0937 9.00 0.14 0.0630
130 15 6.03 0.08 0.0977 4.28 0.15 0.0657
130 20 3.61 0.08 0.1016 2.64 0.15 0.0685
130 25 2.49 0.08 0.0894 1.88 0.16 0.0600

mean, and α is inversely proportional to the JPD SD. The first
result is not unexpected, since the junco σ 0 is known to decrease
Fig. 6. Simulated juncomarshσ 0 distributions for different JPD distributions, characterized by the JDPmean value (JPD) and its standard deviation (SD). Top: VV polarization;
bottom: HH polarization.
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Table 5
α and β parameters estimated (left) from model simulations and (right) from ASAR images. The simulations were carried out taking as input the values of the juncomarsh
biogeophysical variables given in Table 3 and in the second and third columns of this table.

ASAR acquisition date Fieldwork Model simulation Estimation from ASAR images
JPD mean JPD SD VV HH VV HH

α β α β α β α β

Mar/04 120 16 5.57 0.10 3.94 0.21 5.6± 0.5 0.08± 3E–7 3.0± 0.7 0.20± 8E–6
Apr/04 130 14 6.85 0.07 4.84 0.14 11.4± 0.4 0.07± 4E–8 2.7± 0.7 0.15± 6E–6
May/04 115 18 4.60 0.12 3.28 0.25 6.7± 0.5 0.08± 5E–7 2.4± 0.8 0.26± 2E–5
when the JPD increases for relatively large values of JPD (>
50 plants/m−2) (Grings et al., 2005). As we stated before, the
inverse relation between α and the JPD SD can be explained by
considering that a wider JPD input distribution, related to a high
heterogeneity inside the marsh, leads to a wide dynamic range of
simulated σ 0 values, corresponding to a small α value (remember
that α increases with increasing homogeneity).
In summary, we can say: (1) that the assumption of the

backscatter distributed X ∼ 0(α, β) agrees with fieldwork and
numerical simulations carried out with an already tested interac-
tion model of junco marsh, (2) that the hypothesis that the ob-
served inhomogeneity is related to the spatial distribution of JPD
is also sound, and (3) that for a given junco marsh environmental
condition, the α and β parameters are inversely related to the JPD
distribution parameters, the JPD mean and JPD SD, respectively.

7. Comparison of ASAR observations with fieldwork andmodel
simulations

In this section we compare the estimated values of the α
parameter from ASAR images with the model-simulated ones. As
we said, to simulate theα parameter of a juncopatch, it is necessary
to provide all the biogeophysical parameters that define the σ 0
of the junco patch. All these parameters were already measured
simultaneously with some of the ASAR acquisitions. However,
to characterize the junco patch it is crucial to measure the JPD
SD. This parameter is difficult to estimate, because to obtain a
single meaningful value for a marsh patch it is mandatory to
measure the JPD in numerous sites separated by tens of meters
(remember that the JPD is the only biogeophysical variable that
is spatially non-uniformly distributed). All these reasons limited
the availability of field measurements of the JPD SD to three ASAR
acquisitions. For these dates, it was possible (i) to estimate the α
and β parameters from ASAR images and (ii) to simulate the α and
β parameters using the RT transfer model presented in Section 5
using simultaneous field data as input. The results are summarized
in Table 5.
It can be seen that there is a general agreement between

the estimated and simulated statistical parameters. The good
agreement between estimated and simulated β (mean σ 0) values
was observed before (Grings et al., 2006, 2008), and is one of the
cornerstones for the use of this interaction model to simulate the
junco marsh radar response. The comparison between estimated
and simulated α is also good for most of the samples. This implies
that, to some extent, our simulation scheme is able to map the
observed σ 0 inhomogeneity to the JPD spatial inhomogeneity.
However, there is a major discrepancy in the estimation of

the α parameter for the April/04 acquisition (especially for VV
polarization). The discrepancy is obviously not related to the
fieldwork, since the measured values of the JPD mean and JPD SD
for April/04 are similar to those of the other dates. This is expected,
since the dates are very close and correspond to the same season
(southern hemisphere autumn). Since the fieldwork data are
similar, the simulated α and β values are also similar to those for
the other dates. In view of the fact that the fieldwork and simulated
data are consistent, the problem is not in the interaction model.
Actually, the simulation scheme predicts that the observed α value
for April/04 should be related to a JPD distribution with a much
lower SD than the observed one. Consequently, there is another
biogeophysical variable besides the JPD SD (such as a different
flood or wind condition), that is inducing a very inhomogeneous
σ 0 distribution.

8. Summary and conclusions

In this work, we have presented results of the relation between
the K -distribution order parameters of the junco marsh σ 0

distribution and junco plant density statistical parameters. The
results are based on the texture analysis of available Envisat ASAR
data acquired between October 2003 and January 2005 over the
Lower Paraná River Delta, Argentina. In order to extract useful
information from the SARdata, a series of hypotheseswas adopted:

- The multiplicative model can be used to model the SAR return
(Oliver and Quegan, 1998).
- In the multiplicative model, the backscattering was assumed to
follow a X ∼ 0(α, β) distribution and the speckle to assume a
Y ∼ 0(n, n) distribution (Lee et al., 1994; Oliver and Quegan,
1998).
- In juncomarshes, the only biogeophysical variable that changes
in the dimension of the ASAR pixel is the junco plant density.
- The radiative transfer based interaction model developed in
Grings et al. (2005) and refined in Grings et al. (2006, 2008)
can simulate the backscattering of junco marshes for different
environmental conditions and polarizations.

Using these hypotheses, we have shown that Envisat ASAR
APP samples of forest and junco marshes extracted over the
Paraná RiverDelta can be considered as distributedK(α, β, n). This
seems to be a general result, except when extreme environmental
conditions (drought and floods) are observed, when the data
cannot be considered as K distributed. Furthermore, we showed
that the α parameter is different for different vegetation types
and polarizations. This result was discussed in Section 4, and was
previously mentioned by other authors for different vegetation
structures and ecosystems (Oliver and Quegan, 1998; Wang and
Ouchi, 2005). Also, the observed differences in the α parameter
were successfully explained using environmental data.
To understand the observed results, we introduced an interac-

tion model to simulate the distribution of σ 0 of juncomarshes. We
showed that the assumption of the backscatter distributed X ∼
0(α, β) agrees with both the ASAR data and simulations carried
out using available fieldwork. This is an interesting result, show-
ing that a radiative transfer model is not only capable of simulat-
ing the mean σ 0 of a vegetated area, but also its order parameter.
In this way, this work points out a possible link between statistical
modeling and interaction modeling.
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