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ABSTRACT

We present a novel numerical method that enables efficient
computation of scattering and emisivity of natural and man-
made surfaces arising in the field of remote sensing. We con-
sider periodic surfaces of possibly very large period, to ade-
quately capture the various scales present in them, and we ap-
ply our method to study the effect on radar polarization ratios
of the presence of a tilling structure in an otherwise random
rough surface.

Index Terms— microwave remote sensing, scattering,
surface roughness, numerical methods

1. INTRODUCTION

The problem of rough surface scattering is of fundamental
importance in remote sensing, as new observations and sci-
entific and technological challenges reveal discrepances with
existing solutions of scattering problems. In this paper we
consider the fact that HH to VV ratios larger than one are ob-
served in the radar backscattering of agricultural soils, on the
basis of a new numerical method for the scattering of rough
surfaces that contain a tilling structure.

The effect of a tilling structure in the scattering and em-
misivity of agricultural soils has been studied by solving
Maxwell’s equation in a periodic surface formulation [1].
However, the effect of random perturbations in a periodic
setting was not considered in that work. On the other hand,
the radar backscattering of random perturbations of otherwise
coherent structures has been studied in [2, 3], employing ana-
lytical approximations whose ranges of validity have not been
established yet for this particular type of multi-scale surfaces.

Diverse recurring difficulties prevent more widespread
use of numerical methods for the solution of rough surface
scattering problems. Such are the cases of resonances arising
due to large surface height to wavelength ratios, complex
and large geometries wich can include certain periodicity
together with random perturbations, and the need to resolve
fine scale features of such surfaces. Moreover, high precision
is required to accurately account for low-observables – sig-
nals which are orders of magnitudes smaller than the incident
energy.

To address these issues, we present a new numerical
method based on integral equations which achieves super-
algebraic convergence at a reduced computational cost. To
discretize a possibly random geometry of a decaying auto-
correlation, we employ a periodic surface formulation. We
consider surfaces of possibly very large period, to adequately
capture the various scales present in a random rough surface
that also contains a tilling structure.

Our acceleration procedure is based on equivalent sources
in parallel faces and FFTs[4], and we extend that procedure to
the unbounded case in the present contribution. An intermedi-
ate step of our method, that is the computation of the Periodic
Green Function in a cartesian grid, is solved by employing
the smooth cut-off function introduced in [5] for the treat-
ment of diffraction grating problems. The use of specialized
quadrature rules, as described for instance in [6], leads to a
high order Nystrm method that has been implemented for the
solution of two-dimensional Dirichlet (TE-PEC), Neumann
(TM-PEC) and transmission problems (TE and TM) for the
Helmholtz equations.

Non-uniqueness of the usual integral equation formula-
tion of periodic problems at certain frequencies known as
Wood Anomalies and the ill-conditioning around them could
become a severe limitation for numerical methods based on
integral equations, specially in the 3D case. This problem can
be solved by introducing a Shifted Green Function [7].

We employ our method to study the following qualitative
aspect of Radar data of agricultural surfaces, where a consid-
erable number of cases of HH to VV ratios larger than one are
observed (Fig 1, see [8])

Fig. 1. RadarSAT-2 Casselman Campaign



This fact contradicts existing solutions based on gaussian
surfaces or alike, whether numerical or approximate methods
are used. Empirical methods such as [9] have also reproduced
this predicted theoretical behavior. These anomalies could be
justified on the basis of subsurface effects such as the layered
structure of the soil or particulate scattering within it, or the
effect of mild vegetation such as the residue cover. On the
other hand, in this paper we show that such anomalies can
arise due to surface scattering only, if the geometry of a tilled
soil is properly taken into account.

2. NOVEL NUMERICAL METHOD

2.1. 2D transmission problem

In the case of a translation-invariant surface, Maxwell’s equa-
tions reduce to Helmholtz equations, and in the case of a di-
electric interface the following equations are to be solved

∆ψ1 + k21ψ1 = 0 ∈ Ω1

∆ψ2 + k22ψ2 = 0 ∈ Ω2

ψ1 = ψ2 ∈ S
∂ψ1

∂n̂ = ρ∂ψ2

∂n̂ ∈ S

(1)

With ρ = 1 in the TE case (corresponding to H polariza-
tion), or ρ = k1

k2
in TM (vertical polarization).

To solve this system of equations, we employ the Muller
system of integral equations that is described in [10], that re-
sults from seeking solutions in the form of combinations of
single and double layer potentials.

ψ1 = α1S1(µ) + ω1D1(ξ)
ψ2 = α2S2(µ) + ω2D2(ξ)

(2)

When the boundary conditions are applied to this formu-
lation, the fact that the difference of two hypersingular op-
erators (normal derivatives of the double layer) is a compact
operator can be exploited to arrive at a second-kind integral
equation, if the constants α, ω are chosen accordingly.

In order to avoid implementation difficulties associated
with normal derivatives of the double layer, an identity due
to Maue can be used to replace them by the following

∂

∂s(x)
S

(
∂

∂s(y)
φ(y)

)
+ k2n̂(x) · S (φ(y)n̂(y)) (3)

As this expression only contains tangential derivatives (s
denotes the arclength), it can be implemented via numerical
differentiation with FFTs[11].

2.2. Acceleration of Far Interactions

As a first step, we separate the integration problem into dif-
ferent scales by employing smooth partitions of unity.

Fig. 2. Diagram of smooth scale separation

2.2.1. Equivalent Sources in Parallel Faces

In order to convert a surface integral into a convolution, equiv-
alent sources are found by adjusting a number of monopoles
and dipoles in parallel faces by seeking to minimize the error
of this representation outside a box, by a least squares pro-
cedure, following [4]. In a 2D problem we have two sets of
parallel faces: vertical and horizontal.

Fig. 3. Vertical Equivalent Sources

2.2.2. Periodic Green Function in Cartesian Grids

Fig. 4. Diagram of Cartesian grids

Now, the interaction of the periodic array of equivalent
sources can be taken into account by convolving the equiva-
lent sources with a Periodic Green Function, which has to be
evaluated only in two cartesian grids. The convolution can
be carried out efficiently by FFTs, but the evaluation of the
kernel requires special treatment.

The evaluation of the Periodic Green Function can be per-
formed efficiently by a variety of means, and we chose the
following smooth truncation approximation introduced in [5].
To analize the effect of a smooth truncation in the periodic
green function, let’s consider the simplified case (based on
the asymtotic properties of the Hankel function) of comput-
ing the infinite integral

Iex =

∫ +∞

0

eiknx
′

√
x′

dx′ (4)

and we consider the following alternatives for its trucation



IH,A =

∫ A

0

eiknx
′

√
x′

dx′ (5)

IS,A =

∫ A

0

eiknx
′

√
x′

S(x′, cA,A)dx′ (6)

The usual trucation corresponds to multiplying by a Heav-
iside function (denotedH), and the smooth truncation we em-
ploy consists of multiplying by the following function

S(x, x0, x1) =


1 si |x| ≤ x0,

exp
(

2e−1/u

u−1

)
si x0 < |x| < x1,

0 si |x| ≥ x1,

u =
|x| − x0
x1 − x0

Fig. 5. S function with x0 = 1,x1 = 2.

It can be shown via integration by parts, that

|Iex − IS,A| ∼ O(A−p) ∀p

that is, super-algebraic convergence, as illustrated in the
following numerical example

A |Iex − IH,A| |Iex − IS,A|
5 7.11315884e-02 1.04928986e-03

20 3.55867195e-02 3.45741125e-07
35 2.69017479e-02 6.86065024e-09
50 2.25077654e-02 1.57660945e-10
65 1.97406672e-02 7.02890076e-12

Table 1. Convergence test

2.2.3. Reconstruction of the Surface Fields

Finally, after performing the previous steps for horizontal and
vertical grids (separately), the two fields are put together and
the corresponding field in the surface has to be reconstructed.
This is a boundary value problem for the Helmholtz equation,
which we solve by a least squares fit of plane waves to the
boundary values.

Fig. 6. Diagram of plane wave expansion

2.3. Convergence test

In order to test the accuracy of our method and the correct-
ness of the present implementation, we conducted conver-
gence tests on dielectric surfaces consisting of random fourier
modes, under 400 incidence in C and L band, and verified that
errors in the conservation of energy as low as 10−10 could be
achieved.

3. A SCATTERING MECHANISM: VV RESONANCE
WITH THE TILLING PERIOD

We recall the classical problem of scattering off a sinusoidal
geometry of a fixed period and increasing height. As shown
below, this gives rise to a strong resonance in VV

Fig. 7. Sinusoidal Surface. Period=80cm, λ =25cm

This resonance effect can make the VV return almost zero
when the rms height reaches λ

4 . This triggers a polarization
anomaly around λ

6 .

3.1. Random perturbations of coherent structure

It could be agued that in the case of agricultural surfaces this
resonance could fade out completly due to random perturba-
tios of the geometry. To address such concern we have per-
formed a montecarlo study of random perturbations of a co-
herent surface

In Fig. 9 we see that HH to VV anomalies are damped
but still persistent under random perturbations. The simula-
tions correspond to C-Band backscattering from a perturbed
coherent structure with a period of 15cm, and rms height in
the range of 0-4 cm.



Fig. 8. Example surfaces

Fig. 9. Montecarlo Study of 30 surfaces similar to those
shown above

3.2. Effect of Dielectric Constant

The preceeding simulations were on the PEC case, which cor-
responds to a limiting case as the dielectric constant increases.
The simulation in Fig. 10 studies the effect of dielectric con-
stants in the range of ε = 4−20 for large sinusoidal profiles in
L band, and shows that the same behauviour holds throughout
the whole range of dielectric constants found in soil moisture
remote sensing with the sole effect of reducing the overall
backscattering power, and thus finding that HH to VV ratios
larger than one can also ocurr by this mechanism for low val-
ues of the backscattered power.

4. DISCUSSION AND FURTHER WORK

It is shown that the often overlooked surface-scattering mech-
anism of the VV-resonance with the tilling period can have
an important effect on the polarization ratio. Our simulations
show that this effect persists under random perturbations of
the surface on both large and small scales and for different di-
electric constants, and indicate that polarization anomalies in
C-Band could be explained without considering the effect of
vegetation or particulate scattering within the soil. For L band
the occurrence of resonant agricultural surfaces is rare (to our
knowledge, the only exception are the potato fields), but nev-

Fig. 10. Effect of the dielectric constant

ertheless, the hypothesis of the independence of the polariza-
tion ratio on geometrical features of the soil (and therefore
it’s use as a direct indicator of soil moisture ) is yet to be ana-
lyzed with the new methodology. Further analysis in various
wavelenghts for different tilling types are in progress.
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