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ABSTRACT unique values found on literature) and vegetation water con
tent, VIWWC (derived from different proxies and models that
result in differentV W C values). All these retrieval imple-
mentations also need ancillary parameters as necessaly aux
iary inputs.

In this work, a novel retrieval algorithm (BRA, Bayesian
I?etrieval Algorithm) is developed, which uses Bayesian in-

In this work, several retrieval algorithms were implemeite
to retrieve soil moisturesfn) and optical depth7) from
Aquarius/SAC-D observations. Currently used retrieval
algorithms (H- and V-pol Single Channel Algorithm, Mi-
crowave Polarization Difference Algorithm) were computed

over Pampas Plains, Argentina. The methodology of a nov .
. . ference to retrievem andr from both H & V channels. The
Bayesian algorithm developed was also presented, and Elgdvantages of BRA include: (i) errors on the retrieved vari-

results were contrasted with the previous algorithms. Fur-

thermore, an Artificial Neural Network (ANN) approach to ‘?‘b'es can be est|mated N an univocal way, (il) prior informa
. : . . tion about the retrieved variables (provided by other senso
retrieve smm from Aquarius brightness temperature was im-

plemented and trained using SMOS Leveb product or in situ historical data) can be directly included as irgot

Finally, performance metrics for each algorithm were deiv BRA to improve the retrieval, (iif) it can handle uncertairst

using SMOS L2sm as benchmark product. on the ancillary par_ameters. )
The BRA algorithm uses as a forward model a physical

Index Terms— Aquarius; soil moisture; Bayesian infer- model, zero order radiative transfer (RT-0), that predicts

ence; Markov Chain Monte Carlo; Artificial Neural Network. giving a value ofsm and ancillary parameters. Another ap-

proach considered in this analysis uses an Artificial Neural
1. INTRODUCTION I_\letvvork (ANN) to retriev_esm by esti_mating statistically the

link betweensm andT'b given a training dataset. Target out-

Several retrieval algorithms were developed to retrievie soPut dataset was derived from SMOS k2 and used to train

moisture ¢m) from passive remote sensing data. The mosthe ANN.

commonly used are the Single Channel Algorithm (SCA), the

Dual Channel Algorithm (DCA) and Microwave Polarization

Difference Algorithm (MPDA). All these algorithms rely on

the omega-tao model to link brightness temperature (Tb) and , ,
surface dielectric and geometric properties, and diffepagn  ~duarius/SAC-Dsm products were developed using SCAH,

them on the polarization channels they use and the minimiza'r:iCAV’ DCA, MPDA, BRA and ANN algprit’hms. Soil mois—_
tion scheme implemented [1]. MPDA and DCA make use ofiure products were retrieved for Argentina’s Pampas Region
H- and V-pol Tb (TbH and TbV) to retrievem and optical The Argentina’s Pampas region is located in the center-east
depth (). One disadvantage of both previous algorithms i0f Argentina_ where the main_ ggricultural activities are ce-
their sensitivity to noise (mainly uncorrelated noise) ottp €@l production and cattle-raising. It extends over 60 mil-
TbH and TbV. On the other hand, SCAH (SCAV) uses Omyllon_ hectares gnd accounts for more tha_n 90% of the national
TbH (TbV) to retrievesm usingr as an auxiliary input to the 9rain production. Soybean, wheat, maize and sunflower are
retrieval algorithm (usually derived from an optical proxy the main crops. Weather is among the most important and

The main disadvantage of relying erto retrievesm is that uncontrollable elements affecting agriculture in thisioag
if optical depth is not well known, SCA will have poor per- Ancillary data used for the retrievals is specific for theaare

formance. In practice, accurate knowledgerofs tricky. (local land cover and .soil texture map). Vegetation optical
In general is obtained through the vegetation paraméter 9€Pth ¢WC) was derived from MODIS NDVI [2]. Obser-

(a land cover dependent parameter, empirically derivet, nd/ati_ons of the MWR 36.5 GHz V-pol channel, Argentineaq
radiometer on board the SAC-D, was used as proxy of skin

This work was funded by MinCyT-CONAE-CONICET project 12. temperature over vegetated areas.

2. METHODOLOGY




2.1. Bayesian Inference for solving Soil Moisture Re- 1 x10°
trieval I

0.9
The BRA aims to estimate the posterior probabify(sm, 7
|TbH,,, TbV,,,0), that is the probability of having mean I
groundsm = sm and7r = 7, given that the sensor (Aquar- 07
ius) measured’vH,,, andTbV,, and that the land ancillary
parameters aré. Estimation of the posterior probability is
performed through the Bayes’ theorem: 05
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Py (sm, 7| TbH,,, TbV,,, 0) =
Pr(TbH,,, TbV,,|sm, 7,0)Pp(sin, 7) 1)
[ [ PL(TbH,,, TbV;,|sm, 7,0) Pp(sin, 7)dsm dr

_ et 1 | 1, 1
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ity and Pp(sm,T) is the prior probability. The likelihood
is the probability of the sensor measurihgH,,, andTbV,,
when the land conditions aten, 7 andé (represents the for- 1 X0

(a) Posterior gridding sampled MAP, o Mean)

ward model, RT-0 adopted here). If no errors on the ancillary
parameters or the forward model are considered, nor instru-
mental noise on Th, then the problem is deterministic and  os|
the two dimensional likelihood is a delta function centered
on the value ofsm andr predicted by the forward model
givenTbH,, andTbV,,. However, this simplistic assump- o6t
tion is inaccurate. In this work, likelihood is derived in am "
parametric manner, in such a way to be a function of ancil-
lary parameters uncertainties (uncertainties in the parars oaf
needed for the retrieval) and instrumental noise. The prior
probability is the a priori (before estimation) probalyilif

the variables to be retrieved:¢ and 7). Uniform density o2t
function would mean that no previous knowledge of the vari- ,
ables was available. On the other hand, a delta functiondvoul o 0o
mean exact previous knowledge of the variables and the BRA (b) Posterior MCMC sampled

would estimate those values independently of the likelchoo

function. In this work, uniform probability density funoti

(pdf) was considered fanm across the whole possible ranges Fig. 1. Posterior Sampling with Markov Chain Monte Carlo.
of values () to 0.5m?3/m3 adopted here) and a Gaussian pdf
for 7 was adopted, centered en= b x VIWC, whereb is a
land cover dependent parameter, and’C' is derived from
MODIS NDVI. Gaussian standard deviation is related to ac-af;nmm =
curacy of ther model ¢ = b« VW) and of the parameters

b andVW C to obtainr. A proxy to VIWC uncertainty over

MAP estimators.

/ / (s — Simean )? Pz (s, 7|TbH,y,, ThVy,, 0)dsm dr

soybean crops was derived from the misfit betw&ai C (4)
derived from MODIS NDVI and from Aquarius RVI [3].
Finally, sm andr can be estimated from the posterior pdf. O iman = Toinmean T (5Mmean — 8map)?  (5)

Both mean and maximum a posteriori (MAP) estimators weré The pest possible estimator is a fully efficient estimator,

considered: which is a minimum variance unbiased (MVU) estimator and

_ will achieve the Cramér-Rao bound (CRB). The Cramér-Rao
SMmean = //SmPZ(Sma TITbH,, TOV,y,, 0)dsm dr bound states a lower bound on the variance of the MVU and
(2)  canbe obtained by the following equation:
SMumap = argmax Pz (sm, T|TbHp,, TbV,,, é) 3) 1
sm CRBgy = . -
Furthermore, variance on the retrieved estimations can Esm [% log Pz(sm, 7|TbH,y,, THV,y,, 0)
also be obtained from the posterior pdf for both mean and (6)




ho Dataset used as target output to train the ANN consists on
X1 ®—> 9 N SMOS L2 v5.5.1sm.

2.2.2. Data setsresolution

Xk C) h; gl . @ g Vi Data sets used are from various sources and thus have differ-
Wik -, Wig, - : ent temporal and spatial resolution. Therefore, all dats se
: ) ) : - were averaged (distance weighted) to Aquarius footprints.
Only dates were Aquarius, SMOS and MWR data sets were
‘ hy o available, were considered for the analysis. MODIS NDVI
] ®_' 9y product has a temporal resolution of 16 days, thus the im-
mediate previous date from Aquariii’® and SMOSsm was
considered. Training dataset period used in the analyaisssp
from January 1st, 2012 to May 1st, 2013 (excluding August
19th, 2012). Only Aquarius ascending passes and SMOS
descending passes were considered (6 pm).

Fig. 2. Neural Network feedforward topology.is the vector
of inputs to the networky the outputs vectoh the vector of
biasesg the transfer function and are the synaptic weight
matrices. There arEnumber of inputsQ number of outputs,

one output layer and hidden layers.
2.2.3. Training Algorithm and Parameters

2.1.1. Posterior Sampling with Markov Chain Monte Carlo The dataset was divided into two categories: training amd va
idation datasets. The samples considered for each category

The main disadvantage of using bayesian inference approagfere 7000 for training and 3000 for validation of the tramin
to solve soil moisture retrieval lies in its time performanc Before training, it is useful to scale the inputs and targets
Retrieving soil moisture in the area of study for a one weekhamely normalization, so that they always fall within a spec
period will take 2 days running in a single core PC. In order ttfied range. Without normalization, the input variable whie t
develop an operative bayesian soil moisture algorithroy&ff  |argest scale will dominate the results. Inputs and tangets
were made to lower time consumption. A cleverer posteriokcaled so that they fall in the rane1, 1] by performing a
sampling was carried outimplementing Markov Chain Montelinear transformation on the original data. If the targetsav
Carlo (MCMC) using MPI to parallelise MCMC chains scaled, then the network output will be in the rarigd, 1].

to benefit from multi-core machines or High Performancen order to convert this output back to its original range th

Computing clusters. The sampling was performed using thgwerse transformation should be applied.
Metropolis-Hasting (MH) algorithm. Figure 1 shows an ex-

ample of posterior sampling on a regular grid (a) and with
MH (b). Latter example runs 20 times faster than the regular
grid sampling.

3. RESULTS

The sm products derived from the BRA approach (Mean and
MAP), SCAH, SCAV, MPDA and ANN were computed for
2.2. Artificial Neural Network to Retrieve Soil Moisture August 19th, 2012, over the area of study, and they were
evaluated through several performance metrics (coroglati
R; bias; root mean square error, RMSE; unbiased RMSE,
bRMSE). SMOS Level-2m product was used as bench-

A feedforward ANN was implemented to retrieye:. The
topology used for the ANN was a Multi-Layer Perceptron
(MLP) such as the one shown in Figure 2, and the learnin

was performed through Levenberg-Marquard backpropag nark product because, for the date selected, SMOSpatial
tion algorithm. Several ANN topologies were tested modi_pattern was in good agreement with the Soil Available Water
éderived from a water balance model [7]). Nevertheless, ab-

solute SMOS L2sm values are not necessarily tiggound

truth. Performance metrics results are shown in Table 1.
Metrics for ANN shown in the table are for the 10:10

2.2.1. ANN Inputs & Output Target case (10 neurons in both first and second hidden layers of the

Datasets used as inputs to the ANN include: i) Aquarius HANN), which was proved to have the best performance of all

& V-polarizationTh observations of its three beams togetherth® ANN tested cases (see Figure 3).

with their corresponding incidence angle; i) MWR 36.5 GHz

V-Pol channel was used to estimate canopy temperature [4]; 4. DISCUSSION

iii) MODIS NDVI was used to obtaifV W C[kg/m?]; and iv)

Static Parameters: 1) Land-cover-dependent Paramefers [Bn this work, several retrieval algorithms were implemente

w, b, h; 2) Soil texture [6]: sand, clay. for the Pampas Plains, Argentina using maiflly observa-

number of neurons in each layer.



Table 1. Soil Moisture Algorithms Performance Metrics

R Bias RMSE ubRMSE
BRA Mean 0.811 -0.051 0.094 0.079
BRA Map 0.798 -0.056 0.095 0.077
MPDA 0.728 -0.089 0.123 0.086
SCAH 0.882 0.276 0.366 0.240
SCAV 0.876 -0.051 0.104 0.091
ANN 10:10 0.775 -0.055 0.100 0.083
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Fig. 3. Performance metrics for different ANN topologies (#
neurons on 1st layer : # neurons on 2nd layer).

tions from Aquarius and ancillary parameters from différen

variables input to the model.

MPDA and SCA would run almost as fast as the ANN
(making this options eligible for globally operative retrals
products) and their outputs rely on the theoretical forward
model. Nevertheless, prior informationef. can not be han-
dled by SCA nor MPDA, as well as errors on the ancillary
parameters, as BRA does.

Finally, of all the algorithms implemented, BRA is the
only one that, besides retrieving: andr, can also provide
variance on the retrieved estimations, which might be usefu
for setting flags and quality control of the product. As a final
remark, results point to conclude that the BRA approach is
the recommended retrieval algorithm that could be used to
validate the selected operative algorithm in specific negjio
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