

SAC-D/Aquarius Soil Moisture product development and evaluation for Pampas Plains (Argentina)

Cintia Alicia Bruscantini*, Francisco Grings, Federico Carballo, Matias Barber, Pablo Perna, Haydee Karszenbaum.

Remote Sensing Lab, , Institute of Astronomy and Space Physic (IAFE-CONICET-UBA). Buenos Aires, Argentina. *E-mail: cintiab@iafe.uba.ar

Quebec, Canada - IGARSS 2014

Goal: Develop soil moisture (*sm*) retrieval algorithms for Aquarius/SAC-D, compare them with existing retrieval algorithms and with available *sm* products (SMOS, Aquarius, GLDAS).

Test theoretical and statistical approaches that uses satellite based data for the retrieval, using as benchmark a product derived from a land

urface model

SMOS

SMOS provides multi-angular L-band observations. The retrieval algorithm is based on the minimization of the difference between measured and simulated brightness temperature. Temporal resolution: 3 days Spatial resolution: 35-60 km Grid: EASE 25 km Version 5.5.1

IGARSS 2014

INFF

Bayesian Algorithm

IGARSS 2014

IAFE

incritic Scholing Lub,

The *advantages* of **Bayesian Approach** are:

- i) Errors on the retrieved variables can be estimated in an univocal way,
 - ii) It gives the possibility to use **prior** information about the retrieved variables
 (provided by other sensors or in situ
 historical data),

iii) It can handle **uncertainties** on the ancillary parameters.

The main *disadvantagé* of **Bayesian Approach** is: TIME PERFORMANCE!

Artificial Neural Network Algorithm

Objective: provide an Aquarius *sm* product consistent to SMOS available Level 2 *sm* product.

Training Phase

<u>Output target</u>: SMOS L2 *sm* <u>Training period</u>: January 1st, 2012 to May 1st, 2013 (excluding testing period) <u># training samples used</u>: ~ 7000. <u># validation samples used</u>: ~ 3000. <u>Learning algorithm</u>: Levenberg-Marquad backpropagation (input and output datasets are normalized and randomize)

Artificial Neural Network Algorithm

In order to find the optimum ANN topology for Aquarius *sm* retrieval, several ANNs were trained and tested varying the number of hidden layers (one or two) and the number of neurons in each layer (2, 4, 6, 8, 10, 15, 20 and 25). Performance metrics were derived for a testing dataset. 0 0.1 0.2

GLDAS

The Global Land Data Assimilation System (developed by NASA and NOAA) is a global, offline (uncoupled to the atmosphere) terrestrial modeling system that uses both ground and satellite observations as forcing of advanced land surface models and integrated to data assimilation techniques in order to generate optimal fields of land surface states (soil moisture, both liquid water and ice content, soil temperature, skin temperature, snow depth, snow water equivalent, canopy water content), and fluxes Starte energy t water and

Results

Sm products derived from the Bayesian approach (Mean and MAP), SCAH, SCAV, MPDA, ANN, SMOS and USDA were evaluated through several performance metrics (correlation, bias, root mean square error RMSE, unbiased RMSE) for a day in August 2012 (austral winter, low vegetation, marked dry-wet soil conditions). GLDAS sm was considered as benchmark product. All SM products

The Argentina's Pampas region is a wide plain located in the center-east of Argentina where the main agricultural activities are cereal production and cattle-raising. It extends approximately 50 million hectares of fertile lands and accounts for more than **90% of the national grain production**. Soybean, wheat, maize and sunflower are the main crops. Weather is among the most important and uncontrollable elements affecting agriculture in this region. Most of the Pampas region is significantly affected by **cyclical drought and flood episodes** that impact both crop and cattle production. In general, along the region, the area is **drier in the west and becomes**

Performance Metrics

	Mean	Мар	MPDA	USDA	SCAH	SCAV	ANN	SMOS
r	0.900	0.890	0.756	0.902	0.845	0.859	0.755	0.921
bias	0.017	0.014	-0.022	0.113	0.377	0.130	0.107	0.075
RMSE	0.034	0.035	0.057	0.140	0.463	0.173	0.160	0.094
ubRMSE	0.030	0.032	0.053	0.082	0.268	0.115	0.119	0.058

Metrics Computation

$$r = \frac{E[(sm_{est} - E[sm_{est}])(sm_{GLDAS} - E[sm_{GLDAS}])}{\sigma_{est}\sigma_{GLDAS}}$$

$$bias = E[sm_{est}] - E[sm_{GLDAS}]$$

$$RMSE = \sqrt{E[(sm_{est} - sm_{GLDAS})^{2}]}$$

$$ubRMSE = \sqrt{E\{[(sm_{est} - E[sm_{est}]) - (sm_{GLDAS} - E[sm_{GLDAS}])]^{2}\}}$$

Summary

A **new retrieval** model based on a Bayesian approach (**BRA**) was proposed for Aquarius soil moisture product. Existing soil moisture models were also implemented. The performances of all the implemented models were evaluated using GLDAS sm as benchmark. Results were analyzed in terms of standard

Conclusions

✓The proposed methodology showed encouraging results. Of all the tested algorithms, the BRA approach exhibited the best performance with the lowest bias and ubRMSE.

✓The high SM values obtained on SCA (H & V) are due to **overestimation of optical depth**. Such overestimation indicates the presence of a bias on VWC and/or *b* vegetation parameter. Either way, *b* value and the methodology to derive VWC from NDVI follow the SMAP ATBD and should be considered for SMAP passive SM retrieval. Furthermore, SCAV showed a better performance, thus results might improve by using $bH \neq bV$ (**bH**<**bV**).

✓<u>SM dynamic range</u>:

- BRA (Mean & MAP), MPDA and GLDAS display SM values as high as 0.4 m3/m3. BRA highest SM values were conditioned by the selected prior (0.5 m3/m3).
- USDA SCAH saturate SM at field capacity by design (depending on soil texture, ~0.55 m3/m3).
- SMOS shows values as high as 0.6 m3/m3 at GLDAS grid.
- SCAH, SCAV & ANN displayed values higher than 0.7 m3/m3.

CAMSSIZES: USDA, SCAH, SCAV, SMOS, MPDA and ANN exhibit high positive

BACK UP SLIDES

IGARSS 2014

IAEE

Why uncertainties?

(v	Gaussian PDFs ariance xparame	ter	h	1			Source	λ (cm)	f (GHz)	<i>b</i> (m ² /kg)	Canopy Type	Comments/ Incidence Angle
(•	uncertainties)		$\frac{\omega}{h}$			õ	1 st part					
		0	1		mplo	θ_j	E Jackson and O'Neill [9]	6	5	0.15	Com	10° and 20°
		$\theta =$	sana				Jackson and O Nem [7]	21	1.4	0.115	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 and 20
			clay				B 1 1B1 (10)	0.0	27.6	0.6		
			Tsoil				Pamapl. and Pal. [19]	0.8	97	0.6	,,	(-)
			Tskin					2.1		0.01	,,	55
	Common	1 3		-	Comment		Ulaby et al. [24]	6	5	0.186	,,	0° and 40°
	Source	(am		(m^2/l_{eff})	Canopy	Longidoneo Anglo		21	1.4	0.115	,,	55
	Wong at al. [22] [22]	(cm) (GH	<i>z)</i> (m /kg)	1 ype	Incidence Angle	Jackson et al. [11]	6	5	0.162	,,	10° and 40°
	wang et al. [52], [55]	21	1.4	0.3	Short grass	10	-	21	1.4	0.133	"	,,
							- O'Neill et al [18]	6	5	0.131		100
	Wang et al. [32], [33]	6	5	1.99	Tall grass	10°	o Nem et al. [16]	21	1.4	0.102		
		21	1.4	0.72		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-					
	Wang et al. [31]	21	1.4	0.15		10°	Jackson and O'Neill [9]	6	5	0.288	Soybean	10° and 20°
								21	1.4	0.086	,,	>>
	2 ^{na} part	_					- Ulaby and Wilson [26]	2.8	10.7	1.34		(*)
	Pardá at al [20]	21	1.4	0.26 ± 0.04	Com	10° to 60°		6.5	4.6	0.44	,,	,,
	Falue et al. [20]	21	1.4	0.20 ± 0.04	Com	10 10 00		18.2	1.6	0.1	"	55
	Wigneron et al. [36]	6	5.0	0.41 ± 0.04	Soybean	38°	Brunf and Illahy [2] [2]	5.0	51	0.366		0° to 50° (**)
		21	1.4	0.19 ± 0.01			- Bruin, and Olaby [2], [5]	11.1	2.7	0.264	,,	0 10 50 (***)
	Halandana at al 101	-		0.40 . 0.05		400	-					,,,
	Haboudane et al. [8]	6	5.0	0.48 ± 0.05	,,	40°	Jackson et al. [11]	6	5	0.24	,,	10° and 40°
		- 21	1.4	0.28 ± 0.05	"	"		21	1.4	0.087	,,	,,
	Burke et al. [4]	21	1.4	0.114		10° (τ - ω with $\omega = 0$)	Ulaby and Wilson [26]	2.8	10.7	0.38	Wheat	(*)
		21	1.4	0.122	"	10° (discrete model)		6.5	4.6	0.15	,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Denlá et el 1201	21	1.4	0.20 . 0.02		100 to 600		18.2	1.6	0.05	,,	
	Parde et al. [20]		1.4	0.30 ± 0.02	,,	10 to 60	Kirdischev et al. [14]	2.25	13.3	0.442	Winter n/e	()
	Van de Griend et al. [28]	6	5	1.53	Short Wheat	10° to 60°	Kirulashev et al. [14]	10	3	0.229	winter tye	
		21	1.4	0.27	"	.,		20	1.5	0.114		
	Wioneren et al. [26]	6	5.0	0.48 + 0.08	Wheat	200		30	1	0.043	,,	,,
	wigheron et al. [50]	21	1.4	0.12 ± 0.03	wheat	38	O'Neill et al. [18]	21	1.4	0.105	Sorahum	100
			1.4	0.12 = 0.01		,,	O Nein et al. [16]	21	1.4	0.105	Sorghum	10
	Haboudane et al. [8]	6	5.0	0.32 ± 0.04	"	40°	Chukhl. and Shutko [6]	18	1.7	0.142	Cereals	(-)
		21	1.4	0.13 ± 0.01	**	,,	Barriel and Bill 1993		25.5	1.04	410.10	
	Pardá et al [20]	21	1.4	0.11 + 0.01		10° to 60°	Pampal. and Pal. [19]	0.8	37.5	1.85	Alfalfa	(-)
	raiue et al. [20]	- 21	1.4	0.11 ± 0.01		10 10 00		5.1	2.1	0.93	,,,	33
	Pardé et al. [20]	21	1.4	0.54 ± 0.02	Alfalfa	10° to 60°	Chukhl. and Shutko [6]	18	1.7	0.182	"	,,
'n							031-31-4-1-1221			0.120		1.00
iom	Pardé et al. [20]	21	1.4	0.56 ± 0.05	Tall grass	10° to 60°	O'Neill et al. [18]	6	5	0.138	Sweet	10"
0	Mätzler [16]	61	40	0.72	Oat	55° to 80°	Shutko [22]	3	10	0.475	Broadleaf	(-)
.2	mazier [10]	2.88	4.9	3.7				20	1.5	0.075	"	"
sm		1.43	21.0	6.1	,,	,,						0
		0.94	24.8	6.1			Vyas [30]	19.3	1.6	0.092		35°

IGARSS 2014

IAEE

Why uncertainties?

IGARSS 2014

IAFE

Why uncertainties?

IGARSS 2014

IAFE

Land cover-dependent parameters

ID	MODIS IGBP land classification	s	h	Ь	ω	Stem factor
0	Water Bodies		-9999	-9999	-9999	
1	Evergreen Needleleaf Forests	1.60	0.160	0.100	0.120	15.96
2	Evergreen Broadleaf Forests	1.60	0.160	0.100	0.120	19.15
3	Deciduous Needleleaf Forests	1.60	0.160	0.120	0.120	7.98
4	Deciduous Broadleaf Forests	1.60	0.160	0.120	0.120	12.77
5	Mixed Forests	1.60	0.160	0.110	0.120	12.77
6	Closed Shrublands	1.00	0.110	0.110	0.050	3.00
7	Open Shrublands	1.10	0.110	0.110	0.050	1.50
8	Woody Savannas	1.00	0.125	0.110	0.120	4.00
9	Savannas	1.00	0.156	0.110	0.080	3.00
10	Grasslands	1.56	0.156	0.130	0.050	1.50
11	Permanent Wetlands	1.00	-9999	-9999	-9999	4.00
12	Croplands - Average	1.08	0.108	0.110	0.050	3.50
	- Wheat	0.83	0.083	TBD	TBD	TBD
	- Mixed (Wheat, Barley, Oats)	1.08	0.108	TBD	TBD	TBD
	- Corn	0.94	0.094	TBD	TBD	TBD
	- Soybean	1.48	0.148	TBD	TBD	TBD
13	Urban and Built-up Lands		0	0.100	0.030	6.49
14	Crop-land/Natural Vegetation Mosaics	1.30	0.130	0.110	0.065	3.25
15	Snow and Ice		0	0	0	0
16	Barren	1.50	0.150	0	0	0

SCAH USDA & SCAH IAFE

Why the differences?						
	SCAH USDA	SCAH IAFE				
Soil temperature	NCEP	MWR (36.5V)				
VWC	MODIS NDVI climatology	MODIS NDVI				
b	0.8	land cover dependent				
h	0.1	land cover dependent				
ω	0.05	land cover dependent				
Dielectric mixing model	Wang and Schmugge (1980)	Hallikainen (1985)				

