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ABSTRACT

In this work, several retrieval algorithms were implemented
to retrieve soil moisture (sm) and optical depth (τ ) from
Aquarius/SAC-D observations. Currently used sm retrieval
algorithms (H- and V-pol Single Channel Algorithm, SCAH
and SCAV; Microwave Polarization Difference Algorithm,
MPDA) were computed over Pampas Plains, Argentina. The
methodology of a novel Bayesian algorithm developed is
also presented, and its results are contrasted with the pre-
vious algorithms. Finally, performance metrics for each
algorithms were derived using SMOS Level-2 sm and τ as
benchmark products. The new Bayesian approach provide
the sm retrieval algorithm that exhibited the lowest ubRMSE
(0.115m3/m3), though very close to USDA SCA and SCAV
ubRMSE (0.116m3/m3). Nevertheless, some improvements
are discussed in Section 4 that might increase significantly
the Bayesian algorithm performance.

Index Terms— Aquarius; soil moisture; Bayesian infer-
ence; Markov Chain Monte Carlo.

1. INTRODUCTION

The SAC-D/Aquarius (launched on June 2011) is a coop-
erative international mission between CONAE (Comisión
Nacional de Actividades Espaciales), Argentina, and NASA,
USA. Its primary goal is to monitor weekly global sea surface
salinity to help understanding both climate change and the
global water cycle [1]. The Aquarius is an integrated L-band
radiometer (1.413 GHz) and scatterometer (1.26 GHz). In this
paper, land Aquarius observations were used for monitoring
soil moisture over the Pampas Plains region in Argentina.

Several retrieval algorithms were developed to retrieve
soil moisture from passive remote sensing data. The most
commonly used are the Single Channel Algorithm (SCA),
the Dual Channel Algorithm (DCA) and the Land Parameter
Retrieval Model (LPRM). All these algorithms rely on the
omega-tao model to link brightness temperature (Tb) and
surface dielectric and geometric properties, and differ among
them on the polarization channels they use and the minimiza-
tion scheme implemented [2]. LPRM and DCA make use of
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H-pol Tb (TbH) and V-pol Tb (TbV) to retrieve soil moisture
and optical depth. One disadvantage of both previous algo-
rithms is their sensitivity to noise in both TbH and TbV chan-
nels (specially uncorrelated noise between channels). On the
other hand, SCAH (SCAV) uses only TbH (TbV) to retrieve
soil moisture using optical depth as an auxiliary input to the
retrieval algorithm (usually derived from an optical proxy).
The main disadvantage of relying on optical depth to retrieve
soil moisture is that if optical depth is not well known, SCA
will have poor performance. In practice, accurate knowledge
of optical depth is tricky. In general, optical depth is obtained
through the vegetation parameter b (a land cover dependent
parameter, empirically derived, not unique values found on
literature) and vegetation water content, VWC (derived from
different proxies and models that result in different VWC
values). All these retrieval implementations also need other
ancillary parameters as necessary auxiliary inputs. In this
paper, a novel retrieval algorithm (BRA, Bayesian Retrieval
Algorithm) is developed, which uses Bayesian inference to
retrieve soil moisture and optical depth from both H & V
channels. Bayesian likelihood is derived in a non parametric
manner, in such a way to be a function of ancillary parameters
uncertainties (uncertainties in the parameters needed for the
retrieval). As a major advantage, prior knowledge for soil
moisture and optical depth can be directly included as inputs
to BRA to improve the retrieval.

A first version of the operative algorithm customized for
the Pampas Plains is under evaluation. The Argentinas Pam-
pas region (approximately 83 million hectares) is located in
the center-east of Argentina where the main agricultural ac-
tivities are cereal production and cattle-raising. It accounts
for more than 90% of the national grain production. Soybean,
wheat, maize and sunflower are the main crops. Weather is
among the most important and uncontrollable elements affect-
ing agriculture in this region. Customized inputs for the area
of interest includes specific ancillary data (landcover, local
VWC information priors). Moreover, several proxies to veg-
etation optical depth are being tested (RVI, NDVI and SMOS
optical depth). Argentinean radiometer MWR data is used as
proxy of skin temperature over vegetated areas.



2. METHODOLOGY

2.1. Bayesian Algorithm

Current sm retrieval algorithms such as LPRM and SCA
make use of the zero-order radiative transfer model (RT-0)
[3] as a deterministic forward model that should be mini-
mized in order to retrieve sm (and τ in the case of LPRM).
Further analyses can extend the model to a stochastic model
that includes both forward model ancillary parameters (θ)
uncertainties and instrumental noise. Furthermore, forward
model uncertainties can be added as well by making use of an
ensemble of forward model instead of implementing solely
RT-0. In this work, θ uncertainties and Aquarius instrumen-
tal noise where modeled by random variables with Gaussian
probability density function (pdf). However, forward model
uncertainties where not considered.

Using Bayes’ theorem, the conditional (posterior) prob-
ability of having terrain condition ¯sm and τ̄ given measure-
ments of H- & V-pol brightness temperature (TbHm and
TbVm) and the ancillary parameters θ = θ̃ can be expressed
as follows:

PZ( ¯sm, τ̄ |TbHm, T bVm, θ̃)

=
PL(TbHm, T bVm| ¯sm, τ̄ , θ̃)PP ( ¯sm, τ̄)∫ ∫

PL(TbHm, T bVm| ¯sm, τ̄ , θ̃)PP ( ¯sm, τ̄)dsmdτ
(1)

where PL(TbHm, T bVm| ¯sm, τ̄ , θ̃) is the (likelihood) proba-
bility of measuring TbHm and TbVm given the terrain state
sm = ¯sm, τ = τ̄ and θ = θ̃, PP ( ¯sm, τ̄) is the prior joint
density function of ¯sm and τ̄ (that includes previous knowl-
edge of ¯sm and τ̄ ), and the double integral is a normalization
factor that computes the probability of measuring TbHm and
TbVm.

The likelihood pdf is related to both the forward model
(in this case, RT-0) and the distribution of the random vari-
ables used as inputs to the model. Moreover, the prior used
in this analysis was chosen to be uniform ranging from 0 to
0.5m3/m3 for the sm variable (meaning no previous knowl-
edge of sm is available), and Gaussian distribution for the
τ variable. The Gaussian pdf was centered on the τ value
derived from MODIS NDVI, with a variance being a func-
tion of the difference between τ obtained from MODIS NDVI
(τNDV I ) and Aquarius RVI (τRV I ). When both τNDV I and
τRV I are similar, then it is assumed that the derived value
completely is reliable. Accordingly, the prior pdf enhances
the likelihood pdf on the area of the domain where τ values
are close to the τNDV I . Therefore, in this case, the prior pdf
highly restricts the posterior pdf, thus strongly lowering its
variance. On the other hand, if τNDV I and τRV I are very dif-
ferent, then the τNDV I is not reliable, and the posterior pdf
is likely to resemble the likelihood. Furthermore, if the un-
certainties on the ancillary parameters are low, then the BRA

approach is presumably to encounter sm and τ values similar
to the ones retrieved by the DCA.

Given the posterior pdf in (1), two estimators were de-
rived. One of the estimators is the minimum variance estima-
tor (BRA Mean). It is derived as the expectation value of the
posterior pdf, and the estimated sm from it is of the form:

ˆsmmean =

∫ ∫
D

smPZ(sm, τ |TbHm, T bVm, θ̃)dsmdτ

(2)
and the variance of the estimation will be:

σ2
ˆsmmean

=∫ ∫
D

(sm− ˆsmmean)2PZ(sm, τ |TbHm, T bVm, θ̃)dsmdτ

(3)

being D the sm and τ domain where the forward model
spans. Previous variance is an indicator of the error in the
estimated ˆsmmean.

The other estimator implemented was the maximum a
posteriori (BRA MAP), which is the mode of the posterior
pdf, and can be expressed as:

ˆsmmap = arg max
sm

PZ(sm, τ |TbHm, T bVm, θ̃) (4)

in this case, the variance can be computed as follows:

σ2
ˆsmmap

=∫ ∫
D

(sm− ˆsmmap)2PZ(sm, τ |TbHm, T bVm, θ̃)dsmdτ

= σ2
ˆsmmean

+ ( ˆsmmean − ˆsmmap)2

(5)

Both estimators were also used to estimate τ with its cor-
responding functional form.

The advantages of BRA are: (i) errors on the retrieved
variables can be estimated in an univocal way, (ii) it gives the
possibility to use prior information about the retrieved vari-
ables (provided by other sensors or in situ historical data),
(iii) it can handle uncertainties on the ancillary parameters.
The main disadvantage of BRA is its time performance. In
order to improve the runtime, a Markov Chain Monte Carlo
was implemented.

2.1.1. Markov Chain Monte Carlo

At first, the BRA approach was computed on a regular grid
spanning the Bayes pdfs domain (limited mainly by the prior
pdf). In this scheme, the precision of the estimations are re-
lated to the grid resolution. Therefore, the grid was then re-
fined where the posterior pdf displays significant values. An
even better sampling approach involves the implementation
of the Markov Chain Monte Carlo (MCMC) method, which
consists in random paths sampling the distributions. MCMC



resulted in a 10x speedup using an 8-cores CPU. However,
MCMC issues need to be addressed and carefully overcomed,
such as initial burn in iterations and convergence criteria.

2.2. Other Retrieval Algorithms Implemented

In addition to implementing the BRA approach for Aquar-
ius Tb, other algorithms were computed and evaluated over
the area of interest for a few days on August 2012 (austral
winter). The algorithms include SCAH & SCAV, Microwave
Polarization Difference Algorithm (MPDA [4]) and DCA.

Both MPDA and DCA make use of H- and V-pol Tb to
retrieve sm and τ and they differ on the cost function they
use to minimize. However retrievals obtained from both al-
gorithms were exactly the same for both sm and τ , therefore
DCA results are not explicitly shown hereafter.

Ancillary parameters for all the algorithms were selected
to be consistent. Land cover dependent parameters were se-
lected following the Look Up Table of algorithm parameters
on the SMAP ATBD [5].

3. RESULTS

The sm and τ products derived from the BRA approach
(Mean and MAP), SCAH, SCAV and MPDA were evaluated
through several performance metrics (correlation, bias, root
mean square error RMSE, unbiased RMSE). The Aquarius
Level-2 sm estimates derived by United States Department of
Agriculture (USDA) [6] were also evaluated. SMOS Level-2
sm and τ products were used as benchmark products because,
for the time period selected, SMOS sm spatial pattern was in
good agreement with the product Soil Available Water (de-
rived from a water balance model [7]). Nevertheless, absolute
SMOS L2 values are not necessarily the ground truth. Per-
formance metrics results are shown in Table 1. As shown in

R Bias RMSE ubRMSE
Mean 0.714 -0.056 0.128 0.115
Map 0.700 -0.063 0.131 0.115
MPDA 0.597 -0.072 0.148 0.130
USDA 0.743 -0.010 0.116 0.116
SCAH 0.715 0.153 0.271 0.224
SCAV 0.762 -0.020 0.118 0.116

Table 1: Soil Moisture Algorithms Performance Metrics

Table 1, MPDA exhibited the lowest correlation with SMOS
sm, whereas SCAV displayed the highest correlation. On
the other hand, USDA sm showed the lowest bias. This is
probably due to the fact that USDA is performing a linear fit
between co-located Aquarius and SMOS observations to re-
calibrate Aquarius brightness temperatures. Finally, Bayesian
algorithms Mean and MAP exhibited the lowest ubRMSE,
though very close to USDA and SCAV ubRMSE.

4. DISCUSSION

Several sm and τ retrieval algorithms for Aquarius/SAC-D
were implemented and contrasted over the Pampas Plains re-
gion in Argentina. Furthermore, a new sm and τ retrieval
algorithm that makes use of Bayesian inference was proposed
and its performance was also evaluated. As major advan-
tages, the BRA approach provides errors on the estimated
variables, enable to enter prior knowledge of the variables to
be retrieved and can manage uncertainties on the ancillary pa-
rameters. However, the main concern of this approach is its
time performance, that though it can be ease through sam-
pling methodologies such as MCMC, the runtime is still large
to drive operational global sm and τ retrievals.

Performance metrics for each retrieval algorithm were
derived using SMOS Level-2 datasets as benchmark prod-
ucts. One of the main issues that was observed during this
study was the sm dynamic range of each algorithm. Whereas
SMOS, MPDA, SCAH and SCAV displayed sm values as
high as 1m3/m3, USDA and Bayesian approaches saturate
at sm around 0.5m3/m3. USDA algorithm saturates sm
taking into account the field capacity (around 0.55m3/m3

depending on the soil texture), and Bayesian approach was
manually saturated at 0.5m3/m3 by assigning zero proba-
bility to sm higher than 0.5m3/m3 on the prior pdf. This
saturation of sm can be removed on the Mean and MAP
estimators by extending the prior domain of the MCMC. Ac-
cordingly, correlation, RMSE and bias of Mean and MAP sm
retrievals might improve significantly. Not only the saturation
might be removed, but also when ground truth sm values are
high (before saturation), restricting the pdfs domain of the
Bayesian approach results in biases toward the center values
of sm (around 0.25m3/m3).

Another important subject to point out is the low per-
formance of SCAH in contrast to SCAV. SCAH sm exhib-
ited a significant high bias and ubRMSE. If τ values input to
SCA are overestimated, then Tb changes are amplified on sm
changes, thus overestimating sm. Indeed, when comparing τ
values derived from SMOS, MPDA and Bayesian approaches
with τ values used as inputs to SCA (derived from MODIS
NDVI), τNDV I displayed highly increased values. Therefore,
polarized vegetation parameter b value should be considered,
probably using bH 6= bV (bH < bactual; bV = bactual) to
lower SCAH bias and errors. This will also result in changes
in the performance metrics of MPDA, Mean and MAP.
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