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1. INTRODUCTION

On-going and near-future Synthetic Aperture Radar (SAR)ll#a missions are expected to provide meaningful aneiym
information about soil condition over vast agriculturaids such as those of Argentina (Pampas Plain) and of the raétienwn
United States (corn-belt), leading to actual economic fisneegarding to seeding dates, irrigation strategies aod gield
forecasting. NASA's Soil Moisture Active and Passive (SMAH and Argentinean SAOCOM (www.conae.gov.ar) missions
have been specifically designed to develop surface soiltoveiproducts and they are scheduled for launch in Janudry 20
and late 2015, respectively. These missions will explo@rowave radar at L-band\(= 23cm) as sensing wavelength, which
demonstrated to be less sensitive to residue cover ovés soiface and to be more accurate on retrieving soil mastuan
other bands.

In addition to microwave radar, microwave radiometry ioasvell-established technique for remote sensing of soismo
ture. Combining passive and active observations providegatementary information contained in the surface emitysand
backscatter signatures, both correlated to soil dieleptoperties. When active and passive microwave informatie avail-
able at the same resolution, a Bayesian merging techniquéeaised to retrieve enhanced, combined active passive soil
moisture estimations from remotely-sensed microwaverobsens.

We present here a Bayesian active/passive methodologyioghwbil moisture estimations from passive microwave data i
used to constrain the estimation from active radar onesitfira preliminary soil moisture guess, provided active aasbjye
observations are made at the same resolution. This methgylekploits outstanding, rigorous IEM2M as forward modsl [
to describe radar rough-surface scattering of bare or slyavegetated soils and can be regarded as a benchmark 8Mas
active/passive soil moisture product over agriculturabl The capability of passive microwave measurements pooive
radar soil moisture predictions is demonstrated in thisspapth in-situ and airborne observations from Soil Moistéctive
Passive Validation Experiment 2012 (SMAPVEx12) field caigpa

2. COMBINED ACTIVE/PASSIVE BAYESIAN APPROACH

2.1. Bayesian theorem in the context of SAR products

The Bayesian approach presented here is based on the tavagiagion of the Bayes’ theorem. An expression for the condi
tional (“posterior”) probability of measuring a certairnt £ soil parameterss(ands) given measurements of backscattering
coefficientsz; andz; can be obtained from Bayes’ theorem

Py, z,(21, 22|€,5) Pes(e, s)
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wherePz, z, (21, 22|¢, s) is the probability of measuring a certain set,¢») of backscattering coefficients given measurements
of soil dielectric constart and RMS height (the “likelihood function”),Prg is the prior joint density function of ands and
P(z1, z2) (the “evidence”) is a global normalizing factor and it is fm@bability of a certain set:(,z2) to be measured. With
the likelihood and the prior at hand, the posterior is coragiy a point-by-point product of them.

Then, providing the conditional density function (1) is etxahe optimal unbiased estimator for the mean value thfat
has the minimum variance is the mean of (1),

by — // eP(e, s|z1, z2)deds 2
D

and similarly the squared standard deviatiog-] of this estimator is:
std[eb¥]? = // (e — e"W)2 P(e, 5|21, 22)deds (3)
D

where an explicit expression for (1) must be found in orderaiculate=*¥ and its standard deviation. The integration domain
D in (2) and (3) spans the same validity range than the forwardathwith respect tgz, s). The standard deviatiostd[**Y]

can be used as a measure of the eergr of the retrieved estimate®®?, so thate..; = std[**¥]. A number of error metrics
will be used to assess the performance of the retrieved &sgmmgainst ground-truth data [3].

2.2. Description of the methodology

A flowchart of the procedure adopted in this paper is showndnE An electromagnetic forward model is able to descritbe,

a certain level of accuracy, the interaction of the radas@ulith the soil and predicts how this amount of energy is firextiby
the dielectric and geometric properties of the target imiag back to the sensor. This depends on soil and system piaiame
The Integral Equation Model with multiple scattering ata®ed order, named as IEM2M [2], is the rigorous forward model
adopted in this paper. An initial grid of dielectric condtarand RMS height is used to generate outputs for HH and VV
copolarized intensity images. The Bayesian approach diesdia model for speckle noise and therefore can deal with the
residuary speckle noise after multilooking in a systemeaftiyy. The statistical properties of two multilooked polagimic
intensity images is described by a bivariate gamaz, (21, 22|C11, C22, 1, p.) ([4, Eq. 30]), whereCy; andCs, are the
predicted (expected) values of the forward modek the number of looks angl. is the correlation betwee#l; andZ,. The
likelihood function is then constructed on evaluating tligribution Pz, z, on the measured backscattering coefficieht,
andvv,, after multilooking, i.e.Py v v (hhpm, v0,,|Ci1, Ca2,m, pe).

The prior distribution describes the possible values dfdielectric constant and RMS height before SAR acquisition
takes place. In what follows, it will be assumed independdretweere ands, i.e. Pgs(e,s) = Pr(e)Ps(s). Two kind
of priors are taken into account (Fig. 1). If passive micregrbased soil moisture guess is not available, an unifoior pr
Pr ~ U(3,30) for ¢ is used instead. A normal distribution is used to descrileuticertainty around a mean valugof the
ground-based estimate Mathematically,Ps ~ N (us, 0s). The uncertainty, is arbitrarily set td).20u. Passive microwave
observations enable the use of soil moisture estimatiam the brightness temperature of the soil. The zero ordéantreel
transfer model RT-0 [5], is a rather simple physical modeldu® link the observed brightness temperature (Tb) witfaser
dielectric and geometric properties. The RT-0 is readilgitible by means of the Single Channel Algorithm (SCA) [Bhus,
the estimated soil moisture from passive V-polarized nvience measuremefii,y is used to center a normal pdf into the prior.
Finally, the posterior is built as the product of the likeldd function by the prior distribution. Dielectric constastimates
are computed from the posterior distribution as above rmaatl, and then converted into soil moisture using an engpiric
relationship from [7].
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Fig. 1. Flowchart for Bayesian Combined Active/Passive rettisgaeme. Symbol of a cross mark encircled indicates product
operation. Single line encircled indicates an 'Or’ statame

3. RESULTS

The active dataset is from NASA/JPL's full polarimetric lasid UAVSAR imagery acquired over southwest of Winnipeg,
Manitoba, Canada, during a 6-week period in June and Julg ROthe context of the Soil Moisture Active Passive Validati
Experiment (SMAPVEX) field campaign. The passive micronda&t comes from the Passive Active L-band Sensor (PALS).
Coincident with the acquisitions, several agriculturalsswith a variety of soil textures were sampled. The readeeferred

to [8] for a complete description of the dedicated field caigpa

Retrieved estimates for volumetric soil moisturg, against measured ground-truth data are shown in Fig. 2. ©n th
left, black squares are the estimates from the radar (3dtite and VV-measurements using priors Uniform and Normal
for € ands, respectively. Red squares indicates estimates fromveasscrowave data independently of the radar estimation.
(Brightness temperature were partly available for thereméidar dataset.) Red points within black markers inditetepassive
microwave-based soil moisture guess is available. Ernaribgground-truth data are computed from instrumental{gye@rror
and ground-based soil moisture variability following [9].

On the right of Fig. 2, the combined active/passive estimate shown. Crosses indicate radar estimates enhanced by
passive measurements, in the sense of replacing the Ungfdanby a Normal one with mean value given by the dielectric
constant estimate from SCA. The combined active/passitia@ion shows an overall well agreement with R/ SE =
0.081cn? /cm? and a higher sensitivity with correlation coefficient 0.62. An increase of the bias in the combined estimates
is also observed, since PALS instrument may introduce aredion bias. In anyway, the unbiased RMSE (UbRMSE) shows an
improvement fron.087cm? /cm? (only active) to0.068cm® /cm?® (combined).

4. CONCLUSION

When remotely-sensed active and passive microwave olig@ryaare available at the same resolution, a Bayesian mgrgi
technique can be used to retrieve radar soil moisture estinsaenhanced by a preliminary soil moisture guess frorsipas
microwave observations. Based on a field experiment over &ad/or sparsely-vegetated soilsSWC < 0.72kg/m?), an
overall improvement of the radar prediction is achievedmiuding information from passive microwave. Thus, adpassive
synergy is expected to produce an enhanced soil moistutkiprowith a better performance than each one separatelg. Th
methodology can be used as a benchmark to test global swedédamoisture estimates over agricultural lands prior tad-a
throughout-the seeding season.
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Fig. 2. Retrieved estimates for volumetric soil moistung against measured ground-truth data for bare or sparsggtated
soil VW C < 0.72kg/m?). (a) Uniform prior P. ~ U (3, 30) for dielectric constant and Normal priorPs ~ N (us, o) for
RMS heights, with the mean; determined by the ground-truth data. (b) Normal priorfarith n. given by the SCA retrieval
algorithm.
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