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1. INTRODUCTION

On-going and near-future Synthetic Aperture Radar (SAR) satellite missions are expected to provide meaningful and timely

information about soil condition over vast agricultural lands such as those of Argentina (Pampas Plain) and of the mid-western

United States (corn-belt), leading to actual economic benefits regarding to seeding dates, irrigation strategies and crop yield

forecasting. NASA’s Soil Moisture Active and Passive (SMAP) [1] and Argentinean SAOCOM (www.conae.gov.ar) missions

have been specifically designed to develop surface soil moisture products and they are scheduled for launch in January 2015

and late 2015, respectively. These missions will exploit microwave radar at L-band (λ = 23cm) as sensing wavelength, which

demonstrated to be less sensitive to residue cover over soil’s surface and to be more accurate on retrieving soil moisture than

other bands.

In addition to microwave radar, microwave radiometry is also a well-established technique for remote sensing of soil mois-

ture. Combining passive and active observations provides complementary information contained in the surface emissivity and

backscatter signatures, both correlated to soil dielectric properties. When active and passive microwave information are avail-

able at the same resolution, a Bayesian merging technique can be used to retrieve enhanced, combined active passive soil

moisture estimations from remotely-sensed microwave observations.

We present here a Bayesian active/passive methodology in which soil moisture estimations from passive microwave data is

used to constrain the estimation from active radar ones through a preliminary soil moisture guess, provided active and passive

observations are made at the same resolution. This methodology exploits outstanding, rigorous IEM2M as forward model [2]

to describe radar rough-surface scattering of bare or sparsely-vegetated soils and can be regarded as a benchmark to test SMAP

active/passive soil moisture product over agricultural lands. The capability of passive microwave measurements to improve

radar soil moisture predictions is demonstrated in this paper with in-situ and airborne observations from Soil Moisture Active

Passive Validation Experiment 2012 (SMAPVEx12) field campaign.

2. COMBINED ACTIVE/PASSIVE BAYESIAN APPROACH

2.1. Bayesian theorem in the context of SAR products

The Bayesian approach presented here is based on the bivariate version of the Bayes’ theorem. An expression for the condi-

tional (“posterior”) probability of measuring a certain set of soil parameters (ε ands) given measurements of backscattering

coefficientsz1 andz2 can be obtained from Bayes’ theorem

P (ε, s|z1, z2) =
PZ1Z2

(z1, z2|ε, s)PES(ε, s)

PZ1Z2
(z1, z2)

, (1)
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wherePZ1Z2
(z1, z2|ε, s) is the probability of measuring a certain set (z1,z2) of backscattering coefficients given measurements

of soil dielectric constantε and RMS heights (the “likelihood function”),PES is the prior joint density function ofε ands and

P (z1, z2) (the “evidence”) is a global normalizing factor and it is theprobability of a certain set (z1,z2) to be measured. With

the likelihood and the prior at hand, the posterior is computed by a point-by-point product of them.

Then, providing the conditional density function (1) is exact, the optimal unbiased estimator for the mean value ofε that

has the minimum variance is the mean of (1),

εbay =

∫∫
D

εP (ε, s|z1, z2)dεds (2)

and similarly the squared standard deviationstd[·] of this estimator is:

std[εbay]2 =

∫∫
D

(ε− εbay)2P (ε, s|z1, z2)dεds (3)

where an explicit expression for (1) must be found in order tocalculateεbay and its standard deviation. The integration domain

D in (2) and (3) spans the same validity range than the forward model with respect to(ε, s). The standard deviationstd[εbay]

can be used as a measure of the erroreest of the retrieved estimateεbay, so thateest = std[εbay]. A number of error metrics

will be used to assess the performance of the retrieved estimates against ground-truth data [3].

2.2. Description of the methodology

A flowchart of the procedure adopted in this paper is shown in Fig. 1. An electromagnetic forward model is able to describe,at

a certain level of accuracy, the interaction of the radar pulse with the soil and predicts how this amount of energy is modified by

the dielectric and geometric properties of the target in hisway back to the sensor. This depends on soil and system parameters.

The Integral Equation Model with multiple scattering at second order, named as IEM2M [2], is the rigorous forward model

adopted in this paper. An initial grid of dielectric constant ε and RMS heights is used to generate outputs for HH and VV

copolarized intensity images. The Bayesian approach includes a model for speckle noise and therefore can deal with the

residuary speckle noise after multilooking in a systematicway. The statistical properties of two multilooked polarimetric

intensity images is described by a bivariate gammaPZ1Z2
(z1, z2|C11, C22, n, ρc) ([4, Eq. 30]), whereC11 andC22 are the

predicted (expected) values of the forward model,n is the number of looks andρc is the correlation betweenZ1 andZ2. The

likelihood function is then constructed on evaluating the distributionPZ1Z2
on the measured backscattering coefficienthhm

andvvm after multilooking, i.e.PHHV V (hhm, vvm|C11, C22, n, ρc).

The prior distribution describes the possible values of soil dielectric constantε and RMS heights before SAR acquisition

takes place. In what follows, it will be assumed independence betweenε ands, i.e. PES(ε, s) = PE(ε)PS(s). Two kind

of priors are taken into account (Fig. 1). If passive microwave-based soil moisture guess is not available, an uniform prior

PE ∼ U(3, 30) for ε is used instead. A normal distribution is used to describe the uncertainty around a mean valueµs of the

ground-based estimates. Mathematically,PS ∼ N(µs, σs). The uncertaintyσs is arbitrarily set to0.20µs. Passive microwave

observations enable the use of soil moisture estimations from the brightness temperature of the soil. The zero order radiative

transfer model RT-0 [5], is a rather simple physical model used to link the observed brightness temperature (Tb) with surface

dielectric and geometric properties. The RT-0 is readily invertible by means of the Single Channel Algorithm (SCA) [6].Thus,

the estimated soil moisture from passive V-polarized microwave measurementTbV is used to center a normal pdf into the prior.

Finally, the posterior is built as the product of the likelihood function by the prior distribution. Dielectric constant estimates

are computed from the posterior distribution as above mentioned, and then converted into soil moisture using an empirical

relationship from [7].



Fig. 1. Flowchart for Bayesian Combined Active/Passive retrieval scheme. Symbol of a cross mark encircled indicates product
operation. Single line encircled indicates an ’Or’ statement.

3. RESULTS

The active dataset is from NASA/JPL’s full polarimetric L-band UAVSAR imagery acquired over southwest of Winnipeg,

Manitoba, Canada, during a 6-week period in June and July 2012 in the context of the Soil Moisture Active Passive Validation

Experiment (SMAPVEx) field campaign. The passive microwavedata comes from the Passive Active L-band Sensor (PALS).

Coincident with the acquisitions, several agricultural soils with a variety of soil textures were sampled. The reader is referred

to [8] for a complete description of the dedicated field campaign.

Retrieved estimates for volumetric soil moisturemv against measured ground-truth data are shown in Fig. 2. On the

left, black squares are the estimates from the radar (active) HH- and VV-measurements using priors Uniform and Normal

for ε ands, respectively. Red squares indicates estimates from passive microwave data independently of the radar estimation.

(Brightness temperature were partly available for the entire radar dataset.) Red points within black markers indicatethat passive

microwave-based soil moisture guess is available. Error bars in ground-truth data are computed from instrumental (probe) error

and ground-based soil moisture variability following [9].

On the right of Fig. 2, the combined active/passive estimates are shown. Crosses indicate radar estimates enhanced by

passive measurements, in the sense of replacing the Uniformprior by a Normal one with mean value given by the dielectric

constant estimate from SCA. The combined active/passive estimation shows an overall well agreement with anRMSE =

0.081cm3/cm3 and a higher sensitivity with correlation coefficientr = 0.62. An increase of the bias in the combined estimates

is also observed, since PALS instrument may introduce a calibration bias. In anyway, the unbiased RMSE (ubRMSE) shows an

improvement from0.087cm3/cm3 (only active) to0.068cm3/cm3 (combined).

4. CONCLUSION

When remotely-sensed active and passive microwave observations are available at the same resolution, a Bayesian merging

technique can be used to retrieve radar soil moisture estimations enhanced by a preliminary soil moisture guess from passive

microwave observations. Based on a field experiment over bare and/or sparsely-vegetated soils (VWC < 0.72kg/m2), an

overall improvement of the radar prediction is achieved on including information from passive microwave. Thus, active/passive

synergy is expected to produce an enhanced soil moisture product, with a better performance than each one separately. This

methodology can be used as a benchmark to test global surfacesoil moisture estimates over agricultural lands prior to –and

throughout– the seeding season.
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Fig. 2. Retrieved estimates for volumetric soil moisturemv against measured ground-truth data for bare or sparsely-vegetated
soil (VWC < 0.72kg/m2). (a) Uniform priorPε ∼ U(3, 30) for dielectric constantε and Normal priorPS ∼ N(µs, σs) for
RMS heights, with the meanµs determined by the ground-truth data. (b) Normal prior forε with µε given by the SCA retrieval
algorithm.
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