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ABSTRACT 

In this work two archaea microorganisms (Haloferax volcanii and Natrialba 

magadii) used as biocatalyst at a microbial fuel cell (MFC) anode were evaluated. Both 

archaea are able to grow at high salt concentrations. By increasing the media 

conductivity, the internal resistance was diminished, improving the MFCs performance. 

Without any added redox mediator, maximum power (Pmax) and current at Pmax were 

11.87 / 4.57 / 0.12 µW cm
-2

 and 49.67 / 22.03 / 0.59 µA cm
-2

 for H. volcanii, N. 

magadii and E. coli, respectively. When neutral red was used as redox mediator, Pmax 

was 50.98 and 5.39 µW cm
-2

 for H. volcanii and N. magadii respectively. In this paper 

an archaea MFC is described and compared with other MFC systems; the high salt 

concentration assayed here, comparable with that used in Pt-catalyzed alkaline 

hydrogen fuel cells will open new options when MFC scaling-up is the objective, 

necessary for practical applications. 
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1. Introduction 

 

A microbial fuel cell (MFC) is a device that converts chemical energy stored in 

organic substances or other reduced compounds into electrical energy by using 

microorganisms as biocatalysts.  MFCs have had a long history in the academic world, 

from the first description of the phenomena by Michael Cresse Potter (1911), when he 

placed a platinum electrode into cultures of yeast or E. coli and showed that a potential 

difference was generated. Later, MFCs were rediscovered by Benetto (Benetto, 1984; 

Allen and Benneto, 1993).  

 

Currently, there are several factors limiting the performance of MFCs and 

inhibiting the progress of applying MFCs in practice. These limiting factors include the 

activity of biocatalysts (microorganisms), electrodic reactions (both in cathode and 

anode), internal resistance and reactor design, among others. In the last 10 years, a new 

paradigm about extracellular electron transfer without the assistance of extracellular 

(added or produced by bacteria) redox mediators (as flavins) have raise into 

consideration new limiting factors and mechanisms. Direct electron transfer via outer-

surface c-type cytochromes, long-range electron transfer via microbial nanowires and 

electron flow through a conductive biofilm matrix containning cytochrome have been 

proposed (Baron et al, 2009; Lovley DR, 2011).  Besides, the chemical and physical 

working conditions of MFCs (at least at the bio-anode compartment) are dictated by the 

nature of the biological component, a key element of MFCs.  Depending on the 

microorganism and growth conditions, changes in the external chemical and physical 

conditions can bring about alterations in several primary physiological parameters, 

inhibiting growth and metabolism, and eventually causing the death of the 

microorganisms used as biocatalysts at the anode. 
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In the last years, several MFCs designs have been assayed, in which multiple 

combinations of electrode material, microorganism and other parameters were 

evaluated, as discussed in recently published reviews (Rabaey and Verstraete, 2005; 

Bullen et al., 2006;  Davis and Higson, 2007; Debabov, 2008; Osman et al., 2010; 

Lovley, 2011). 

A previous study (Jang et al., 2004) showed that an MFC could be operated 

increasing the salt concentration at the cathode compartment, without affecting the 

survival of the microbial communities at anode. The study showed that when NaCl 

concentration at the cathode was increased from 0.1 to 1 M, the produced current 

increased from 3.5 up to 7.7 mA. Also, Liu et al. (2005) proved that by increasing the 

anode ionic strength (IS) from 100 to 400 mM of NaCl, the internal resistance (Rint) was 

lowered and the maximum power density was increased. However, electricity 

production at MFCs, as far as we know, has been only previously linked to the 

metabolic activity of only very few extremophiles, salt-tolerant microorganisms. 

Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus 

selenitireducens) was previously used, with a maximum power of 18.5 mW m
-2

 (Miller 

and Oremland, 2008). Also, an archaea-based MFC was suggested, as a probe of 

concept for a device, based on detection of metabolic reductive process, presented as a 

life-searching device (Abrevaya el al., 2010). 

 

The objective of this research was to investigate the performance (by means of 

polarization curves) of halophile archaea used at MFC anode and the effect of high salt 

concentration both at anode and cathode compartments. We hypothesize that such 

increase at the media conductivity would improve the MFCs performance (electricity 

production) by reducing Rint, among other possible factors. To achieve this, two 

halophilic archaea were used and the results obtained were compared with a bacterial 

strain, using an identical hardware (H. volcanii, N. magadii and E. coli, respectively). E. 
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coli was used previously for other authors in mediated and non-mediated MFCs 

(Ieropoulos et al., 2005) and it is worthy of comparison studies.  

 

We evaluate these microorganisms at non-mediated (more precisely, non-added 

mediator) and at mediated MFCs, where a mediator (neutral red, NR) was used to 

improve electron transport between the oxidative microbial metabolism and the anode 

surface. Also, the use of NR allows us to compare the different MFCs in a condition 

where the current is not limited by naturally occurring mediators or mediator-like 

substances that could be presented in the culture media produced by the microbial 

strains used. NR was used because it has a redox potential of -325 mV, similar to that of 

NADH (-320 mV vs. SHE), and a structure similar to that of flavins. Its redox potential 

suggests that NR could interact with metabolic steps prior to respiratory chains 

(McKinlay and Zeikus, 2004). MFCs described here are based on plain Toray
®

 carbon 

paper electrodes, and Nafion
®

 was used as a proton transporter membrane. 

 

We show in this work that an archaea microorganism can be used as biocatalyst 

in MFCs, and electricity generation is possible. Furthermore, the effect of high 

conductivity in both current production and internal resistance is shown. Previously 

published work where biofilm-forming electrogenic bacteria was used, show serious 

scaling-up limitations. Here we open new possibilities for the design and operation of 

MFCs.  

 

The new and amazing possibilities of H. volcanii and other extreme microbial 

physiologies could be a key to increase the maximum current density and power 

obtained with MFCs. The use of an added mediator allowed us to compare both ionic 
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strength conditions; for potential applications many naturally occurring or microbially 

synthesized compounds can serve as electron carriers.  

 

2. Experimental 

 

2.1. Microbial strains and microbiological methods  

 

H. volcanii strain DS70 (DS2 cured of pHV2, Wendoloski et al., 2001) was 

grown aerobically at 35 °C, until an OD (600 nm) of ca. 1 was reached. Growth medium 

Hv-YPC contains (g L
-1

), yeast extract (5), peptone (1), casaminoacids (1), NaCl (144), 

MgSO4.7H2O (21), MgCl.6H2O (18), KCl (4.2), CaCl2 (0.35), and Tris-HCl (1.9); pH 

was adjusted to 7.0.  

 

N. magadii (ATCC 43099) was grown aerobically at 37 °C with shaking at 200 

rpm. Growth medium composition was (g L
-1

): yeast extract (5), NaCl (200), Na2CO3 

(18.5), Sodium citrate (3), KCl (2), MgSO4.7H2O (1), MnCl2.4H2O (3.6 x 10
-4

), 

FeSO4.7H2O (5 x 10
-3

), with pH adjusted to 10 (modified from Tindall et al., 1984). The 

optical density of the cultures was spectrophotometrically measured at λ=600 nm until it 

reached an OD of ca. 0.5. 

 

Escherichia coli K-12 derived strain (ATCC 15153) was used. It was grown 

aerobically at 37 ºC until an OD (660 nm) of ca. 1.0 is reached. Tryptic Soy Broth 

(DIFCO) was used as culture media, dissolving 30 g in 1 L of distilled water, and 

adjusted to pH 7.2 if necessary. The broth prepared in this way contains (g L
-1

), 

pancreatic digest of casein (17), enzymatic digest of soybean meal (3), NaCl (5), 

K2HPO4 (2.5) and glucose (2.5).  
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2.2. Microbial fuel cell hardware 

 

The MFC used had two compartments with a volume of one-liter, separated by 4 

cm
2
 of Nafion® 115 membrane (from FuelCellStore, San Diego, CA). The cell was 

made on 6 mm thick transparent acrylic, and had a lid with six 0.6 cm diameter holes, 

allowing connections for electrodes, gas bubbling and sample removal / reagent 

addition. Before inoculation with the microbial biocatalyst, the anolyte solution was 

purged with N2 for 20 min in order to remove oxygen. The catholyte solution was 

bubbled continuously with air to allow mixing. Electrode separation was 2 cm. Before 

its use, the cell was sterilized by immersion overnight into 10 % v/v H2O2, followed by 

distilled (double osmosis) sterile water rinse. 

 

2.3. Electrodes 

 

MFC cathode and anode were made of plain carbon paper TGP-H-030 (Toray
®

, 

Tacoma, WA), with a density of 0.40 g cm
-3

 and a porosity of 80%. The geometrical 

area of anodes and cathodes was 10 cm
2
. Before their use, they were cleaned by 

consecutive immersion during 1 h in 1 mol L
-1

 HCl and NaOH, rinsed exhaustively and 

stored in distilled sterile water. 

 

2.4. Catholyte and anolyte composition 

 

Haloferax volcanii anolyte was Hv-YPC growth medium. In some experiments, 

final concentration of 0.1 mM in NR was used as redox mediator. Ionic strength (IS) 

was ca. 2.68 M. Catholyte was modified H. volcanii growth medium Hv-YPC; yeast 

extract, peptone and casaminoacids were not included; it contained ferricyanide (8.4 g 

L
-1

). IS was ca. 2.72 M. 
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Natrialba magadii anolyte was N. magadii grown medium. In some 

experiments, final concentration of 0.1 mM in NR was used as mediator. IS was ca. 3.63 

M. Catholyte was modified N. magadii growth medium; yeast extract was not included. 

Ferricyanide concentration was 8.4 g L
-1

. IS was ca. 3.67 M. 

 

E. coli anolyte contained (g L
-1

), glucose (5), Na2HPO4 (6), yeast extract (5), 

KH2PO4 (3), NH4Cl (1), NaCl (0.5), MgSO4·7H2O (0.12), and CaCl2 (0.01) dissolved in 

distillated water, pH adjusted to 7.0. In some experiments, final concentration of 0.1 

mM in neutral red (NR) was used as mediator. Ionic strength was ca. 92.0 mM. 

Catholyte contains (g L
-1

), Na2HPO4 (6), KH2PO4 (3), NaCl (0.5) and ferricyanide (8.4); 

pH was adjusted to 7.0. IS was ca. 125.0 mM. 

 

2.5. MFC set-up and operation  

 

The MFC was operated at 37 ºC with continuous air purging (cathode) to 

provide agitation. N2 purging (anode) was used during measurements and 20 min before 

measurements or start-up. After purging, N2 was used to provide agitation; no 

mechanical or magnetic stirring was used. The pellet obtained by centrifugation of 400 

(E. coli and H. volcanii) or 800 (N. magadii) mL culture was used as inoculum (start-

up) at anode compartment. The inoculated MFCs were allowed to stabilize overnight, 

with an external resistor (RL) of 4.7 kΩ, used in continuous operation. Before doing a 

voltammetric or polarization curve studies, the RL was disconnected 6 h to allow the 

system to reach open circuit (OC, without any external resistor) potentials. The 

experiments were usually carried out for 7 days. The polarization curves presented here 

represent typical experiments acquired when the OC and Pmax reach stable and elevated 

(plateau) values.  
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2.6. MFC analysis 

 

 
In order to study the behavior of the MFC and its electrical characteristics, 

measurements were carried out, intercalating different external resistors (RL). 

Polarization curves were performed using RLs from 100 kΩ to 2.3 Ω; the potential E 

was measured by a digital tester with PC recording capabilities (Fluke 289). Current (I) 

production was calculated using the Ohm’s law (I=V R
-1

), where V is the voltage and R 

the resistance. Current density, j (A cm
-2

), was calculated as j=I S
-1

, where S is the 

geometrical (projected) surface area of the anode electrode. Power density, P (W cm
-2

), 

was calculated as P= I V S
-1

. Internal resistance (Rint) was calculated from the slope of 

plots of V and I , using V=Ecell - I Rint, where Ecell is the electromotive force of the cell 

(Logan, 2008). We eliminate the data from the regions I and III (where polarization 

behavior is dominated by activation potential and mass transfer overpotentials) to 

construct quasi-linear plots to compute Rint. 

 

2.7. Electrochemical studies 

 

Cyclic voltammetry at low scan rate (1 mV s
-1

) using a standard three electrode 

system was used to search for possible redox mediators at H. volcanii culture media or 

microbial culture; phosphate buffer (100 mM, pH 7) was used so as to  investigate 

possible redox substances at Toray paper electrode. The window potential applied was 

from -400 to +500 mV; in order to obtain voltammograms in static conditions, N2 was 

bubbled for only 10 min; following another 10 min (quiet time) the CVs were initiated.    

A plain Toray paper anode was used as working electrode (WE), stainless steel 

wire as counter electrode (CE) and Ag/AgCl (KCl saturated) as reference electrode 

(RE). In order to investigate the NR reaction at the Toray electrodes, at the high IS used 
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and in presence of H. volcanii, CVs between -700 and +700 mV were done. N2 was 

used to remove oxygen; CVs at 50, 100, 200 and 400 mV s
-1

 were made. All CVs were 

carried out in quiet solutions; before the beginning of the experiment, the WEs were 

poised for 1 min at the initial potentials. We used a potentiostat TEQ 03 (Ing. Sobral, 

La Plata, Argentina), with data acquisition and control via proprietary software. 

 

3. Results and Discussion 

 

3.1. Polarization and power curves 

 

Figure 1 shows typical polarization and power curves for two of the three strains 

evaluated; we present four independent experiments with each strain (different 

inoculations) for H. volcanii and E. coli with and without an added redox mediator 

(neutral red). Numerical results can be observed at Table 1. When H. volcanii was used 

as anodic biocatalizer maximum power density (Pmax) without added mediator was 

11.87 ± 0.54 µW cm
-2

, almost a 100 fold increase with respect to E. coli. We applied an 

independent two-sample t-Test to compare the Pmax obtained with both microbial 

strains, which provides evidence that the means are significantly different at p ≤ 0.01, 

showing that the two strains produce different power output. The same trend was 

observed when current density (j) was compared, and values of 0.58 ± 0.16 and 49.67 ± 

0.81 mA cm
-2

 were obtained for E. coli and H. volcanii, respectively; j values presented 

are the ones obtained at Pmax, as customary; data presented are averaged ±SD(n-1).  

Also in Table 1, we show the effect that NR addition has. Here the maximum 

power increases approximately five times in both E. coli and H. volcanii MFCs, 

showing that charge transport between microbial cells and electrodes could be improved 

by an external mediator 
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 Furthermore, in Table 1 our results are compared to the ones published by other 

authors; our results show that P and I produced by our mediated archaea-based system 

was exceptionally superior to other mediated systems, reaching values approaching the 

highest standards established recently by non-mediated biofilm-based MFCs (Ishii et al., 

2008). Although our non-mediated MFCs could be comparable concerning their 

electrical performance with other MFCs designs (Table 1), several critical factors 

(geometrical design, electrode size, membrane, etc.) forbid a direct comparison with 

other published data. However, when comparisons are made using the results obtained 

in this work, by means of the same MFC hardware, valid conclusion can be elaborated. 

It must be noted that Rint (one important performance limiting factor) is strongly 

influenced by MFC set-up, geometry, electrodes, etc, and that the data presented by 

other authors are only partially comparable. 

Some authors have obtained very interesting results for axenic cultures; Rabaey 

et al., 2005, reported a maximum of 88 mW m
-2

 for P. aeruginosa without added 

mediator (this bacterium produces pyocyanin, which in this work is reported to be 

necessary for efficient electron transfer). Also, a maximum of 91 mW m
-2

 for E. coli 

with redox mediator has been reported (Park et al. 2003). However, we must note that 

the comparison between different MFC set-ups is only partially accurate. E. coli in the 

set-up used by Park et al. produces about 19 times more power that in ours, so we can 

assume that this difference is related mainly to the set-up, the effect of a Mn
4+

-graphite 

anode and that a Fe
3+

-graphite cathode could be in part responsible for that. We 

hypothesize that, in such optimized MFC, H. volcanii could produce higher power 

densities. 

  We show that by adding a soluble mediator to halophile archaea (H. volcanii) 

MFCs performance is improved almost a 100 times with respect to a non-halophilic 

bacterium (E. coli). The co-culture of mediator producing halotolerant/halophile 
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bacteria and halophile archaea (or other combinations) could produce a MFC system 

competitive with regard to the biofilm based ones.   

 

Complementary work was done using an haloalkaliphilic archaea at extreme pH 

(pH = 10), N. magadii (Figure 2 and Table 1). In this experiment, 800 mL of N. magadii 

culture was used as anodic microbial suspension; polarization curves were measured 

after 2, 24 and 48 h. Then an external mediator was added at 0.1 mM final 

concentration, and a final polarization curve was measured after 4 h. The absorbance of 

the anodic microbial suspension was 0.407, 0.479 and 0.547 for 2, 24 and 48 h, 

respectively; the experiment show that Pmax increased from 1.01 to 1.92 and 4.57 µW 

cm
-2

 as incubation time and absorbance increased. The increase in current and power 

production is likely related to the metabolic behavior of the archaea cells, given that the 

absorbance increased only slightly. The addition of an external mediator in this alkaline 

system (pH =10) slightly increased the values obtained previously without redox 

mediator. Using this system, it could be possible that other current limitations occur (as 

proton availability) which are stronger limitation to current production; also the 

differential membrane/metabolic characteristics of N. magadii could be responsible for 

this effect.  Remarkably, the power and current production in N. magadii, although it 

was the highest IS used in this work, was (without NR) ca. half of the obtained with H. 

volcanii. This effect could be related to the different apparent ionic mobility of H
+
 in 

water, which is about 6–7 times more than that of Na
+
, (Wraight, 2006). Given the 

alkaline pH used in this experiment (pH = 10) and the high NaCl concentration (200 g 

L
-1

), Na
+
 must be important in charge transfer processes both inside and outside the 

Nafion membrane. 

Here we compared three microbial strains using an identical hardware, 

demonstrating that the power and current were increased, and Rint decreased when high 

IS and a halophile microorganism were used. The use of halophilic archaea as MFC 
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anode biocatalyst improves the current and power. This is probably an effect of the 

lower internal resistance of the halophilic, no mediator-added MFC based on H. volcanii 

(ca. 447 Ω).  

Probably these effects mainly depend on the anolyte and catholyte IS, and are 

poorly related to the microbial physiology of the microbial strains used, given the low 

growth and metabolic rates of H. volcanii, when compared with E. coli. Results 

obtained with N. magadii also show a positive effect of increased IS, but a negative 

effect of alkaline pH (pH = 10) are possibly related to the different mobility of the ionic 

charge transporters at the anodic microbial suspension. However, more detailed 

experiments involving other halophile archaea are necessary to probe this hypothesis. 

When mediated systems were compared, the effect of NR was important with H. 

volcanii and less notorious for N. magadii cells; it is possible that NR works better as 

electron shutter for H. volcanii than for N. magadii, but we do not have enough data to 

speculate about this phenomenon.  Therefore, experiments involving other documented 

microbial mediators (methylene blue, humic acid) could be also worthy to understand 

the difference between the two halophilic archaea assayed here.  

 

 

3.2. Internal resistance 

 

Internal resistance (Rint) is a key performance driver of fuel cells (Barbir, 2005). 

In mediated MFCs, ohmic resistance (RΩ) is usually the most important contributing 

factor to Rint. The three sources of ohmic voltage loss are: (a) resistance to ion migration 

within the electrolyte, (b) resistance to electron transport within the fuel cell 

components (electrodes, gas diffusion layer, current collectors), and (c) contact 

resistances (Logan, 2008). The salt concentration we used was comparable with alkaline 

fuel cells, were 6.6 M KOH is habitually used (Burchardt et al., 2002), allowing very 
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low Rint (less than 1 Ω cm
-2

). The increase of NaCl is generally used at the electrolyte to 

improve the mass transfer of charged particles (Gil et al., 2003). The increase in the fuel 

cell performance a H. volcanii seems to be related to the increased mass transfer of 

charge transporters and to the increased proton availability in the cathode (pH decrease 

from 7.0 to 5.9 in H. volcanni MFC); using marine water and sediment, MFCs were 

reported to have better performance when compared to wastewater based ones (low IS), 

as reported previously (Tender et al., 2002; Bond et al., 2002).  The effect of increased 

ionic strength was also assayed by Liu (Liu et al., 2005), where the ionic strength was 

increased from 100 to 400 mM, showing a noticeable power increase at high IS.  

 

Electricity production at MFCs has been only previously linked to the metabolic 

activity of only very few salt-tolerant bacteria (Miller and Oremland, 2008), by using 

arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (ML, 

Bacillus selenitireducens), and salt-saturated Searles Lake, CA (SL, strain SLAS-1); 

when pure culture bacteria were used, very low current was obtained for both strains, 49 

and 59 µW m
-2

, respectively. When the bacteria were assayed at MFC together with 

lake sediment, which could have some natural occurring redox mediator, significantly 

more power was produced. Also, in other experiments, they show that MFCs with ML 

sediment more power is produced (18.5 mW m
-2

, salinity 90 g L
-1

) than with SL 

sediment (1.2 µW m
-2

, salinity 346 g L
-1

). Although these results appear not to be 

consistent with our hypothesis (high power production at high salinity/IS), the highest 

power production at Mono lake is consistent with the following facts: microbial 

activities were greater in Mono Lake, B. selenitireducens grows faster than strain 

SLAS-1, and the presence of inorganic electron donors, especially sulfide, in Mono 

Lake sediment. Also, the presence in ML of a wider range of anaerobic bacteria capable 

of efficiently transferring electrons to the anode could be possible.  
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The physical design of non-mediated, biofilm-based MFCs, where the distance 

between bioelectrochemical reactions and the anode is minimal (these reactions 

occurring mainly at the biofilm layer) allow lower Rint and higher currents. At the high 

salt concentrations used here we achieved non-mediated (non-added mediator) and 

mediated MFCs with Rint comparable with the previously published work (Table 1). Our 

MFCs are expected to have relatively high Rint, considering the distance between 

electrodes and the presence of a Nafion membrane; high IS and neutral or acidic pH 

show an effective way to improve MFC performance, lowering Rint considerably; also, 

the incorporation of NR have the same effect, at normal or high IS (Table 1). At pH 10, 

the effect over Rint was less notorious, perhaps related to the lower proton availability. 

 

The Rint in mediated MFCs, as the ones used here (dual-chamber, plain carbon 

electrodes, Nafion membrane) are usually in the kΩ range (Table 1, E. coli, Ieropoulos 

et al., 2005). However, using high IS in combination with the halophile H. volcanii, we 

were able to obtain values compared to the ones obtained in non-mediated MFCs. But 

any comparison is in some way obscured by the high influence MFC design has over 

the majority of described performance factors, including internal resistance. To 

overcome this problem, we compare our archaea MFC with respect to a more widely 

studied E. coli MFC.  

 

3.3. Anode and cathode potentials and pH 

 

When the two halophilic archaea MFCs investigated here are compared, better 

performance could be expected to match with N. magadii anodes, given the highest IS 

of the anolyte and catholyte solutions; instead, its performance was significantly poor. 

This effect was also observed recently (Veer Raghavulu et al., 2009), where the effect 

of pH 6, 7 and 8 was assayed, finding lower Pmax at alkaline conditions (pH = 8), and 
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higher at acidic conditions. This phenomenon was attributed to the effective 

extracellular e
-
 transfer at acidophilic pH compared to basic operations, or well related 

to a higher activity of intracellular e
-
 carriers. Also, Akiba et al. (1987) found 10 times 

less current when using alkaline microorganisms, with agree with our data (Akiba et al., 

1987). But He et al. (2008) found better performance at pHs 8-10, atributed to the 

cathodic reaction (air cathode), that was improved by increasing pH; in the mentioned 

work, the electrochemical impedance spectroscopy data demonstrated that the 

polarization resistance of the cathode was the dominant factor limiting power output. In 

our set up, by using a ferricyanide cathode we assure that the cathode and cathode 

related reactions are not limiting the current and power production, allowing us to center 

our study at the anode reactions. Given the described conditions, probably the low 

performance of N. magadii MFC (when compared with H. volcanii) could be related to 

the low H
+
 availability at pH 10 or to the biology of this archaea (metabolism, enzymes, 

membrane characteristics), or both. 

 

The potentials of anode and cathode were measured with respect to a saturated 

Ag/AgCl reference electrode for H. volcanii MFC; when measured at OC or connecting 

RLs of 1195, 100.1 and 11.7 Ω, Ea (anodic peak potential) was -198, -140, 52 and 191 

mV; and Ec (chatodic peak potential) was 300, 301, 274 and 239 mV. The data showed 

that anodic limitations are more important when j was increased, an effect that was 

observed previously (Jadhav and Ghangrekar, 2009). The pH values remain almost 

constant in the E. coli and N. magadii MFCs, but in the H. volcanii MFC the pH 

diminished during the first 24 h, reaching a value of 5.9, both at the anode and cathode 

compartments. During the anaerobic incubation, the accumulation of organic acids 

produced by the microbial strains assayed is expected, but a pH change was only 

evident in H. volcanii MFC. Probably, the buffer capacity at this MFC (lower than in E. 

coli MFC) was not enough to avoid pH changes. 
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3.4. Cyclic voltammetry studies 

 

“Electrochemical studies are usually carried out using thoroughly cleaned glass 

material, mili-Q water and high purity metallic electrodes. When low-purity carbon 

electrodes and complex media, including living microbial cells, are electrochemically 

studied, the data obtained have inevitably more uncertainty, and, in some aspect, must 

thus be considered speculative. We evaluated our data following classical CV 

interpretations; comparing the results obtained using plain Toray paper electrodes at 1 

mV s
-1

 on plain phosphate buffer, H. volcanii culture media and H. volcanii culture, 

without added NR (Figure 3), it can be seen that both have a redox couple with an 

anodic peak (Ea) at ca. 128 mV, and a mid-point potential of ca.100 mV (Ea + Ec / 2). 

This couple is apparently reversible, given that the anodic and cathodic currents are ca. 

2.55 µA, and the potential difference between these two peaks are ca. 58 mV, (∆Ep=Ea-

Ec); both are reversibility criteria for one electron reaction. In this region, the plain 

buffer CV also shows an anodic peak at ca. 148 mV. These peaks present in all the CVs 

in Figure 3 may be related to material adsorbed or included at Toray paper electrodes, 

given that this material is relatively “dirty” when compared, e.g., with glassy carbon, a 

more pure electrochemical-grade electrode material. Plain buffer CV does not show any 

cathodic peak; also, this voltammetry does not show any other feature at negative 

potentials. H. volcanii culture also shows a second cuasi-reversible redox couple, with 

an Ea at ca. -264 mV, mid-point potential of ca. -300 mV, and a ∆Ep of ca.71 mV.  At 

media and buffer CV, this redox couple does not seem to be present. This quasi-

reversible couple could correspond to a redox active pigments, redox active proteins or 

other substances produced by H. volcanii during growth and excreted/secreted actively 

by the cells, or else released from dead cells. The available information is insufficient to 

determinate their nature. 
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Besides, the sterile medium show some, less evident, redox couple at the same 

potentials; this means that, although in the experiments no NR was added, the current 

produced, at least in part, is probably assisted by chemical mediators. Other authors 

have found that quasi-reversible couples at CV increased with incubation time, related 

probably to secreted or biofilm-accumulation of electrochemical mediators (Cercado-

Quezada et al., 2010). These mediators, if produced at limited quantities at H. volcanii 

MFCs, probably limited the power and current produced, as evident when NR was 

incorporated. 

 

The current observed at non-mediated H. volcanii MFCs are probably related to 

this electroactive substance, or with other compound in the media; sulfate is important 

in the culture media (21 g L
-1

), and it is well known sulfur compounds are naturally 

present mediators at for example sedimentary MFCs. Also Mn and Fe compounds have 

been proposed as mediators (Lowy et al., 2006). We do not have enough information to 

assign these peaks to a single redox substance, but it is evident that the current 

production in H. volcanii is assisted by external mediators. During H. volcanii growth, a 

redox soluble mediator could be produced; this strain produces carotenoid pink 

pigments, which are proposed as a shield against ultraviolet light. Haloferax volcanii 

contained 0.04% carotenoids of the dry wt. (Roslashnnekleiv and Liaaen-Jensen, 1995). 

Some of these pigments could have redox properties and could be responsible for the 

peaks observed with a midpoint potential of -296 mV. Endogenous mediators can be 

produced by biofilm growing bacteria, as demonstrated recently by Marsili (Marsili et 

al., 2008) where flavins secreted to the growth media for Shewanella are responsible at 

least for a part of the charge transfer to the electrode, phenomena also reported by other 

authors for the same bacteria (von Canstein et al., 2008). 
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The behavior of NR over Toray paper electrodes and high IS was also 

investigated; CVs performed after 10 min of N2 purge are shown at Figure 4. The NR 

present at the H. volcanii growing media show a quasi-reversible behavior, with a 

midpoint potential of -442 mV; previous studies (Park and Zeikus, 2000) have shown a 

value of -524 mV (both vs. Ag/AgClsat) using fine woven graphite felt as electrodes 

and “normal” (ca. 100 mM) IS conditions.  

 

4. Conclusions 

 

In microbial fuel cells (MFCs), the anode contains microorganisms capable of 

oxidizing organic material and releasing electrons and protons. While hydrogen fuel 

cells use high conductive electrolytes, almost all the work published in MFCs field has 

been limited so far to relatively low ionic strength anodic microbial suspensions, given 

the concentration limits which were imposed by the physiology of the microorganisms 

used.  

 

Internal resistance (Rint) is a key performance driver of fuel cells (Barbir, 2005). 

In mediated MFCs, ohmic resistance (RΩ) is usually the most important contributing 

factor to Rint. The three sources of ohmic voltage loss are: (a) resistance to ion migration 

within the electrolyte, (b) resistance to electron transport within the fuel cell 

components (electrodes, gas diffusion layer, current collectors), and (c) contact 

resistances (Logan, 2008). The salt concentration we used was comparable with alkaline 

fuel cells, were 6.6 M KOH is habitually used (Burchardt et al., 2002), allowing very 

low Rint (less than 1 Ω cm
-2

). The increase of NaCl is generally used at the electrolyte to 

improve the mass transfer of charged particles (Gil et al., 2003). The increase in the fuel 

cell performance a H. volcanii seems to be related to the increased mass transfer of 

charge transporters and to the increased proton availability in the cathode (pH decrease 
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from 7.0 to 5.9 in H. volcanni MFC); using marine water and sediment, MFCs were 

reported to have better performance when compared to wastewater based ones (low IS), 

as reported previously (Tender et al., 2002; Bond et al., 2002).  The effect of increased 

ionic strength was also assayed by Liu (Liu et al., 2005), where the ionic strength was 

increased from 100 to 400 mM, showing a noticeable power increase at high IS.  

 

Electricity production at MFCs has been only previously linked to the metabolic 

activity of only very few salt-tolerant bacteria (Miller and Oremland, 2008), by using 

arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (ML, 

Bacillus selenitireducens), and salt-saturated Searles Lake, CA (SL, strain SLAS-1); 

when pure culture bacteria were used, very low current was obtained for both strains, 49 

and 59 µW m
-2

, respectively. When the bacteria were assayed at MFC together with 

lake sediment, which could have some natural occurring redox mediator, significantly 

more power was produced. Also, in other experiments, they show that MFCs with ML 

sediment more power is produced (18.5 mW m
-2

, salinity 90 g L
-1

) than with SL 

sediment (1.2 µW m
-2

, salinity 346 g L
-1

). Although these results appear not to be 

consistent with our hypothesis (high power production at high salinity/IS), the highest 

power production at Mono lake is consistent with the following facts: microbial 

activities were greater in Mono Lake, B. selenitireducens grows faster than strain 

SLAS-1, and the presence of inorganic electron donors, especially sulfide, in Mono 

Lake sediment. Also, the presence in ML of a wider range of anaerobic bacteria capable 

of efficiently transferring electrons to the anode could be possible.  

 

The present study demonstrates that more than 0.1 or 0.5 W m
-2

 (non-mediated 

or mediated systems, respectively) very elevated power densities can be achieved at the 

high ionic strength conditions used, by reducing dramatically the resistance to ion 

migration within the electrolyte, permitted by the amazing physiology of the H. volcanii 
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archaea. Also, we show that neutral or acidic conditions are more favorable than 

alkaline ones, at least using our set-up. 

 

The new and amazing possibilities of H. volcanii and other extreme microbial 

physiology could be a key to increase the maximum current density and power obtained 

with MFCs. The use of added mediator allowed us to compare both ionic strength 

conditions; for potential applications many naturally occurring or microbially 

synthesized compounds can serve as electron carrier.  

 

Co-culture of H. volcanii and a mediator-producing halotolerant bacterium could 

make the incorporation of any redox mediator unnecessary, an obvious problem when 

real-world applications are prospected; also it is known that waste water and sediment 

contain many naturally occurring substances (humic acids, iron, sulphide ions) which 

are known to facilitate the electricity generation (Reimers et al., 2001).  

 

The approach used here for the first time could be a key to non-biofilm based 

MFC, allowing practical scaling-up. The requirement of the physical contact of the 

involved cells to the electrode (restricted to few microbial layers) limits the achievable 

density of active cells and thus the achievable power density (Reimers et al., 2001). 

Moreover, high volumes of brine (around 70 g L
-1

 of salinity) are produced by reverse 

osmosis installations around the world (mainly for drinking water production). These 

brines are simply pumped again into the sea, but they could be used in high IS MFC 

waste-water depurating installations. 

 

The high salt concentration assayed here, comparable with that used in Pt-

catalyzed alkaline hydrogen fuel cells, and the use of extremophiles to cope with these 
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conditions, are new options to increase power production and MFC scaling-up, 

necessary for practical applications.   
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Figure Captions 

 

Figure 1. MFC Power density (open symbols) and voltage (filled symbols) as a function 

of current density (normalized to total geometrical electrode area). A) H. volcanii 

without neutral red (triangles) and with neutral red (circles and squares). Two 

independent experiments are plotted. B) E. coli without neutral red (triangles) and with 

neutral red (circles and squares). Two independent experiments are plotted. 

 

Figure 2. MFC Power density (open symbols) and voltage (filled symbols) as a function 

of current density (normalized to total geometrical electrode area). N. magadii without 

neutral red at increasing absorbance, (upper triangle, down triangle, squares) and with 

neutral red (circles). 

 

Figure 3. MFC Cyclic voltammetry of Toray paper anode. Plain phosphate buffer, 100 

mM (solid line); H. volcanii sterile culture media (dash line); H. volcanii culture (dot 

line). No NR was added at any experiment, scan rate 1 mV s
-1

. 

 

Figure 4. MFC Cyclic voltammetry of Toray paper anode. H. volcanii culture with 

added NR at increasing scan rate, 50 (1), 100 (2), 200 (3) and 400 (4) mV s
-1

. 
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Table 1 

MFC maximum power density (Pmax), and Rint for different MFC systems. NM-MFCs 

are non-mediated MFCs, where direct electron transfer from bacteria to anode is 

postulated to occur. IS is the estimated ionic strength of the anolyte solution. Rint is 

strongly influenced by MFC set-up, geometry, electrodes, etc, the data presented 

involving other authors are only partially comparable.  

 

Biocatalizer Mediator Rint  (ΩΩΩΩ) Pmax (mW m
-2

) IS (mM) pH References 

H. volcanii NM-MFCs 447 ± 46 118.7 ± 5.4 2680 5.9 This work 

H. volcanii NR 66 ± 10 509.8 ± 36.6 2680 5.9 This work 

N. magadii NM-MFCs 962 45.7 3635 10 This work 

N. magadii NR 1038 53.8 3635 10 This work 

E. coli NM-MFCs 2433 ± 17 1.21 ± 0.08 92 7.0 This work 

E. coli NR 708 ± 14 4.71 ± 0.33 92 7.0 This work 

E. coli
a
 NR 11,160  12.7  300 7.0 Ieropoulos et 

al., 2005 

Domestic 

wastewater 

inocula 

NM-MFCs 161 

91 

83  

79  

720  

 

1100
 

 

1200 

 

1330  

100 

200 

300 

400 

7.0 Liu et al., 2005 

Sludge inocula NM-MFCs 1087  

625  

44.4  

 

75.6 

100
b
 

400
b
 

7.0 Oh and Logan, 

2006 

Geobacter 

metallireducens
c
 

 

NM-MFCs 19,920  

1286  

2.2 

 

40  

158 

158 

7.0 Min et al., 2005  

a
Recalculated data considering anode geometrical area (10 cm

2
); the indicated Pmax 

correspond to a RL of 10 kΩ.  
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b
IS was estimated from data presented by the authors. 

c
Data obtained from 2 types of MFC, salt bridge (Rint = 19,920 Ω) and membrane based 

MFC with lower Rint.  
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Figure 1. MFC Power density (open symbols) and voltage (filled symbols) as a function of current 
density (normalized to total geometrical electrode area). A) H. volcanii without neutral red 

(triangles) and with neutral red (circles and squares). Two independent experiments are plotted. B) 

E. coli without neutral red (triangles) and with neutral red (circles and squares). Two independent 
experiments are plotted.  
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Figure 1. MFC Power density (open symbols) and voltage (filled symbols) as a function of current 
density (normalized to total geometrical electrode area). A) H. volcanii without neutral red 

(triangles) and with neutral red (circles and squares). Two independent experiments are plotted. B) 
E. coli without neutral red (triangles) and with neutral red (circles and squares). Two independent 

experiments are plotted.  
111x83mm (600 x 600 DPI)  

 
 

Page 29 of 32 Extremophiles

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 2. MFC Power density (open symbols) and voltage (filled symbols) as a function of current 
density (normalized to total geometrical electrode area). N. magadii without neutral red at 

increasing absorbance, (upper triangle, down triangle, squares) and with neutral red (circles).  
101x81mm (600 x 600 DPI)  
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Figure 4. MFC Cyclic voltammetry of Toray paper anode. H. volcanii culture with added NR at 
increasing scan rate, 50 (1), 100 (2), 200 (3) and 400 (4) mV s-1.  
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