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ABSTRACT
With the aim of describing bound and continuum states for diatomic molecules, we develop and
implement a spectral method that makes use of Generalized Sturmian Functions (GSF) in prolate
spheroidal coordinates. In order tomaster all computational issues, we apply it here to one–electron
molecular ions and compare with benchmark data for both ground and excited states. We actually
propose twodifferent schemes to solve the twocoupleddifferential equations. The first one is an iter-
ative 1d procedure in which one solves alternately the angular and the radial equations, the latter
yielding the state energy. The second, nameddirect 2dmethod, consists in representing theHamilto-
nianmatrix in a two-imensional GSF basis set, and its further diagonalization. Both spectral schemes
are timewise computationally efficient and very accurate results are obtained with minimal basis
sets. This is related on one side to the use of the natural coordinate system and, on the other, to the
intrinsic goodproperty of all GSF basis elements that are constructed as to obey appropriate physical
boundary conditions. The present implementation for bound states paves the way for the study of
continuum states involved in ionization of one or two-electron diatomic targets.
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1. Introduction

The molecular ion H+
2 , as well as the isotopic forms such

as HD+ or D+
2 , and other one-electron diatomics such

as HHe+2 or HLi+3, are the simplest molecular quantum
three-body problem with Coulomb interactions. H+

2 , in
particular, has been largely studied since the early days
of quantum mechanics [1–3], and is presented in stan-
dard molecular physics books as it allows one to under-
stand why molecules form. On top of being important
in astrophysics (it is involved in many reaction chains
leading to the production of polyatomic molecules), the

CONTACT D. M. Mitnik dmitnik@df.uba.ar Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, C.C. 67, Suc. 28, Buenos Aires C1428EGA,
Argentina
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molecular ion H+
2 also serves as a benchmark to test any

new molecular approach and numerical method.
In the fixed-nuclei approximation, it is well known

that prolate spheroidal coordinatesmake the Schrödinger
equation separable [4]. Aside from the simple azimuthal
angle dependence due to axial symmetry, the wavefunc-
tion depends on two variables, one angular and one radial
(actually quasi-angular and quasi-radial). TheH+

2 bound
structure can be found by solving a system of two coupled
ordinary differential equations, one for each of these two
variables. An analytical solution exists formally [1–3] but
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involves two not so tractable expansions and therefrom
complicated energy equations (see, e.g. [5] and refer-
ences therein). In practice, therefore, the energies are
found numerically. This is why a wide variety of meth-
ods, including iterativemethods, have been proposed and
applied to solve the coupled equations. For continuum
states, necessary for example to describe ionisation pro-
cesses from diatomicmolecules, the energy is known and
fixed. However, these non-L2 states are much more diffi-
cult to build as they oscillate up to infinity. Some recent
investigations dedicated to their description in prolate
spheroidal coordinates include [6,7]. Approximate single
or double continuum wavefunctions borrowed from the
atomic literature have been extended to the two-centre
case and employed to study ionisation processes [8–11].
Other approaches consist in extending well established
atomic numerical techniques to the diatomic molecular
case, using (see, e.g. [12,13]) or not using (see, e.g. [14])
prolate spheroidal coordinates.

In the last decade, a spectral method named GSF has
been developed and implemented to study the structure
of and scattering processes on atomic systems [15,16].
The method uses complete and orthogonal basis sets of
Generalized Sturmian Functions (GSF) with appropriate
boundary conditions. Negative energy GSFs allow one to
study bound states. The helium atom, the simplest atomic
quantum three-body problem with Coulomb interac-
tions, served as a benchmark to put the method on solid
grounds, by studying in details convergence issues, the
integrals involved and the adequate choice of optimal
parameters and numerical packages (see [17] and refer-
ences therein). While the aim of the GSF method was
not to compete with well-established structure codes, it
proved to be very accurate at a reduced computational
cost because of intrinsic GSF properties, in particular,
the adequate, and unique, asymptotic decay of all basis
elements.

After bound states, the GSF approach was rapidly
implemented for continuum states for which the good
properties of positive energy GSFs demonstrated the
power of the method. Indeed, for continuum states, the
correct asymptotic behaviour is crucial in any scatter-
ing calculation as shown in applications to one and
two-electron atomic systems (see, e.g. [18–20]). The
method was first presented in spherical coordinates,
then extended to hyperspherical coordinates but limited
to atomic systems. An extension to molecules with a
heavy central nucleus has been proposed in a one-centre
GSF approach [21] and applied to ionisation processes
[22–24]. Nothing, however, has been proposed to deal
with diatomic molecules.

The purpose of this manuscript is to develop and
implement a GSF method in prolate spheroidal coor-
dinates, thus combing the two advantages of (i) using
the natural coordinates for diatomic systems and (ii) the
power of a spectral method together with the intrin-
sically good GSF properties. The long term aim is to
be able to describe accurately single or double ionisa-
tion of diatomic molecules treated as a two-electron sys-
tem. The development will follow a path similar to the
one adopted for the atomic case. We will first consider
bound one-electronmolecules before moving to the con-
tinuum part of the spectrum. By studying benchmark
one-electron molecular ions, such as the H+

2 , we wish
to validate the new computational procedure and code,
check thoroughly all convergence and precision issues,
and test the robustness with respect to the variation of
the internuclear distance.

We actually present here two distinct computational
methods that serve different purposes. In the first one,
we adopt an iterative approach, solving alternately the
separated Schrödinger equations for the angular part and
for the radial part. This iterative 1d procedure, which is
repeated until convergence, presents the novelty of using
GSF with appropriate boundary conditions. Because of
such property, the approach results to be computation-
ally efficient as only small basis are needed to obtain
very good energy levels. It is also efficient in computing
time because the GSF basis elements already solve the
Hamiltonian differential operator so that no derivative
calculation is needed at each iteration. The present study
allows us to establish the capability of the approach and
master the related parameters when using appropriate
GSF in prolate spheroidal coordinates. The iterative 1d
procedure puts the focus on the energy andwave function
of a single molecular state. The second method, called
here the direct 2d method, has a different scope since it
provides a set of states at the same time. It consists in rep-
resenting the Hamiltonian matrix in a two-dimensional
GSF basis set, and its further diagonalisation. On top of
the same advantages as the first method, the 2d spec-
tral approach demonstrates its full power by providing
accurately many states simultaneously, and this with very
small basis.

The remainder of this paper is as follows. In Section 2,
we provide the theoretical framework of the proposed
GSF method in prolate spheroidal coordinates. Then , in
Section 3, we apply it to the ground and first three excited
states of symmetric (H+

2 ) and asymmetric (HHe+2 and
HLi+3) molecular ions. The successful comparison with
benchmark data from the literature allows us to validate
the method for bound states. As indicated in the Conclu-
sion ( Section 5), the next step will be to study continuum



MOLECULAR PHYSICS 3

states for which positive energy GSF, with appropriate
boundary conditions, will be used.

Atomic units (� = me = e = 1) are assumed
throughout.

2. Theory

Consider a diatomic molecular system consisting of one
electron and two nuclei of arbitrary charges Z1 and Z2
placed at a fixed distanceR along a line defining the z axis;
let r1 denote the distance of the electron from nucleus 1
and r2 from nucleus 2. To simplify, we neglect any nuclei
finite mass effect.

In prolate spheroidal coordinates, defined by

ξ ≡ r1 + r2
R

; η ≡ r1 − r2
R

; φ ≡ arctan
(y
x

)
, (1)

where 1 ≤ ξ < ∞, −1 ≤ η ≤ 1 and 0 ≤ φ ≤ 2π , the
Schrödinger equation for the electron reads

{
− 2
R2(ξ 2 − η2)

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ ∂

∂η
(1 − η2)

∂

∂η

+ ξ2 − η2

(ξ 2 − 1)(1 − η2)

∂2

∂φ2

]
+ V(η, ξ)

}
ψ(ξ , η,φ)

= Eψ(ξ , η,φ), (2)

with the electron-nuclei potential given by

V(ξ , η) = −Z1
r1

− Z2
r2

= − 2
R
(Z1 + Z2)ξ − (Z1 − Z2)η

(ξ 2 − η2)
.

(3)
In the fixed-nuclei approximation, the internuclear dis-
tance R enters as a parameter, and the nuclei repulsive
potential energy 1/Rmay be simply added. Equation (2)
is separable in these coordinates, meaning that the solu-
tion is expressed as a product of three functions

ψ(ξ , η,φ) = U(ξ)�(η)	(φ). (4)

The azimuthal function 	 is easily separated, and must
fulfill the equation

d2	
dφ2

+ m2	 = 0, (5)

whose solutions are

	(φ) = 1√
2π

eimφ , (6)

withm = 0,±1,±2,±3, . . .. Because of the axial symme-
try of the potential,m is a good quantum number.

Upon elimination of the azimuthal dependence, and
defining p2 = −R2E

2 , a1 = R(Z1 − Z2) and a2 = R(Z1 +

Z2), the ensuing equation reads
{
∂

∂ξ

[
(ξ 2 − 1)

∂

∂ξ

]
+ a2ξ − p2ξ 2 − m2

ξ 2 − 1

+ ∂

∂η

[
(1 − η2)

∂

∂η

]
− a1η + p2η2 − m2

1 − η2

}

U(ξ)�(η) = 0 (7)

and is also separable. Denoting the separation constant as
A, one obtains a system of two non-trivial ordinary dif-
ferential equations, a ‘radial’ equation for U(ξ) and an
‘angular’ equation for�(η),

[
∂

∂ξ

[
(ξ 2 − 1)

∂

∂ξ

]
+ a2ξ − p2ξ 2

− m2

ξ 2 − 1
+ A

]
U(ξ) = 0, (8a)

[
∂

∂η

[
(1 − η2)

∂

∂η

]
− a1η + p2η2

− m2

1 − η2
− A

]
�(η) = 0, (8b)

which are coupled through both the scaled energy p
and the coupling constant A. States with different m
values are not coupled, so that they can be considered
independently.

In this work, we propose two different methods using
a spectral approach based on GSF in prolate spheroidal
coordinates. In the first – named hereafter ‘iterative 1d
method’ – we solve, alternately, the one-dimensional
radial equation (8a), assuming a given separation con-
stantA, and solving an eigenvalue equation for the scaled
energy p. Then, we use this energy as a fixed value in
the one-dimensional angular equation (8b), obtaining a
new separation constant A. The process is repeated until
convergence is achieved. In this iterative procedure, both
equations are solved by using adequate GSF basis sets
and are converted into eigenvalue problems. The main
advantage of our GSF approach resides in the fact that the
principal part of these two equations (in particular, the
derivatives) are already dealt with by the basis functions;
as a consequence, derivative calculations are not required
at every iteration step. In the second method, we con-
struct a basis set composed of products of the angular and
radial GSF. This two-dimensional basis is used to repre-
sent the Hamiltonian, which is diagonalised in order to
solve the whole Schrödinger equation (2). In this way, we
obtain the eigenvalues (energies) and eigenvectors (solu-
tions) of many states at the same time. This method, here
referred to as the ‘direct 2dmethod ’, while possessing the
same advantages related to GSF is computationally even
more efficient.
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2.1. GSF: iterative 1d method

2.1.1. Angular equation
We search the solution of Equation (8b), for a givenm, as
an expansion in Sturmian functions

�(η) =
∑
j
cjSaj (η), (9)

the angular basis set being generated by solving the Stur-
mian equation

[
∂

∂η

[
(1 − η2)

∂

∂η

]
− m2

1 − η2

]
Saj (η) = −βjSaj (η),

(10)
with boundary conditions Saj (1) = 1 and Saj (−1) =
(−1)j form = 0 and Saj (1) = Saj (−1) = 0 form �= 0. The
solutions are actually the well-known associated Legen-
dre polynomials [25], Saj (η) = Pmj (η), and correspond
to eigenvalues βj = j(j + 1). Figure 1 shows the first 9
elements Saj (η) form = 0.

With expansion (9) and making use of Equation (10),
the angular equation (8b) becomes

∑
j
cj[−βj − a1η + p2η2]Saj (η) = A

∑
j
cjSaj (η). (11)

Multiplying from the left by Sai (η) and integrating over
the angular domain [−1, 1], we obtain a generalised
eigenvalues equation

Mc = ABc. (12)

The matrices involve the elements

[Mk]ij =
∫ 1

−1
Sai (η)η

kSaj (η) dη (13)

which can be evaluated analytically using known proper-
ties of the Legendre polynomials [25]. Those of interest

here are given by

[M0]ij = 2
2i + 1

(i + m)!
(i − m)!

δij, (14a)

[M1]ij = 2
2i + 1

(i + m)!
(i − m)!

1
2j + 1

[(j − m + 1)δi,j+1 + (j + m)δi,j−1], (14b)

[M2]ij = 2
2i + 1

(i + m)!
(i − m)!

1
2j + 1[

(j + 1 − m)(j + 2 − m)
2j + 3

δi,j+2

+
(
(j + 1 − m)(j + 1 + m)

2j + 3

+ (j + m)(j − m)
2j − 1

)
δi,j

+ (j − 1 + m)(j + m)
2j − 1

δi,j−2

]
, (14c)

and are calculated only once, at the first iteration. The
elements of the matricesM and B are given by

[M]ij = −j(j + 1) [M0]ij − a1[M1]ij + p2 [M2]ij,
(15a)

[B]ij = [M0]ij. (15b)

Assuming a given energy value p2, the angular part
reduces to solving the generalised eigenvalues prob-
lem (12), i.e. finding the eigenvalue A (the separation
constant) and the eigenvector c (the coefficients of expan-
sion (9)). At each iteration, the matrix M is easily recal-
culated with the new energy value p.

2.1.2. Radial equation
Once the A eigenvalue is obtained from the angular
equation, the scaled energy p2 is to be found from
solving the radial equation (8a). Setting U(ξ) = (ξ 2 −
1)|m|/2f (ξ) removes the singular termm2/(ξ 2 − 1) from
the differential equation. A first boundary condition is

lim
ξ→∞

f (ξ) = e−pξ . (16)

We can set a second boundary condition at the other end,
when the electron is exactly in the centre of themolecular
system (ξ = 1). We have to distinguish two cases. When
m = 0

lim
ξ→1

f (ξ) = ξ−A
2 e

p2
4 ξ

2− a2
2 ξ . (17)

because the radial equation (8a) reduces to

df (ξ)
dξ

=
(
p2

2
ξ − a2

2
− A

2ξ

)
f (ξ). (18)
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Figure 1. First 9 angular Sturmian basis elements Saj (η) form = 0.

Form �= 0, the functionU(ξ)will vanish at ξ = 1 as long
as f (ξ) does not present any singularity at that value.

Similarly to the angular part, we propose an expansion

U(ξ) = (ξ 2 − 1)|m|/2 ∑
j
djSr

j (ξ), (19)

on a basis of Generalized Sturmian Functions Sr
j (ξ) gen-

erated by the Sturmian equation
[
∂

∂ξ

[
(ξ 2 − 1)

∂

∂ξ

]
+ 2ξ |m| ∂

∂ξ
+ a2 ξ − p2s ξ

2
]

Sr
j (ξ) = αjVs(ξ)Sr

j (ξ), (20)

with eigenvalues αj. In Equation (20), p2s = −R2Es
2 is

a parameter that can be set freely. However, since the
expansion over the GSF basis is meant to represent a
physical radial function, it is convenient and numeri-
cally efficient to choose Es according to the physics one
wishes to describe. When dealing with a continuum state
of energy E>0, taking Es = E is a natural choice. In
order to represent a specific bound state with an a priori
unknown energy value, taking Es < 0 close to a guess of
the sought after energy turns out to be a good choice. In
both continuum and bound cases, an appropriate choice
of Es will impose an adequate energy behaviour onto the
GSF functions, ultimatelymaking the basismore efficient
from a convergence point of view. Vs, known as gener-
ating potential, must be a short range potential so that
the basis elements Sr

j (ξ) have an asymptotic behaviour
similar to (16), that is to say an exponential decay with
energyEs (taking Es close to the correct sought after value
E is then a natural choice).Moreover, sincewewishSr

j (ξ)

to possess also the same ξ → 1 behaviour as the sought
after solution U(ξ), the generating potential must obey
the relation

lim
ξ→1

αjVs(ξ) = −A + p2 − p2s . (21)

It turns out that it is convenient to choose a function
nearly constant at ξ = 1, in order to stabilise the iter-
ations. In the present work, the generating potential is
chosen to be

Vs = 1
2 [1 − tanh(δ(ξ − γ ))], (22)

where the parameters δ and γ determine the shape of the
potential as illustrated by Figure 2. For a given value of
δ, a larger parameter γ extends the range of the poten-
tial (for δ = 1, γ approximately represents the range).
On the other hand, for a fixed value of γ (solid and dot-
ted curves), higher δ parameters correspond to steeper
potentials. As explained in the GSF references [15,16],
the generating potential is crucial for the continuum
functions. For bound type solutions, on the other hand,
the choice of Vs is not so important (it does not affect
noticeably the convergence of the method) but helps for
example in regulating the radial domain covered by the
GSF. We have not performed an exhaustive optimisation
of the potential parameters, but we found, roughly, that
changing these values by one order of magnitude affects
the final bound state energy values only beyond the sixth
significant figure. As a rule of thumb, our numerical
investigation established that the values δ ≈ 1 and γ ≈ 5
are a suitable choice for the potential parameters in the
case of the ground state. For excited states with princi-
pal quantum number n, the potential range should be
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Figure 2. Generating potential Vs, used to generate the radial GSF S r
j (ξ).

Figure 3. First 9 radial basis elements S r
j (ξ) form = 0.

incremented roughly by a factor �γ
�n ≈ 2. Also, for vary-

ing internuclear distances R, it is convenient to scale the
potential range by a factor 2

R .
At ξ → ∞ we could impose on Sr

j (ξ) the boundary
condition (16), but requiring simply the basis function
to vanish at infinity was found to be sufficient. On the
other hand, imposing on each element condition (17) at
ξ → 1 results to be crucial whenm = 0.We generate the
Sturmian functions by solving the radial equation (20)
with a finite differencemethod. In Ref [15] the reader can
find a detailed description of the numerical procedures

used for the solution of the differential equation, which
in turn, are based on the radial methods for the solution
of the Schrödinger equation described in W. Johnson’s
book [26]. Briefly, the solution integration consists of a
predictor-corrector Adams–Moulton method. It uses a
seven-point scheme, which (together with the interpo-
lation procedure) achieves a high order of accuracy (of
about (�x)8). The original GSF code was developed pri-
marily for Coulomb-type solutions and for high principal
quantumnumbers. Since these functions oscillate rapidly
close to the nucleus and decay exponentially far away, one
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may use a logarithmic grid generating a fine mesh near
the origin and a coarse mesh for large distances. With
this approach, very accurate results can be obtained by
using only a few points (about 500) in the numerical grid.
Since in the present investigation we are interested in the
first eigenfunctions we can relax the numerical sophis-
tication and complexity, and use a low-order Numerov
approximation for the propagation, in a linear mesh. Of
course, this replacement would require a large number of
mesh points (about 104), but this is not a serious problem
in a one-dimensional calculation. The numerical quadra-
tures are evaluated using a trapezoidal rule with endpoint
corrections developed by Johnson [26]. The first 9 basis
elements for m = 0, generated with δ = 1.1 and γ = 5,
are shown in Figure 3. As j increases, these functions dis-
play an increasing number of nodes. Featuring one of the
main GSF properties, all elements behave asymptotically
in a uniquemanner, here in the same exponentialmanner
e−psξ as ξ → ∞.

With expansion (19), and making use of (20), the
radial equation (8a) takes the form

∑
j
dj[αjVs(ξ)+ A + m2 + |m|]Sr

j (ξ)

=
∑
j
dj(p2 − p2s )ξ

2Sr
j (ξ). (23)

Multiplying from the left by Sr
i and integrating over the

domain [1,∞[, we obtain another generalised eigenval-
ues equation

Nd = λCd (24)

where the eigenvalues are λ = p2 − p2s , and thus the cor-
responding energies through p2 = −R2E/2. Let us define
the elements

[N k]ij =
∫ ∞

1
Sr
i (ξ)ξ

kSr
j (ξ) dξ , (25a)

[G]ij =
∫ ∞

1
Sr
i (ξ)Vs(ξ)Sr

j (ξ) dξ , (25b)

that are calculated, numerically, only once. The matrices
N and C have for elements

[N]ij = (A + m2 + |m|)[N 0]ij + αj[G]ij, (26a)

[C]ij = [N 2]ij. (26b)

Here, A is a fixed parameter obtained from the previous
step, when solving the angular part. The solutions of (24)
provide both the eigenvaluesλ and the eigenvectorsmade
of the coefficients dj of the radial expansion (19).

This iterative method has a significant advantage. The
Hamiltonian is separated into two coupled equations, and

both of them are one-dimensional reducing significantly
the computational cost. Moreover, the use of expansions
on GSF basis greatly simplifies the task since each basis
element already solves a substantial part of the equations,
in particular, the differential operators. As a consequence,
it is not necessary to solve numerically the differential
equations at each step. Computationally, one only solves –
iteratively – two generalised eigenvalue problems. There
is, however, a drawback in thismethodology: eachmolec-
ular state requires a new basis set. This means that, from
all the eigenvalues A and p resulting from the calcula-
tions, we must select only those corresponding to the
eigenvectors having the right number of nodes. For each
one of themolecular states, a different iteration procedure
is thus needed. This difficulty is avoided in the alternative
method presented hereafter.

2.2. GSF: direct 2d method

Wepropose now amethod inwhich equation (2) is solved
directly. As before, we first remove the azimuthal part and
write

ψ(ξ , η,φ) = �(ξ , η)	(φ) (27)

with�(ξ , η) solution of the two-dimensional equation{
∂

∂ξ

[
(ξ 2 − 1)

∂

∂ξ

]
+ a2ξ − p2ξ 2 − m2

ξ 2 − 1

+ ∂

∂η

[
(1 − η2)

∂

∂η

]
− a1η + p2η2 − m2

1 − η2

}

�(ξ , η) = 0. (28)

This timewe propose to expand the solution�(ξ , η) over
a two-dimensional basis Sij(ξ , η)

ψ(ξ , η) =
∑
ij

aijSij(ξ , η)

= (ξ 2 − 1)|m|/2 ∑
ij

aijSr
i (ξ)S

a
j (η), (29)

where the one-dimensional Sturmian functions are
obtained with the same methodology described above,
i.e. from equations (10) and (20).

Upon substitution of expansion (29), the two-
dimensional equation (28) becomes∑

ij
aij

{
αiVs(ξ)+ m2 + |m| + p2s ξ

2 − a1η − βj
}

Sij(ξ , η)

=
∑
ij

aijp2(ξ 2 − η2)Sij(ξ , η). (30)

A matrix system is constructed by multiplying from the
left by a basis element Si′j′(ξ , η) and integrating over both
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ξ and η variables (note here the absence of the volume
element ξ 2 − η2 in spheroidal prolate coordinates). We
obtain a generalised eigenvalues problem

Pa = λDa, (31)

in which the matrices P andD are given by

[P]i′j′,ij = αi[G]ii′[M0]j′j + p2s [N 2]i′i[M0]j′j

− a1[N 0]i′i[M1]j′j + (m2 + |m| − βj)

[N 0]i′i[M0]j′j, (32a)

[D]i′j′,ij = [N 2]i′i[M0]j′j − [N 0]i′i[M2]j′j. (32b)

We solve this eigenvalue problem, obtaining a solution
matrix a; each column consists of the coefficients vec-
tor 
an, which expands that solution corresponding to the
molecular state having eigenenergy λn = p2n. To be more
specific, if the basis size is N, we have

a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a111 a211 a311 . . . aN11
a121 a221 a321 . . . aN21
. . . . . . . . . . . . . . .

a112 a212 a312 . . . aN12
a122 a222 a322 . . . aN22
. . . . . . . . . . . . . . .

a1ij a2ij a3ij . . . aNij
. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, λ =

⎛
⎜⎜⎝
p21
p22
. . .

p2N

⎞
⎟⎟⎠ .

(33)
This direct methodology avoids iterations. Moreover,
it allows us to obtain the solutions for many molec-
ular states simultaneously. Since the matrices are two-
dimensional, at first sight the method seems computa-
tionally costly. However, all integrations leading to the
matrix elements of P and D are separable and reduce to
products of one-dimensional integrals as given by (32a)
and (32b).

3. Results

We present now the results of our calculations and make
a comparison with the data provided in the literature.We
start by applying the GSF iterative 1d method for both
the ground and some m = 0 excited states of the hydro-
gen molecular ion H+

2 for which Z1 = Z2 = 1 and thus
a1 = 0. Next, we consider asymmetric (heteronuclear)
molecular ions with Z1 �= Z2. Finally, for H+

2 , we will

Table 1. Convergence of the eigenvalue A in Equation (8b) for
fixed energy E = 1.10264, as a function of the basis size.

Number of basis elements A

1 0.7350895
2 0.8115139
3 0.8117295
4 0.8117296
Reference [27] 0.8117296

show how the GSF direct 2d method yields the ground
and several excited states in a single run.

3.1. Iterative 1d method for the ground state of H+
2

The best values of the energy E for the ground state 1σg ,
and the corresponding separation constant A from the
work of Scott et al. [27] are used here as a benchmark to
analyse the convergence issues of our Sturmian method.
We assume here an internuclear distance R = 2 a.u., thus
fixing the values of a1 and a2.

3.1.1. Angular equation
In order to solve the angular equation (8b), an initial
value for the energyE (more precisely, p2 = 2.2052684) is
chosen. The matrices of the generalised eigenvalue prob-
lem (12) are easily constructed as they are all analytical.
The only numerical aspect to analyse is the convergence
of the results with respect to the basis size. Since the
ground state is an even function in the ξ coordinate,
only even elements Saj (η) are included in the expan-
sion. As shown through Table 1, convergence towards
the benchmark result A of [27] is reached with just four
elements.

Having solved the matrix equation, the eigenvectors
give the coefficients cj that allow us to construct the
ground state angular solution (9) which is shown in
Figure 4. The excited states will be discussed in the next
section.

3.1.2. Radial equation
Once the angular equation is solved, we turn to the
radial equation. In contrast to the angular part, here the
approach is completely numerical. On the one hand, we
have to generate the basis set Sr

i (ξ) and, on the other, the
matrix elements of the corresponding eigenvalue prob-
lem (24) must be calculated numerically.

The basis elements are generated by solving the Stur-
mian equation (20) with a numerical method described
previously [15]. It is based on a predictor-corrector
algorithm, propagating the solution from the origin
to some defined matching point (this is the outgoing
solution), and from an effective infinite towards this
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Figure 4. The angular�(η) solutions for the four lower energy states of H+
2 .

point (the inward solution). The inward function is nor-
malised, in such a way that both solutions coincide at the
matching point. If the derivatives disagree at this point,
the eigenvalue is adjusted and the procedure starts again,
until convergence. This algorithm, allows one to pro-
duce very accurate solutions for atomic systems, even
with a reasonably small (∼500) points in the numeri-
cal grid [15,16]. However, we noticed that it was hard to
obtain the radial solutions of Equation (8a), even when
a large number of points was included in the numeri-
cal grid. In fact, to solve this equation appropriately, the
crucial aspect resides in the fulfillment of the boundary
conditions (17) at the origin. We endorsed this conclu-
sion, trying to solve the radial equation with other meth-
ods, and using different mathematical software, obtain-
ing very different results for different numerical grids.
We even tried to solve the equation fixing the energy
value to E = −1.10264 a.u. [27], but the converged solu-
tions yielded eigenvalues A too far from the correct
value.

We also tried to use standard diagonalisation rou-
tines from lapack [28] to solve equation (8a) directly.
However, within this approach, it is not simple to intro-
duce explicitly the boundary conditions in contrast to
our GSF expansion approach for which it is straightfor-
ward. Thus, our method allows us to obtain very accu-
rate results, even with a very few numbers of points in
the numerical grid. Nevertheless, since all the required
integrals are one-dimensional, we used a significant num-
ber of points (∼104 ), regardless of whether it was
necessary.

Table 2. Convergence of the energy E in Equation (8a) for fixed
A= 0.8117296 as a function of the number of basis elements.
The third column corresponds to the energy Ẽ obtained with an
improved (recalculated) basis.

Basis elements E (a.u.) Ẽ (a.u.)

1 −1.0 −1.1
3 −1.1 −1.1026
6 −1.1024 −1.1026340
9 −1.1026 −1.1026346
Reference [6] −1.1026342

Having solved the Sturmian equation and generated
the basis set Sr

i (ξ) for a chosen external parameter Es,
we can proceed to analyse convergence issues for the
expansion (19) of the function U(ξ). In Table 2, the
basis size dependence of the energy value E, obtained by
fixing the separation constant A = 0.8117296, is shown
for two different sets. As explained in Section 2.1.2, the
external parameter Es is an arbitrary energy; however,
it is convenient to choose a value close to the true state
energy. In a first calculation, we took the value Es =
−1 a.u. and obtained the convergence sequence shown
in the second column of Table 2 that leads to a state
energy of E = −1.1026 a.u.. In a second, better, cal-
culation we generate the radial GSF basis using as the
external Sturmian energy, precisely this state energy, i.e.,
we set Es = −1.1026 a.u.. In so doing, the sequence of
energies obtained, listed in the third column of the table,
converges very fast to the very accurate benchmark value.

Once the eigenvalues equation is solved, the eigenvec-
tors of (24) provide the expansion coefficients di, which
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Figure 5. The radial U(ξ) solutions for the four lower energy states of H+
2 .

build the radial function U(ξ) through (19). The con-
verged result is shown in Figure 5; the excited states will
be discussed in the next section.

The product of the angular and radial solutions
�(η)U(ξ) gives, up to the azimuthal dependence, the
wavefunction which is best visualised by converting
the prolates (ξ , η,φ) into Cartesian coordinates (x, y, z)
through

x = R
2

√
(1 − η2)(ξ 2 − 1) cos(φ), (34a)

y = R
2

√
(1 − η2)(ξ 2 − 1) sin(φ), (34b)

z = R
2
ηξ . (34c)

In the top left panel of Figure 7, we show the obtained
ψ1σg for a fixed angle φ (for m = 0 states, the results
are symmetric respect to rotations over the z axis, and
therefore, there is no dependence on the angle φ).

3.1.3. Internuclear distance dependence
In the ground state results presented above, we have
fixed, adopting the Born–Oppenheimer approximation,
the internuclear distance at R = 2 a.u. Calculations can
be easily repeated by varying R, and in each case, one
obtains the total energy

Etot(R) = E(R)+ 1
R
. (35)

The radial Sturmian functions should be generated
through Equation (20) in which one modifies a2 =

R(Z1 + Z2) for each R. This option can be taken but
we found it convenient to use a unique basis generated
with a given value a2s = Rs(Z1 + Z2); except for very
high internuclear distancesR, we simply tookRs = 2 a.u..
In so doing, the use of the Sturmian equation for the
radial Schrödinger equation (8a) leads to a slightly mod-
ified Equation (23) and thus the supplementary matrix
element (a2 − a2s)[N 1]ij must be added to matrix N
defined by (26a). We have calculated the total energy
for many values of R taking 4 angular and 6 radial
basis functions, generated with a Sturmian energy Es =
−1.1026340, which is the energy value obtained for R =
2 a.u. in the previous section. Figure 6 presents the
resulting energy Etot as a function of the internuclear
distance. The inset allows one to see a clear minimum
at R = 1.99704 a.u. At this equilibrium distance (bond
length) the corresponding energy Etot = −0.602635 a.u.
is in agreement with the best values given in the
literature [29].

We challenged our computationalmethodwith energy
calculations considering very small internuclear dis-
tances R for which, in general, many numerical insta-
bilities and errors arise. The energy values displayed in
Table 3 demonstrate that our Sturmian method remains
robust for decreasing distances R, even in the limit R →
0, for which the solution corresponds to the atomic ion
He+ with energy EHe+ = −Z2/2 = −2 a.u.. At the same
time, the ground state wavefunction should evolve from a
molecular to an atomic shape, that is to say from a density
of probability centred on the two nuclei to a hydrogenic
single centre system. This transition from molecular to
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Figure 6. Total energy of the H+
2 ground state as a function of the internuclear distance R.

Table 3. Ground state energy of the system H + H + e−, as a
function of the internuclear distance R.

R (a.u.) E (a.u.)

2 −1.1026340
1 −1.4517823
0.4 −1.800754
0.1 −1.9782552
0.025 −1.9984113
0.008 −1.9998307
He+ −2.0

the atomic system as the internuclear distance decreases
is illustrated in Figure 7.

3.2. Iterative 1d method for some excited states of
H+
2

By modifying the way the GSF basis functions are con-
structed, the GSF spectral method allows one to obtain
not only the ground state but also excited and continuum
states. To start with, let us look at the first excited state
1σu. For the generation of the radial basis, it is necessary
to choose an arbitrary Sturmian energy as an external
parameter. In a first, crude, approach we take the same
energy obtained for the ground state calculation (Es =
−1.10263 a.u. or, equivalently, ps = 1.485015). We gen-
erate then three Sturmians for the angular basis (only odd
functions because of parity) and six radial Sturmian func-
tions. With these functions, we carry out the iteration
procedure, solving first the angular equation, obtaining
the eigenvalue A. This value is introduced as a param-
eter into the radial equation, whose solutions produce
a new scaled energy value p. As shown in Table 4, a

Table 4. Convergence of p and energy E for the first H+
2 excited

state 1σu. The fifth column corresponds to the energy Ẽ obtained
with an improved (recalculated) basis.

Iteration p E (a.u.) p̃ Ẽ (a.u.)

0 1.485015 −1.10263 1.154791 −0.666771
2 1.175548 −0.690957 1.155444 −0.667525
4 1.155869 −0.668017 1.155451 −0.667534
6 1.154793 −0.666773
8 1.154791 −0.666771
Reference [27] 1.155452 −0.667534

very precise result with six significant figures is obtained
after only eight iteration steps. However, as we discussed
for the ground state, we can make the whole calcula-
tion even better, choosing the Sturmian energy value
from the last convergence step (ps = 1.154791, or Es =
−0.666771 a.u.) and recalculating the radial basis. In so
doing, the convergence is even faster, and only four iter-
ation steps are sufficient to reach the energy values given
by Scott [27].

The same procedure is repeated for the generation of
other excited states, such as 2σg and 2σu. In Table 5,
the energy results obtained with our iterative method
are displayed and compare very favourably with the
results obtained by Bian [6]. Note that the latter coin-
cide, up to the eighth decimal with those of Madsen and
Peek [30].

The radialU(ξ) and the angular�(η) solutions of the
four lowest states of H+

2 are shown, respectively, in Fig-
ures 4 and 5. The total wavefunctions for the excited states
1σu, 2σg and 2σu are shown in Figure 8 as a function of
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theCartesian coordinates (x, z).We recall that the density
is invariant under rotations around the z-axis.

3.3. Iterative 1d method for the asymmetric
molecular ions HHe+2 and HLi+3

We apply now our GSF approach to other monoelec-
tronic diatomic systems, such as the HHe+2 and HLi+3

molecular ions. For these heteronuclear ions, Z1 �= Z2
and thus a1 �= 0. In order to compare with other sam-
ple results published in the literature, we have kept the
internuclear distance fixed at R = 4 a.u. (for HHe+2 the
equilibrium value is around R = 3.89 a.u.). These molec-
ular ions are no longer symmetric along the z = 0 axis, so
that the angular representation in Legendre polynomials
requiresmanymore elements than the – symmetric –H+

2

Figure 7. Wavefunction ψ1σg converted to cartesian coordinates, for the H
+
2 ground state, calculated at four different internuclear dis-

tances, moving from the molecular ion H+
2 to the atomic ion He+: (top left) R = 2.0 a.u., (top right) R = 1.0 a.u., (bottom left) R = 0.4

a.u., (bottom right) R = 0.008 a.u. To better appreciate the evolution we have renormalised the wavefunctions.
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Table 5. Parameter A and energies E of the lowest energy states
of H+

2 calculated with our iterative GSF method. The fourth col-
umn corresponds to the energy Ẽ obtained with an improved
(recalculated) basis. The last column reports the energy values
found by Bian [6].

State A E (a.u.) Ẽ (a.u.) E (a.u.) Ref. [6]

1σg 0.8117 −1.102 −1.1026340 −1.10263421
1σu −1.8689 −0.667 −0.6675338 −0.66753439
2σg 0.2484 −0.3 −0.36081 −0.36086488
2σu −1.69179 −0.25 −0.25535 −0.25541317

case. This said the computational cost is not significantly
increased since all the angular integrals are analytical.
For the HHe+2 molecular ion, we used 20 angular and
6 radial basis functions. We performed an initial cal-
culation choosing the Sturmian energy Es = −3.0 a.u.,
obtaining a ground state energy E = −2.25060, a value
that was then recycled as the new Es. For the HLi+3

molecular ion, we used 100 angular and 6 radial basis
functions, starting with an initial guess Es = −5.0 a.u.,
obtaining E = −4.74968 a.u. then recycled as the
new Es.

The ground state wavefunctions of the heteronuclear
molecular ions are shown in Figure 9. The distribu-
tion of the electron density is now clearly asymmet-
ric, the logical shift towards the nucleus with a larger
charge being more evident as the Coulomb attraction
increases. The shape of the wavefunction acquires more
and more an atomic-like form centred on the heavier
nucleus with only relatively small values close to the
hydrogen nucleus. These features will obviously strongly
depend on the internuclear distance, here fixed at
R = 4 a.u..

Table 6 displays the calculated ground state energies,
whose absolute value increases approximately as Z2

2/2
with Z2 the charge of the heavier nucleus. The efficiency
of our method can be appreciated by giving a few num-
bers of other methods. The results given by Avery et al.
[31] were calculated with 10 basis elements (Coulomb
Sturmian functions) for each nucleus. Kereselidze et al.
[32] used 10 basis functions per nucleus (Coulomb Stur-
mian in prolate spheroidal coordinates). Xue–Bin Bian
[6] employed an imaginary-time-propagation method
based on a Crank–Nicolson scheme to solve the sep-
arate equations, using 20 B-splines of order 7 to solve
the radial equation, and 80 B-splines of order 7 for the
angular part. Campos et al. [33] used 22 functions per
coordinate. The aim of our calculation here was not to
obtain very high accuracies, but rather to demonstrate
that our simple and versatile method is computation-
ally more efficient when compared to other approaches.
If desired, we can achieve even better energy accuracies

Table 6. Ground state energies for the monoelectronic molecu-
lar ions: H+

2 , assuming an internuclear distance R = 2 a.u., and
HHe+2 and HLi+3, assuming an internuclear distance R = 4 a.u.

E1σgH
+
2 (a.u.) E1σ HHe+2 (a.u.) E1σ HLi+3 (a.u.)

This work −1.1026340 −2.2506056 −4.7501126
Avery [31] −1.10220 – −4.75011
Kereselidze [32] −1.102614 – −4.750111
Bian [6] −1.1026342 −2.2506054 –
Campos [33] – −2.2506054 −4.7501118

by improving the employed numerical methods (num-
ber of points or the finite differences order) or by tun-
ing the generating potential as to optimise the GSF
basis set.

4. Direct 2dmethod for the ground and excited
states of H+

2

Although we found excellent results with the iterative
method, we wish to exploit the full advantages of the
spectral method, which allows one to obtain many states
in one shot. The direct diagonalisation of a 2d Hamil-
tonian is generally very costly from the computational
point of view. Within the finite differences framework,
and taking into account that every coordinate has to be
represented by hundreds of points, the matrix becomes
huge and is intractable. A spectral method can reduce
significantly the size of the Hamiltonian matrix to diag-
onalise, but computationally it still represents a hard
task. Within the GSF method, the size of the matrices
are reduced even more, since the appropriate physical
behaviour is explicitly introduced in the basis set. In this
manner, the numerical treatment is optimised.

The use of expansion (29) on a two-dimensional
basis Sij(ξ , η) transforms the Schrödinger equation into
an equation (30) where all the derivatives have been
removed and replaced by simple expressions. Moreover,
since the basis functions are optimised, the size of the
basis is very small. For example, in our calculations, we
introduced only 18 functions (3 angular Saj (η) and 6
radial Sr

i (ξ) ). Finally, the direct diagonalisation of this
small matrix produces, as a result, 18 states simultane-
ously without the need to perform separate iterations for
each state.

We have applied our GSF direct 2d method to the
benchmark ion H+

2 , again taking R = 2 a.u.. With only
one diagonalisation we obtained the energy values dis-
played in Table 7. They compare very well with the results
of Madsen and Peek [30], following their states notation.
We should point out that our aim here was to produce
all the levels at the same time without a focus on a sin-
gle state. To generate the Sturmian basis, we chose here
the energy value Es = −0.2 a.u. which is clearly quite dif-
ferent from the ground state energy; it is an acceptable
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Figure 8. Wavefunctions for the first excited states 1σu, 2σg and 2σu of H
+
2 .

Table 7. Energies of seven energy states of H+
2 , obtainedwith the

GSF direct 2d method. The third column indicates the results of
Madsen and Peek [30]. Bothwere obtained for a fixed internuclear
distance R = 2 a.u.

State E (a.u.) E (a.u.) Ref. [30]

1Sσg -1.102630 -1.10263421
2Pσu -0.66753431 -0.66753439
2Sσg -0.360863 -0.36086488
3Pσu -0.25541312 -0.25541317
3Dσg -0.2357775 -0.23577763
3Sσg -0.1776 -0.17768105
4Pσu -0.133 -0.13731293

compromise that leads to a good precision for the whole
set of presented molecular states. The table shows that
it is possible to obtain excellent results, in particular for
the lower states, at a rather small computational cost. If
one wishes to improve the energy accuracy for one par-
ticular state, a different Sturmian energy Es closer to this
state energy should be chosen, as was shown in the 1d
method. Since the generation of a new Sturmian basis
requires one-dimensional calculations and the 2dmatrix
only has a few dozen elements, this further optimisation
procedure is rather inexpensive.
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Figure 9. Unnormalised ground state wavefunctions 1σ of HHe+2 (left) and HLi+3 (right), assuming an internuclear distance R = 4 a.u..

5. Conclusion

The spectral method, based on Generalized Sturmian
Functions, has been here extended, to allow its use
in prolate spheroidal coordinates which should pro-
vide, in principle, the most effective framework to treat
diatomic molecular systems. We developed and imple-
mented two different numerical methods for the cal-
culation of the molecular structure of monoelectronic
molecular ions.

The first one consists in separating the Schrödinger
equation in one angular and one radial equations, cou-
pled through the energy and a coupling parameter. The
equations are solved alternately, fixing the energy and the
coupling parameter in each case, and after a few itera-
tions, these parameters converged to the final values. The
advantage of using GSF is twofold. On the one hand, it
allows one the replacement of most of the Hamiltonian
calculations by a simple expression thus substantially
reducing the complexity of the calculation at any itera-
tion step. On the other hand, the GSFmethod is based on
the valuable property that the right boundary conditions
are enforced onto the basis functions. Therefore, the size
of the basis is minimal, turning the method in a very effi-
cient procedure that produces ground and excited states
of high quality.

The second method also uses GSF, and the angular
and radial basis sets are generated in the same way as in
the first one. Then, a two-dimensional basis set is con-
structed, and the Schrödinger equation solution becomes
a 2d generalised eigenvalues problem. Since the basis

elements have the correct boundary conditions, the size
of the basis is very small, and the diagonalisation is not a
costly procedure. This direct 2dmethod does not require
any iteration and a single calculation yields – simultane-
ously – many molecular states. Very good results can be
obtained already with small basis set size. Both methods
are computational efficient, but a quantitative compari-
son is not appropriate. Indeed, in the 1d iterativemethod,
the GSF basis is generated as to focus on one particu-
lar state and great accuracy can be achieved. In contrast,
the direct 2dmethod uses the same GSF basis to obtain a
set of orthogonal bound states, and thus provides richer
results albeit of relatively inferior accuracy. Besides, the
spectrum obtained by diagonalisation may include dis-
cretised states of the continuum which can be useful for
collision studies. In other words, one may state that the
1d iteration method is optimal to focus on a specific
state while the 2d method provides a global view of the
spectrum.

As a first step towards the extension of theGSFmethod
to diatomic molecules, we have presented here an inves-
tigation of molecular ions having only one electron. We
calculated the ground and excited states of the molecular
hydrogen ion H+

2 , in excellent agreement with bench-
mark results (7 significant figures in the case of the
ground state). We also studied heteronuclear molecu-
lar ions, like HHe+2 and HLi+3, with again excellent
results. Themethod proved to be robust over awide range
of internuclear distances R, including in the notoriously
difficult atomic limit.
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The whole numerical investigation gives us confi-
dence in our implementation of the GSF method in pro-
late spheroidal coordinates, as to contemplate exploring
the continuous part of the spectrum. As demonstrated
for atomic systems, the advantages of the GSF spectral
method are more evident in the treatment of collision
problems. In this case, the continuum Sturmian basis
elements are generated with a positive energy parame-
ter Es and one imposes appropriate scattering boundary
conditions. As a consequence, the basis needs to solve
the Schrödinger equation only in the interaction region.
Scattering problems involving one or two electrons in the
continuum can then be treated efficiently with compact
bases [16,18–20]. The same arguments apply to diatomic
molecular systems, and we plan to extend the present
investigation in prolate spheroidal coordinates to scat-
tering problems such as single or double ionisation by
photon or electron impact. First, we will examine the sin-
gle continuum by studying the single photoionisation of
the benchmark one-electron molecular ion H+

2 ; then, we
will move to the more challenging two-electron corre-
lated case, by investigating single and double ionisation
processes on H2 and on quasi two-electron targets like
N2 as done for example in [34,35].
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