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bstract

Two particle Sturmian functions [M. Rotenberg, Ann. Phys., NY 19 (1962) 262; S.V. Khristenko, Theor. Math. Fiz. 22 (1975) 31 (Engl. Transl.
heor. Math. Phys. 22, 21)] for a short range potentials are obtained by expanding the solution of the Schrödinger equation in a finite L2Laguerre-

ype basis. These functions are chosen to satisfy certain boundary conditions, such as regularity at the origin and the correct asymptotic behavior
ccording to the energy domain: exponential decay for negative energy and outgoing (incoming or standing wave) for positive energy. The set
f eigenvalues obtained is discrete for both positive and negative energies. This Sturmian basis is used to solve the Schrödinger equation for

one-particle model potential [A.V. Sergeev, S. Kais, J. Quant. Chem. 75 (1999) 533] to describe the motion of a loosely bound electron in a
ultielectron atom. Values of the two parameters of the potential are computed to represent the Helium isoelectronic series and the critical nuclear

harge Zc is found, in good agreement with previous calculations.
2007 Elsevier B.V. All rights reserved.
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. Introduction

The Sturmian functions [1,2] for a two-body system are of
articular interest in atomic physics. These functions are solu-
ions of the two-body Schrödinger equation for some physical
otential, where the energy is fixed and the strength of the poten-
ial is the eigenvalue. Besides, they satisfy a set of boundary
onditions of the physical problem to be solved. Negative energy
turmians that decay exponentially at large distances make a
iscrete basis for negative energies, and have been widely used
n atomic physics to determine atomic energy levels [4–6], or
o expand the Coulomb Green function (see [7] and references
herein).

Meanwhile, at positive energies, Sturmian functions might be

efined to satisfy outgoing, incoming or standing wave bound-
ry conditions. The spectrum of eigenvalues thus depend on the
hoice of the asymptotic behavior of the eigenfunction. Ovchin-
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ur, Bahı́a Blanca, Argentina.
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ikov and Macek [8] obtained a discrete set of eigenvalues for
urely outgoing wave Sturmians, however this functions became
nbounded as r increased. Rawitscher [9] was able to define a
et of Sturmians with outgoing wave condition even in the case
here a long range potential was present, showing that they

onstitute a discrete basis set with discrete eigenvalues.
Following this approach, we propose a systematic method to

btain Sturmian functions for both negative and positive ener-
ies, expanding the solution of the radial part of the Schrödinger
quation in a L2 Laguerre-type basis set. The use of the Green’s
unction ensures the asymptotic behavior in the entire energy
omain. This basis set is therefore suitable for constructing the
ave function of a given scattering problem for both long range
oulomb potentials or short range potentials.

In Section 1 of this paper we present a brief review of the
turmian theory and an analysis of the different asymptotic
ehavior according to the energy domain. In Section 2 we
utline the general method to expand the two-particle Sturmian

unctions in terms of Laguerre-type basis, and obtain orthog-
nality and closure relations restricted to a finite subspace.
umerical results for a Coulomb well potential are shown for
oth negative and positive energies. In Section 3 we use the

mailto:afrapic@uns.edu.ar
dx.doi.org/10.1016/j.elspec.2007.02.021
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egative energy Sturmian theory to study the bound states of a
otential proposed by Kais and Sergeev [3], which represents
he one active electron model for an N-electron atom. We also
nd the value of the critical charge, that is, the minimum charge
ecessary to bind the electrons, for the He-isoelectronic series.
inally, in Section 4 we present the summary of our work, draw
ome conclusions and suggest some applications. Atomic units
re used unless otherwise stated.

. Theory of Sturmian functions

The Sturmian functions for a two-particle system interacting
hrough a general short range potential V (r̄) satisfy the equation
9]

− 1

2μ
∇2

r + V0 − E

]
Φ(r̄) = −βνV (r̄)Φ(r̄) (1)

ubject to appropriate physical boundary conditions. The first
erm in the left hand side of Eq. (1) represents the kinetic energy
f the system, V0 is either a long range potential (such as a
oulomb potential) or zero (free particle), E the energy, consid-
red a fixed parameter and βν, the strength of the potential, is
he eigenvalue to determine. For a spherically symmetric poten-
ial, separation of variables can be performed, which leads to the
adial Schrödinger equation

H0 − E]yν
l (r) = −βνV (r)yν

l (r) (2)

here the H0 is given by

0 = − 1

2μ

d2

dr2 + l(l + 1)

2μr2 + V0 (3)

To complete the formulation of this Sturm–Liouville prob-
em, it is necessary to add two boundary conditions, which will
e defined according to the energy domain.

The first boundary condition requires that the Sturmians func-
ions should be regular at the origin for both negative and positive
nergies,

ν
l (r) = 0, when r = 0. (4)

The second boundary condition defines the asymptotic
ehavior of the functions, depending on the energy E of the
ystem. At negative energies, Sturmians must behave as bound
tates and decrease exponentially,

ν
l (R) → 0, for R → ∞. (5)

Besides, there are different choices for positive energies: out-
oing, incoming or standing wave asymptotic condition. The
rst two options can be summarized by writing the boundary
ondition as

ν(R) = H±(R), for R → ∞, (6)
l l

here H±
l is the usual outgoing (incoming) Coulomb or free

ave function depending on the form of V0. The separation of
he entire potential in long (V0) and short (V) range effects has

w

T
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he advantage of including the correct asymptotic behavior in
he resulting function. The standing wave Sturmian is

ν
l (R) = 0, when R → ∞. (7)

For large but finite values of R, Eq. (2) together with bound-
ry conditions at r = 0 and R, define a Sturm–Liouville problem
hich leads to a discrete set of eigenvalues βν and eigenfunc-

ions yν
l with ν = 1, 2, . . . For negative energy and positive

nergy standing wave Sturmians, the spectrum of eigenvalues
s real, while for outgoing or incoming positive energy Sturmi-
ns the spectrum is complex. Thus, these Sturmian functions
efine a complete discrete basis with orthogonality and closure
roperties

yν′
l |V |yν

l 〉 =
∫ ∞

0
dr yν′

l (r)V (r)yν
l (r) = δν′,ν (8)

ν

yν
l (r′)V (r)yν

l (r) = δ(r′ − r) (9)

Using the definition of the Green’s function

E − H0]G0(r, r′) = δ(r′ − r), (10)

Eq. (2) is transformed into an integral equation of the form

ν
l = βνG0Vyν

l (11)

The use of the Green’s functions ensures the correct asymp-
otic behavior of the resulting Sturmian function yν

l , provided
hat the long range effects of the Coulomb potentials are included
n G0.

. Sturmians in a L2 Laguerre-type basis set

To solve the integral equation defined in Eq. (11), we consider
finite, Laguerre-type basis set with a free, real parameter λ

n,l(r) = e−λr(2λr)l+1L2l+1
n (2λr), (12)

here Lα
n are the generalized Laguerre polynomials [10]. We

xpand the Sturmian function, solution of Eq. (2) as

yν
l 〉 = Al,ν

∞∑
n=0

aν
n,l|ϕn,l〉. (13)

The Laguerre basis is orthogonal with weight functionw(r) =
/r:

ϕm,l

∣∣∣∣1

r

∣∣∣∣ ϕn,l

〉
= δm,n

Γ (2l + 2 + n)

n!
. (14)

We replace the Laguerre representation of |yν
l 〉 in Eq. (11)

nd project onto 〈yν′
l |1/r, to obtain a set of equations given by

ν
m,l = βν

N−1∑
n=0

aν
n,lTm,n (15)
here the matrix elements (T)m,n = Tm,n are

m,n = m!

Γ (2l + 2 + m)

〈
ϕm,l

∣∣∣∣1

r
G0V

∣∣∣∣ ϕn,l

〉
(16)
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Table 2
Absolute value of the first six eigenvalues for the Coulomb well potential with
E = 1.1 a.u., ρ = 20 and l = 0

N = 80 N = 100 N = 120 Exact |βν|
0.907 0.889 0.876 0.882
0.970 0.964 0.953 0.946
1.607 1.586 1.577 1.594
1.640 1.645 1.639 1.624
2.661 2.670 2.665 2.647
2.805 2.779 2.774 2.798
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Furthermore, Eq. (15) can be simplified using the expansion
f the Green’s function in the Laguerre basis

0 =
∞∑

j,j′=0

|ϕj′,l〉gj,j′ 〈ϕj,l|. (17)

The asymptotic behavior of G0 is now included in the matrix
lements gj,j′ . For positive energies the outgoing Green’s func-
ion is given by [11]

+
j,j′ = −λpl

j<
(E; λ)q+l

j>
(E; λ)

(E + λ2/2)(j + 1)2l+1(j′ + 1)2l+1
(18)

here j< and j> are the lesser and greater of (j, j′), (n)l the
ochhammer symbol and pl

j and q+l
j are the regular and irreg-

lar Pollaczek polynomials [11]. The extension of the Green’s
unction G+

0 to negative energies gives the correct asymptotic
ehavior for this energy domain. Using expression (17) in (15)
he elements Tm,n can be written as

m,n =
∞∑

j=0

gj,m〈ϕj,l|V |ϕn,l〉. (19)

The matrix T of size N × N, has complex elements in the
utgoing, positive energy case and real for negative energies.

For example, we calculate the Sturmian functions corre-
ponding to a Coulomb well auxiliary potential

(r) =
⎧⎨
⎩

−1

r
, if r < ρ

0, if r > ρ

(20)

nd a Coulomb potential V0 = −1/r. We use this potential to
est our method, since this problem has a well-known analyti-
al solution. We solve the Schrödinger Eq. (2) for each region
efined by the range of V. We match both solutions at r = ρ,
ith appropriate boundary conditions for the inner (regular at

he origin) and outer (exponential decay for negative energy and
utgoing wave for positive energy) regions.

First we compare the eigenvalues obtained numerically with
he exact ones for a negative energy in Table 1 and positive
nergy in Table 2, and study its convergence as the number N of
lement basis increases. We use λ = 2.1 in all the calculations.
At negative energies we see fast convergence of the first six
igenvalues, which are real and positive; and convergence is uni-
orm for increasing N. For positive energies, the requirement of
utgoing wave asymptotic condition gives complex eigenvalues,

able 1
irst six eigenvalues for the model potential (20) compared to the exact ones for
= −1.1 a.u., ρ = 20 and l = 0

= 10 N = 20 N = 50 Exact βν

.483 0.483 0.483 0.483

.967 1.967 1.967 1.967

.477 3.476 3.476 3.476

.156 5.152 5.151 5.151

.236 7.217 7.216 7.215

.834 9.775 9.772 9.770
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ig. 1. Sturmian function for the Coulomb well potential with ρ = 5 and E =
1.1 a.u. for βν = 9.770. The full line is the exact solution and the dashed-dotted

ine the Sturmian for N = 10.

ith negative imaginary part, and the absolute value is given in
able 2. Convergence is achieved increasing the number of ele-
ent basis, and it does not appear to be a uniform rule as in the

egative energy case. The Sturmian functions for a given eigen-
alue are shown in Fig. 1 (negative energy) and Fig. 2 (positive
nergy), where in both cases we observe good convergence as
increases.

. One electron model

In this section we study the Sturmian functions for a one
ctive electron model potential of the form [3]

(r) = −1

r
+ γ

r
(1 − e−δr) (21)

n the negative energy range. This potential is used to approxi-
ate the interaction between a loosely bound electron and the

tomic core in a multielectron atom. For a N-electron atom with
uclear charge Z, this effective potential must tend to −Z/r at
mall distances and to (−Z + N − 1)/r as r increases. After the
caling transformation r = Zr′, the potential tends to −1/r at
mall r and (−1 + (N − 1)/Z)/r for large r. Then, defining the
ree parameter γ in Eq. (21) as γ = (N − 1)/Z, gives the correct
imiting behavior of the effective potential.

If we split the potential in Eq. (21) as V0 = −1/r and

= (1 − e−δr)/r, we will see that the free parameter γ can

e considered as the eigenvalue of the problem as in Eq. (2).
hus now we fix a negative energy and study the behavior of

he “charge” γ = βν. As a first step we study the eigenvalues as
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Fig. 3. (a) Real part and (b) imaginary part of the eigenvalues for potential of
Eq. (21) as a function of the energy for different values of δ for 1s states.
ig. 2. Real (a) and Imaginary part (b) of the Sturmian function for the Coulomb
ell potential with ρ = 20 and E = 1.1 a.u. for βν = 0.270744 − i0.838841.
he full line is the solution for N = 120 and the dashed line is the exact Sturmian.

function of the energy for different parameters δ. To this end,
e define a critical screening parameter δc, such that the largest
ound-state energy level is exactly zero. It has been determined
hat δc = 1.1906 for 1s states and δc = 0.2202 for 2p states
12].

The results for 1s and 2p charge states are shown in
igs. 3 and 4. In the energy region where βν ≈ 1, V (r) behaves

ike a pure Yukawa potential. Then, the eigenvalues βν(E)
epend strongly on the value of δ. If δ < δc, then we may
nd another bound state for βν > 1. However, if δ > δc when
ν ≈ 1, the potential can not support another negative energy
tate. In this case, the eigenvalue tends to the Coulomb form
ν = 1 − n

√−2E, as δ increases, where n here stands for the
nergy level quantum number. Meanwhile, we can see that for
he positive energies, the charges become complex with posi-
ive imaginary part, meaning that the effective potential is now
complex and emitting one.

The model potential (21) may be used to map any isoelec-
ronic series for an N-electron atom, since when γ = βν =
N − 1)/Z, the eigenvalue represents the scaled charge of an
tomic system. The free parameter δ is then fixed such that for the
orresponding scaled ionization energy of the outer electron, the
caled charge of this atom is an eigenvalue. In Fig. 5 we show the

arameter δ as a function of the scaled ionization energy [13,14]
or the He-isoelectronic series in its ground state. The numeri-
al results for the series were fitted with a function obtained by
he study of the eigenvalues as a function of the energy and the

Fig. 4. (a) Real part and (b) imaginary part of the eigenvalues for potential of
Eq. (21) as a function of the energy for different values of δ for 2p states.
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Fig. 5. Free parameter δ as a function of the ionization energy for the He-
isoelectronic series from [13,14].
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ig. 6. Charge eigenvalue as a function of the ionization energy for the He-
soelectronic series.

arameter δ. The plot shows a strong non-linearity in the vicinity
f EI = 0, where the system passes to the continuum.

Using δ(E) to map the series, we can extrapolate the value
f the critical charge Zc, the minimum charge necessary to bind
he electrons. According to this one electron scaled model, the
ritical charges are found from γc = (N − 1)/Zc, the extrapo-
ated eigenvalue for which EI = 0. Fig. 6 shows the plot of the
igenvalues as a function of the energy for the He-isoelectronic
eries, and the extrapolated critical charge is
c = 0.917 (22)

hich agrees very well with the values obtained by Kais and
ergeev [3] and Hogreve[15] of Zc = 0.912.

[

[
[
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. Conclusions

We presented a method to find Sturmian functions with
given asymptotic condition for both negative (exponential

ecay) and positive (outgoing, incoming or stationary) ener-
ies expanding the solution in a L2 Laguerre-type basis set.
he example presented here showed that our numerical results
onverge to the exact negative and positive energy (with outgo-
ng wave condition) solution for a Coulomb well potential. The
dvantage of this method is that it provides a systematic way to
nd the Sturmian functions for almost any auxiliary potential,
nd provides the correct asymptotic behavior in the entire energy
omain.

The model potential for an N-electron atomic system in the
rame of one active electron model proposed by Kais and Sergeev
3], Eq. (21) was studied by fixing the energy and taking the
arameter γ as the eigenvalue, obtaining the Sturmian functions
or this potential. To study a given atomic system, the energy
s fixed to be the ionization energy, and the free parameter δ is
hosen such that γ = (N − 1)/Z is an eigenvalue. This allowed
s to find a representation of an N-electron atom of nuclear
harge Z using the Sturmian theory. Numerical results for the H
-isoelectronic series (N = 2) were found for the value of the
arameter δ as a function of the energy. These results were also
tted to extrapolate the behavior of the eigenvalue as EI → 0.
nd used to obtain the critical charge for the He-isoelectronic
eries. This procedure suggests that one can obtain a significant
hysical information from the Sturmian functions, going beyond
he simple use of them as a basis set to re-expand a wave function.
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