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Abstract
The propagation in time of a wavepacket is a conceptually rich problem
suitable to be studied in any introductory quantum mechanics course. This
subject is covered analytically in most of the standard textbooks. Computer
simulations have become a widespread pedagogical tool, easily implemented
in computer labs and in classroom demonstrations. However, we have detected
issues raising difficulties in the practical effectuation of these codes which are
especially evident when discrete grid methods are used. One issue—relatively
well known—appears at high incident energies, producing a wavepacket slower
than expected theoretically. The other issue, which appears at low wavepacket
energies, does not affect the time evolution of the propagating wavepacket
proper, but produces dramatic effects on its spectral decomposition. The origin
of the troubles is investigated, and different ways to deal with these issues
are proposed. Finally, we show how this problem is manifested and solved
in the practical case of the electronic spectra of a metal surface ionized by an
ultrashort laser pulse.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The propagation of a one-dimensional wavepacket by the time-dependent Schrödinger
equation has become a standard pedagogical tool for any undergraduate quantum physics
course. It allows the visualization of many of the elementary concepts of quantum mechanics.
In the first place, it is a vivid representation of the way in which the Schrödinger equation
plays a role logically analogous to Newton’s second law: given suitable initial conditions for
the wavefunction, they determine the wavefunction for all future time [1]. Many fundamental
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concepts of quantum theory, such as wave–particle duality, the uncertainty principle and the
meaning of the wavefunction, can easily be illustrated by using a wavepacket example. The
conceptual richness of its time propagation helps to understand basic but not straightforward
concepts like the meaning of the representation of a particle as a combination of waves, the
differences between phase and group velocities, and the spreading of a wavepacket, among
many others. Moreover, the application of simple visualization techniques allows one to
depict in a very comprehensible way phenomena such as tunnelling, resonances, coherent and
squeezed states, rebounding and revivals. In such cases, the notions gained by watching a
movie can hardly be obtained by other means.

Remarkably, the time evolution of a wavepacket can be implemented with simple
computer simulations; it does not require any sophisticated programming techniques or costly
computational resources. A wide bibliography with all the details required for the calculations
is available [2–8]. In general, by choosing adequate parameters for the time-step evolution,
most of the codes can be robust, even if one includes potential barriers or wells to show the
transmission, reflection and resonance phenomena.

Therefore, this subject is an excellent candidate for producing an ‘on the fly’ demonstration
in the classroom. However, there are some important issues that one should be aware of in order
to avoid odd results. The first issue may appear when one is interested in the calculation of
the velocity of the propagated wavepacket. In general, a wavepacket slower than theoretically
expected may be found. The higher the energy of the incident wavepacket, the more evident
the retardation effect. This problem is relatively well known, and has both a simple explanation
and solution, as discussed in section 2. We present here another issue, which appears mainly
at low incident energies. It does not affect the time evolution of the propagated wavepacket
proper, but produces dramatic consequences in its spectral decomposition. When looking at
the coefficients of the expansion of the wavepacket on a stationary eigenfunction basis, the
resulting spectrum may be far different from expected, and will in general be contaminated by
spurious and huge oscillations. Finally, in section 4, we show how this problem is manifested
and solved in the practical case of the electronic spectra of a metal surface ionized by an
ultrashort laser pulse.

Atomic units are used throughout this work, so the velocity v, the momentum p = mv

and the wave number k = p/h̄ are numerically indistinguishable.

2. Problems in the propagation of high-energy wavepackets

In this section, we will analyse the simplest quantum-mechanical scattering case, which is
a localized one-dimensional wavepacket moving towards a region where a potential exists.
The wavepacket is initially centred at some position x0 with a spatial spread σx and having an
average wave number k0, which is also (in the units used) the initial velocity of the packet.
This analysis requires the solution of the time-dependent Schrödinger equation

i
∂�(x, t)

∂t
= Ĥ�(x, t)

= −1

2

∂2�(x, t)

∂2x
+ V (x, t)�(x, t), (1)

which determines completely the time evolution of the initial wavepacket.
The more instructive way to solve the Schrödinger equation (suitable for a quantum

mechanics course) is via a finite difference method that transforms the differential problem
into an algebraic problem. First, the wavefunction is discretized in a numerical grid, and the
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spatial interval [xmin, xmax] is divided into equidistant points with a mesh size �x, resulting in
the grid

xmin = x1, x2, . . . , xN = xmax. (2)

The time is also discretized, so the various t values become tn = n�t . We denote by

φi
j = �(xj , ti) (3)

the value of the discretized wavefunction at point xj and time ti. In this discrete notation, the
first-order approximation of the Hamiltonian in equation (1) becomes

Ĥφi
j = −φi

j+1 + 2φi
j − φi

j−1

2�x2
+ V i

j φi
j , (4)

where V i
j = V (xj , ti). Using this approximation, the Hamiltonian is represented by a tri-

diagonal matrix, usually known as a three-point spatial stencil.
Many simple computer algorithms can be used for the study of a wavepacket propagated

in time. The problem we are analysing does not relate to the particular scheme used for the
time propagation, regardless of whether they are explicit or implicit algorithms. It appears
in any numerical calculation, ranging from the simplest Euler propagation scheme to Crank–
Nicolson, split-operators or leap-frog methods. It even appears if a time-independent potential
is assumed. Therefore, for the sake of simplicity, we will illustrate the different features in the
simplest case, a wavepacket propagated in a zero potential (V (x, t) = 0).

If the evolution occurs in a potential-free region, the group velocity should be the same at
any time. A good test for the numerical method used in the propagation is to watch the position
of the wavepacket at different times. That should give the group velocity of the packet, which
must correspond to its incident energy. However, we present here an issue that appears at
high incident energies where, in general, a wavepacket slower than theoretically expected is
obtained. The higher the energy of the wavepacket, the more evident the retardation effect.
As an example, we consider the following incident Gaussian wavepacket:

�(x, t = 0) = 1√√
πσx

e− 1
2 (

x−x0
σx

)2+ik0x (5)

where the wavepacket width σx = 1 au, its initial position x0 = 10 au and the initial velocity
k0 = 10 au. In the following calculations, a numerical grid of N = 500 points with a spatial
discretization of �x = 0.06 au is used.

The numerical probability density |�|2 of the propagated wavepacket is plotted in
figure 1(a), at successive times t = 0, 0.15, 0.3, 0.45, 0.6 and 0.75 au. For each time,
the analytical results are also plotted for comparison, showing a slight retardation of the
numerically propagated waves.

As shown in the analytic results, the centre of the wavepacket should be located, at
t = 0.75 au, at a position x = 17.5 au. However, the curve showing the numerical result at
this time has its maximum at x ≈ 17.05 au. The probability density of the Fourier transform
of the propagated wavepacket (which results in the same picture at any time) is shown in
figure 1(b). As expected, the transformed wave is another Gaussian, centred at k0 = 10 au
and having a width σk = 1

σx
= 1 au.

A more dramatic case is shown in figure 2(a) where the initial wavepacket velocity is
k0 = 45 au. The figure shows that at time t = 0.75 au, the centre of the wavepacket is
displaced about 5.3 au from the origin, which means a velocity of v ≈ 7.15 au, roughly six
times smaller than the theoretical value. The Fourier transformed wavepacket is shown in part
(b) of the figure, but again, it does not give any clue regarding the origin of the discrepancies
in the velocities.
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Figure 1. (a) Propagation of a free wavepacket having an initial position x0 = 10 au, a spatial
width σx = 1 au and an initial velocity k0 = 10 au. The numerical method employed used a first-
order approximation for the spatial derivatives, with a grid size of �x = 0.06 au. Solid curves:
numerical propagation at times t = 0, 0.15, 0.3, 0.45, 0.6 and 0.75 au. Dotted lines: analytical
results. (b) Momentum distribution of the same wavepacket.

10 20 30 40
x (a.u.)

0

0.1

0.2

0.3

0.4

0.5

|ψ
 |2

(a)

42 43 44 45 46 47 48
k (a.u.)

0

0.1

0.2

0.3

0.4

0.5

|ϕ
k |2

(b)

Figure 2. (a) Propagation of a free wavepacket having an initial position x0 = 10 au, a spatial
width σx = 1 au and an initial velocity k0 = 45 au. The numerical method employed used a first-
order approximation for the spatial derivatives, with a grid size of �x = 0.06 au. Solid curves:
numerical propagation at times t = 0, 0.15, 0.3, 0.45, 0.6 and 0.75 au. Dotted lines: analytical
results. (b) Momentum distribution of the same wavepacket.

In order to summarize the different results, we have calculated (using a three-point spatial
stencil) the numerical velocities vnum (given by the ratio between the position of the centre
of the wavepacket and the time), and compared them with the incident wavepacket velocities
v. These results are shown in figure 3, where the retardation of the numerical wavepackets
becomes clear.

The curve vnum versus v is sinusoidal, instead of being a straight line. That means that
only for low velocities does the numerical propagation produce reasonable results. We found
that the numerical propagated wavepacket reaches the maximal velocity at an incident velocity
vnum = 26.17 au. Moreover, for a wavepacket having a theoretical initial velocity of v =
52.36 au, its numerical propagation will result in a standing wave. Even worse, for higher
initial velocities, the wavepacket will propagate in the opposite direction!

The origin of the problems is related to the discretization of the space coordinate, which
is mandatory in any numerical grid method. This imposes the impossibility of representing
a wave having a wavelength smaller than the discretization size of the numerical grid. In an
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Figure 3. Numerical velocities vnum of the propagated wavepacket (first-order approximation for
derivatives and �x = 0.06 au), compared with the theoretical results v.
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Figure 4. (a) Propagation of a free wavepacket, having an initial position x0 = 10 au, a spatial
width σx = 1 au and an initial velocity k0 = 52.36 au. The numerical method employed used a
first-order approximation for the spatial derivatives, with a grid size of �x = 0.06 au. Solid curves:
numerical propagation at times t = 0, 0.15, 0.3, 0.45, 0.6 and 0.75 au. Dotted lines: analytical
results (only for t = 0, 0.15 and 0.3 au). (b) Momentum distribution of the same wavepacket.

infinite square well potential of width L, the wave number kn = π
L
n. Thus, the maximum

momentum that can be described with a numerical grid having a mesh size �x is given by3

kmax = π

L
nmax = π

�x
. (6)

If the initial wavepacket contains wave components having a momentum similar to or larger
than this limit, the results of the evolution will not match that obtained from the analytical
solution of the Schrödinger equation.

In our numerical calculations (with �x = 0.06 au), the maximum momentum allowed
by equation (6) is kmax = 52.36 au. The time evolution of a wavepacket having that incident
velocity value is shown in figure 4(a), where the numerical wavepacket is indeed a wave with
zero velocity.

3 We want to note that in our numerical results using a first-order approximation for the spatial derivatives, the
wavenumber of the highest energy level obtained in the diagonalization of the Hamiltonian tends to kh = 2

�x
, rather

than the kmax value expressed in equation (6).
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The numerical Fourier transform of a given function can be quite different from the
mathematical one. That is well illustrated in figure 4(b), where the aliasing effect occurs as a
consequence of trying to represent frequencies higher than the Nyquist frequency (the highest
frequency that can be coded at a given sampling rate in order to be able to fully reconstruct
the signal [9]). Any component of the wavepacket having a wavenumber ki outside the
(−π/�x, π/�x) interval is treated as ki = k′

i + 2πn/�x, with n being an integer such that
k′
i ∈ (−π/�x, π/�x). That produces a chopping in the high-energy components of the

wavepacket, reducing the global group velocity.
The Fourier transformed wavepacket should be well represented in the numerical grid.

Denoting as km the largest momentum present to any appreciable extent in the wavepacket,
e.g.

km ≈ k0 + 2σk, (7)

it is obviously mandatory that

km < kmax (8)

which is equivalent to imposing a limitation in the wavepacket velocity

v <
π

�x
− 2

σx

. (9)

That condition is largely fulfilled in the cases presented in figures 1 and 2, that, however, show
a considerable retardation of the wavepacket evolution. The discretization scheme used in the
calculations requires additional conditions to be satisfied in order to avoid this problem.

Considering the free wavepacket propagation with no potential at all, the solution of the
Schrödinger equation for the k wave

Ĥφk = −1

2

∂2

∂x2
φk(x) = k2

2
φk(x) (10)

is a plane wave

φk(x) = sin kx. (11)

Using a first-order approximation for the spatial derivatives and denoting the discretized wave
φ

j

k = φk(xj ) = sin kxj ,

∂2

∂x2
φk(xj ) ≈ φ

j+1
k − 2φ

j

k + φ
j−1
k

�x2
= 2 sin kxj (cos k�x − 1)

�x2
. (12)

For a small k�x this may be approximated by

∂2

∂x2
φk(xj ) ≈ k2

(
(k�x)2

12
− 1

)
sin kxj . (13)

In order that equation (4) be an accurate approximation for every wavepacket component, even
for the largest km, i.e.

−k2
m sin kmxj ≈ k2

m

(
(km�x)2

12
− 1

)
sin kmxj , (14)

the condition

�x �
√

12

km

(15)

must be satisfied.
Understanding the origin of this problem allows for its simple solution, i.e. to reduce the

numerical grid discretization size. However, there is another way to solve this problem, and
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Figure 5. Propagation of a free wavepacket, having an initial position x0 = 10 au, a spatial width
σx = 1 au and an initial velocity k0 = 30 au. The numerical method employed used a grid
size of �x = 0.06 au. Solid curves: numerical propagation at times t = 0, 0.15, 0.3, 0.45, 0.6
and 0.75 au. Dotted lines: analytical results. (a) First-order approximation for the second-order
spatial derivative (tri-diagonal matrix). (b) Five-point approximation for the second-order spatial
derivative (penta-diagonal matrix). (c) Seven-point approximation for the second-order spatial
derivative. (c) 15-point approximation for the second-order spatial derivative.

it consists of improving the spatial scheme for the finite-difference approximation. Replacing
the tri-diagonal matrix used in the representation of the Hamiltonian by a penta-diagonal
or a higher order approximation for the second-order derivatives improves dramatically the
achievable precision without adding any important amount of computational time (see, for
example, [10] and [11] with references within). For our concerns, these improved space-
discretization schemes have another beneficial effect. The three-point approximation for the
second-order spatial derivatives cannot resolve the Fourier components that do not fulfil the
condition given in equation (15). However, a higher order scheme will allow us to resolve
higher frequency components. Thus, these schemes displace the high-energy component
cutoffs to higher energies. As an example, in figure 5 we show the propagation of the same
free wavepacket of the previous figures, but now the initial velocity is k0 = 30 au. A numerical
method using a first-order (three-point) approximation for the second-order spatial derivative
(as shown in figure 3) produces a propagated wavefunction with a velocity vnum = 16.2 au.
The propagated wavepacket at different times is shown in part (a) of figure 5, together with
the analytical results. Improving the spatial derivatives scheme will reduce the delay of the
time propagation, although we are still using the same numerical grid. For example, in part
(b) of the same figure the results of a numerical propagation which uses a five-point matrix
representation are shown. In this case, the velocity vnum = 22.7 au is much closer to the
expected value of v = 30 au. We can improve the calculations even more, as shown in part
(c) of the figure, where a seven-point approximation propagates the wavepacket with vnum =
26.1 au. In part (d) of the same figure, a 15-point approximation is used, producing a
wavepacket propagated with vnum = 29.6 au.

3. Problems in the propagation of low-energy wavepackets

A different kind of problem appears in the propagation of low-velocity wavepackets. These
problems are more elusive, since they do not occur in the propagation itself, but in the spectral
projection. Let us first discuss the case in which the potential V in equation (1) is independent
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of the time t. In that case the Schrödinger equation is separable and the solution can be written
as

�(x, t) = ϕ(x) f (t). (16)

The separation of variables leads to convert the time-dependent Schrödinger equation into two
ordinary differential equations [1]. The solution of the equation dependent on time is

f (t) = e−iEt (17)

where the energy E is the separation constant. The spatial equation is the time-independent
Schrödinger equation

Ĥ (x)ϕ(x) ≡ −1

2

d2ϕ(x)

dx2
+ V (x)ϕ(x) = Eϕ(x). (18)

In order to distinguish the various possible values of the energy E (and their corresponding
eigenfunctions ϕ(x)), we label them with an index k. Thus, we have

Ĥ (x)ϕk(x) = Ekϕk(x). (19)

For simplicity, we assume a Hermitian, non-degenerate Hamiltonian H with a discrete
spectrum. Then, any spatial wavefunction ψ(x) can be written as a linear combination
of the energy eigenstate basis functions, i.e.

ψ(x) =
∑

k

ck ϕk(x), (20)

where

ck = 〈ψ(x)|ϕk(x)〉. (21)

If the Hamiltonian is not an explicit function of time, this expansion is also useful to provide
the evolution in time of any quantum state. Denoting

�(x, t = 0) ≡ ψ(x), (22)

then, this initial state evolves in time as [12, 13]:

�(x, t) =
∑

k

ck e−iEktϕk(x). (23)

The procedure can easily be generalized to the case where the spectrum of H is continuous.
In that case, the expansion becomes, with obvious notation,

�(x, t) =
∫

cE e−iEtϕE(x) dE. (24)

Expansion (23) is a fundamental concept of quantum theory, and provides a very simple way
to perform the time evolution of a quantum system. Pedagogically, this expansion helps to
understand many concepts related to the dynamics of a quantum system—from the spreading
of a wavepacket to coherent states—and many elementary examples can easily be provided
(see, for instance, simple Mathematica examples in [14]). The projection coefficients ck are
very useful for many reasons. If the Hamiltonian does not depend on time, checking the
invariance of the expansion coefficients at different steps of the temporal evolution should
provide a good quality test of the numerical methods employed and the eigenfunctions used.
For potentials depending on time like those used in collision processes, these coefficients are
fully related to the probability yield of the different inelastic channels. In the last part of this
work we show the electronic spectra of a metal surface ionized by an ultrashort laser pulse.
These spectra are obtained by plotting the coefficients ck as a function of the emitted electron
energy.
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Figure 6. (a) Initial wavepacket equation (5), for k0 = 0.5 au, centred at x0 = 33 au. The box
containing the numerical grid is also shown in the figure. (b) Numerical spectral decomposition
(equation (21)) of this initial wavepacket. Smooth curve: proper results.

The Schrödinger equation is a partial differential equation, normally defined on an
unbounded domain with definite boundary conditions (for bound states, they tend to zero
towards the end of the domain). In order to make the calculations feasible for numerical
treatment it is necessary, in general, to restrict the original problem to a finite interval.
Moreover, the energy eigenvector basis set can be infinite dimensional; therefore, a truncation
of expansions like (23) is mandatory for any practical numerical calculation. A simple and
pedagogical way to conform both restrictions is by using a finite difference method representing
the Hamiltonian by a matrix, as shown in equation (4) and explained in section 2. Thus, the
simplest recipe to propagate a general initial state in time would be as follows: for a given
potential, the Hamiltonian matrix is constructed, by discretizing the spatial coordinate. Using
standard diagonalization techniques, the eigenvalues Ek and eigenvectors ϕk(x) are obtained.
Then, the initial wavefunction ψ(x) is projected as shown in equation (21), obtaining the
projection coefficients ck. Finally, the function at any time is calculated via the time evolution
(equation (23)).

However, this procedure may produce results quite different from what was expected,
when one analyses the projection coefficients of a wavefunction �(x, t) evolving in time from
an initial wave ψ(x) ≡ �(x, t = 0). As an example, in figure 6(b) we show the value of
different coefficients ck as a function of the energy Ek, for the initial Gaussian wavepacket
function ψ(x) given in equation (5), having an incident velocity k0 = 0.5 au and centred
at the middle of the numerical grid, as shown in figure 6(a). In this case, we extended the
numerical grid using 1100 points, so that it covers the range between x = 0 and xmax =
66 au. Therefore, a wavepacket located in the centre of this numerical grid has x0 = 33 au.
(see figure 6(a)). The numerical grid also determines the energy eigenvalues. For
this case, the spectrum consists of 1100 values spread between 1.13 × 10−3 au and
556 au. Within the range covered in the figure (between 0 and 3 au), the discretized
Hamiltonian has 52 eigenvectors. The wavepacket reconstructed from the spectral
decomposition (23) using the 1100 ϕk(x) eigenvectors is completely undistinguishable from
the initial Gaussian wavepacket; therefore, it is not displayed in figure 6(a). This spectral
decomposition shows huge oscillations, while the expected spectrum is a smooth decreasing
exponential function. Clear evidence that the oscillations in the projection spectra are
a spurious effect is shown in figure 7(b), where the same spectrum is calculated, but
now the initial wavepacket is shifted 10 au to the left (x0 = 23 au, see figure 7(a)).
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Figure 7. (a) Initial wavepacket equation (5), for k0 = 0.5 au, centred at x0 = 23 au. The box
containing the numerical grid is also shown in the figure. (b) Numerical spectral decomposition
(equation (21)) of this initial wavepacket. Smooth curve: proper results.

Obviously, the coefficients of the expansion, which reflect the amplitude of the different
waves conforming the wavepacket, cannot depend on its position; therefore, these results
are physically incorrect. The appropriate results (obtained by using a procedure described
at the end of the section (see equation (27))) are shown in the same figures, with a smooth
curve.

The origin of the oscillations resides primarily in the fact that the potential is symmetric
around its centre, supplemented with the use of parity-defined stationary eigenvectors. It is
known [15] that all the eigenfunctions of a symmetric potential are either even or odd with
respect to reversions of the spatial coordinate around the symmetry axis. That is true even in
the case of the free potential when it is discretized on a numerical grid. In space coordinates,
a finite numerical matrix means that the operator as well as its eigenvectors is zero outside
the range of the matrix. Therefore, what is actually solved using the finite difference method
is not the Schrödinger equation for a desired potential, but for this same potential confined
in a box. Since all the wavefunctions must be continuous, their values at the boundaries
must also be zero. This leads (still for the free particle potential) to stationary eigenvectors
having a definite parity, successively alternating between even and odd functions. The initial
wavepacket centred at the middle of the numerical grid is not strictly an even function due to the
presence of the velocity factor ik0x in the exponent (see equation (5)). Nevertheless, it is very
similar to an even function, especially for low incident energies. Since any projection between
functions of opposite parity is zero, the numerical results oscillate around the right values,
according to the parity of the Hamiltonian eigenvector basis. When the initial wavepacket is
displaced from the centre of the box, as in figure 7, the spatial symmetry is not completely
removed. The axis of symmetry of the initial wavefunction is shifted, and therefore, the
projections are no longer products of functions with a definite parity. Even so, the oscillating
pattern evidences that some kind of parity still remains in the wavepacket components. It
is possible to shift the initial wavepacket even more, diminishing the oscillations, but it is
impossible to fully eliminate them. As we mentioned before, the effect is elusive because it
does not alter the propagation of the wavefunction. In fact, the functions reconstructed from
the spectral decomposition (23) and the correspondent time-evolving wavefunctions will not
be distinguishable at any time. Moreover, the unphysical oscillations in the projected spectra
are not related to the particular numerical method used in the time propagation, since the
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projected spectra shown in figures 6(b) and 7(b) have been calculated at the initial time, before
the time evolution.

If this effect distorts the spectra of the incident wavepacket in such a striking way, it will,
consequently, also alter dramatically the spectra of the evolving wave. For time-dependent
processes, where the coefficients are related to probabilities of different processes, these
oscillations can spoil the calculations, producing meaningless results.

There are many ways to avoid the problems presented in the present section. In all of
them it is necessary to break the parity of the stationary states. As discussed above, it is
not enough to make a shift in the spatial coordinates, because that would only change the
oscillations, rather than eliminate them. A possible solution is to impose different values on
the wavefunctions at the boundaries by controlling the extremal elements of the Hamiltonian
matrix. Thus, the diagonalization procedure would lead to eigenfunctions without a defined
parity. However, this procedure is equivalent, in its consequences, to a change in the size of
the box. The diagonalization will only produce a different set of eigenvectors, with different
energies, but the spectral projection would still have oscillations; they would just appear at
different positions.

The failure of the change in the boundary conditions of the stationary eigenvectors as a
solution of the oscillations problem suggests that what needs to be changed is the stationary
condition of the eigenvectors itself. Matrix Hamiltonians with outgoing boundary conditions
(also called transparent boundary conditions) can also be constructed by changes in the
extremal elements of the matrix (see, for example, [16]). For a wavefunction discretized in a
spatial interval [x0 = xmin, xN = xmax] a transparent boundary condition can be imposed on
the functions by assuming that the wavefunction has already reached the correct asymptotic
behaviour, so

ϕN+1

ϕN

= ϕN

ϕN−1
. (25)

For the wavepacket (5) having an initial velocity k0, the transparent boundary condition
becomes

ϕN

ϕN−1
= ei k0 xN

ei k0 xN−1
= ei k0 �x, (26)

determining the modified value of ϕN . That new value at the boundary modifies the whole
differential equation and its matrix representation, which is now complex. The diagonalization
of this matrix may produce the desired eigenfunctions, suitable for the spectral projections.

A different way proposed here to solve the projection problem is to generate a continuum
set of outgoing wavefunctions. For a general short-range potential we employ two sets of
basis functions, ϕL

k and ϕR
k , having outgoing conditions (to the left and right, respectively), as

depicted in figure 8. Numerical integration of the Schrödinger equation is employed to generate
the functions, constrained to the imposed boundary conditions. These functions are complex,
and in general, the dephasing among the real and imaginary parts mutually compensates the
oscillations. For simple enough potentials (such as barriers and wells) these functions can
be obtained analytically. Once both sets of functions are obtained, the propagation follows a
scheme much like the one pointed out by equation (23):

�(x, t) =
∑

k

cL
k e−iEktϕL

k (x) +
∑

k

cR
k e−iEktϕR

k (x). (27)

The projection coefficients ck must account for the fact that this basis carries a degeneration
of two eigenstates for every energy eigenvalue:

|ck|2 = ∣∣cL
k

∣∣2
+

∣∣cR
k

∣∣2
. (28)
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Figure 8. Basis set of outgoing eigenfunctions. (a) Waves ϕL
k outgoing to the left. (b) Waves ϕR

k

outgoing to the right.

The outgoing boundary condition basis set was employed for the calculation of the
spectral decomposition of a wavepacket moving in a free-potential region. We generate
a basis of N = 1500 wavefunctions for each boundary condition, covering an energy
region up to EN = 30 au, where each eigenfunction ϕi has a wavenumber ki = i�k with

�k =
√

2EN

N
= 0.00516 au, and the corresponding eigenvalue Ei = k2

i

2 . The results of the
projection coefficients ck as a function of the energy Ek for the same Gaussian wavepackets
analysed in this section are displayed as the solid smooth curves in figures 6(b) and 7(b). Within
the range covered in these figures (from 0 to 3 au), there are 474 eigenvalues. Therefore, it is
not possible to mark the positions of the individual points along the smooth curves.

As shown in the figures, the use of the new basis set
{
ϕL

k , ϕR
k

}
fully eliminates the spurious

oscillations appearing in the projection to the stationary basis functions.

4. Practical application

As an example, in the present section we will show how the problems raised in the previous
section are manifested in a real physical example. The case analysed here is the electron
emission from metal surfaces induced by grazing incidence of ultrashort laser pulses. This is
a widely developed area of current research, from both the theoretical and the experimental
point of view.

When a laser pulse impinges at grazing incidence on a metal surface, an electron of the
valence band of the solid can be ejected to the vacuum zone, ending in a final continuum state.
The frame of reference is placed at the position of the crystal border, with the ẑ axis in the
direction perpendicular to the surface, aiming towards the vacuum region.

We consider a laser pulse associated with a linearly polarized electric field F(t).
According to the grazing incidence condition, the field F(t) is oriented perpendicular to
the surface, along the ẑ axis. The temporal profile of the pulse is defined as

F(t) = F0 sin (ωt + ϕ) sin2
(π

τ
t
)
, (29)

for 0 < t < τ , and 0 elsewhere, where F0 is the maximum field strength, ω is the carrier
frequency, ϕ = −ωτ

2 + π
2 represents the carrier-envelope phase and τ determines the duration

of the pulse. In our simulation, we will use the parameters F0 = 0.5, ω = 0.8 and τ =
47.12 au, producing the laser pulse displayed in figure 9.

In a previous work [17], we studied the electron emission coming from the valence band
of Al(1 1 1) surfaces due to the grazing incidence of this type of ultrashort laser pulse. We
solved there the corresponding time-dependent Schrödinger equation. In those calculations,
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Figure 9. Temporal profile of the laser pulse (equation (29)), for F0 = 0.5, ω = 0.8 and τ =
47.12 au.

the final emission is calculated by adding the contributions from any of the initial electronic
states of the metal surface. For Al(1 1 1) we used about a hundred initial states, and found in
some of our results quite a wide spread in the electron emission spectra. The oscillations in
the final spectra may be a consequence of such a sum of many different transitions, and may
also be associated with the use of a discrete grid. In the present case, we will focus only on a
single transition, in order to ensure that only one kind of problem is isolated.

To describe the metal surface, we use the jellium model, in which the potential is
represented by a square well potential of strength Vs:

Vs = EF + EW, (30)

where EF is the Fermi energy and EW is the work function. This potential produces bound
states very close to a more sophisticated parametric potential [18]. In order to obtain only one
bound state, we will not use here the jellium potential parameters corresponding to Al(111)
that produces 108 bounded levels. We have introduced a model jellium potential having a
depth Vs = 0.5 au, and a width L = 1.5 au. Such a potential has a single bound state with an
energy Eb = −0.31 au.

Since the Hamiltonian is time dependent, the propagation (23) can no longer be used.
Therefore, we calculate the electron emission differential probability from the initial state i to
any of the final continuum states k,

∂Pik

∂Ek

= |cik|2
�Ek

, (31)

where

cik = 〈ψi(x, t)|ϕk(x)〉 (32)

are the projection coefficients of the propagated wavefunction ψi(x, t) towards the Hamiltonian
eigenvector basis ϕk(x), and the factor �Ek accounts for the density of states in such a way
that ∫ ∞

0

∂Pik

∂Ek

dEk = 1. (33)

The propagated function is calculated, in turn, by

ψi(x, t) = e−iĤ tψi(x, 0) (34)
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Figure 10. Differential probability of electron emission for the previous ultrashort laser pulse
interacting with a (model) metal surface, as a function of the electron energy. Dotted lines:
projection to stationary eigenvalues. Full curve: projection to left and right outgoing waves.

where ψi(x, 0) represents the wavefunction for the initial bound state i of the jellium potential
(30). We must stress that in our calculations, the Hamiltonian eigenfunctions are not calculated
from diagonalization. Therefore, equation (31) has been replaced by

∂Pik

∂Ek

=
∣∣cL

ik

∣∣2
+

∣∣cR
ik

∣∣2

�Ek

, (35)

where

cP
ik = 〈

ψi(x, t)
∣∣ϕP

k (x)
〉

(36)

and ϕP
k (x) represents the Hamiltonian eigenvector with outgoing boundary conditions to the

left (P = L) or to the right (P = R).
The energy distribution spectrum of the emitted electrons ionized from the metal surface

consists, in general, of a series of peaks separated by an energy �E = h̄ω. Each peak is
related to the different order of multiphoton ionization [19]. The energy width of the peaks is
inversely proportional to the duration time τ of the laser pulse, and eventually, for an infinitely
long pulse, any peak will approach a Delta function. Since the laser pulse is very short, the
envelope of the pulse may produce additional series of oscillations. The number of such
oscillations occurring between the principal peaks corresponds to the ratio between the period
T = 2π

ω
and the duration of the pulse τ .

In our model calculation, the laser pulse with ω = 0.8 au, the first main peak appears at
Ek ≈ 0.8 − 0.3 = 0.5 au, the two-photon ionization peak appears at Ek ≈ 0.5 + 0.8 = 1.3 au,
etc. As shown in figure 10, the main peaks are too wide to allow the presence of the secondary
peaks, so only a very few of them are notable in the spectrum.

The striking feature of figure 10 is the presence of huge oscillations, some of them of
about three orders of magnitude. As explained above, the oscillations are a consequence of
projecting the propagated wavefunction (which is mainly an even function), with successively
odd and even stationary eigenfunctions. Utilizing the procedure proposed previously, we
generated a new Hamiltonian eigenvalues basis set, having left and right outgoing boundary
conditions. Using that basis set, we obtained the full smooth curve shown in the same figure,
which eliminates completely all the spurious oscillations.
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5. Conclusions

In spite of the simplicity and availability of computational codes suitable to perform numerical
simulations of dynamical evolution of quantum systems, we have called attention here to some
problems that may appear even in the simplest examples.

In section 2 we have shown a common issue in the numerical evolution of the
Schrödinger equation at high energies: the space discretization determines an upper limit in the
representable momenta. In order to solve this problem, the numerical grid must be adjusted,
so as to include higher energies needed for an accurate description of the wavepacket.

In section 3 we have presented a much more elusive problem, predominantly occurring at
low energies, where the projection on the Hamiltonian eigenvectors shows oscillations. These
oscillations are produced by the parity of the stationary eigenfunctions. This problem cannot
be solved by refining the numerical mesh. In section 3, we have presented the directions
to construct a suitable basis, consisting of outgoing wavefunctions. As seen in the simple
example of the evolution of a wavepacket in a free potential, the projection on this basis lacks
a definite parity, and presents a smooth spectrum.

Finally, in section 4 we have shown a practical application of the issues raised in the
present work. We have analysed there the electron emission from metal surfaces induced by
grazing incidence of ultrashort laser pulses. The calculations presented in a previous work [17]
were contaminated by a huge number of spurious oscillations. With the techniques presented
here, we have shown that they may disappear, producing smooth ionization spectra.
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