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Fully relativistic atomic structure calculations for Zr, Nb, Pd, Gd, Er, Hf, Ta, Os, and Pt are presented here. The
description of these atoms requires the solution of the Dirac equation. The electron binding energies attained are
compared with experimental values, achieving excellent overall agreement for the inner shells. Discrepancies in
the outer shell binding energies between the isolated atom and the solid are discussed, giving special attention to
the open 4f-subshell. Based on the present calculations, we analyzed the valence shell of the nine elements

studied here and propose theoretical values for the Wigner-Seitz radio.

1. Introduction

The study of energy loss processes by ions in solids is a powerful tool
in many areas of basic science and material technology. Tables and
codes resulting from semiempirical calculations are available for a large
combination of ions and targets [1,2]. However, inelastic scattering
calculations of heavy targets remains a difficult task since it becomes
necessary to account for the relativistic effects, which are important not
only for the inner electrons but also to define the outer—shell binding
energies.

In the present work, efforts are made to accurately describe the
atomic structure of heavy atoms using a fully relativistic method. The
goal of this contribution is to provide a set of reliable wave functions
and binding energies to be used in atomic collision calculations. There
are various methods that consider such quantities as input data for
computing inelastic processes. For example, the shellwise local plasma
approximation (SLPA) allows one to compute the different moments of
energy loss [3-6] knowing only the orbital densities and binding en-
ergies of the target electrons in the ground state.

The description of targets that involve the 4f—electrons is particu-
larly interesting. This group of electrons plays an important role in the
energy loss, as valence or subvalence electrons, or even as a quasi-free
electron gas, enhancing the energy loss at very low energies (see, for
example, [7]). In this contribution, three different groups of atoms of
the periodic table are considered: transition metals with 4d-electrons in
the valence shell (Zr, Nb, and Pd), lanthanides with open 4f-subshell
(Gd and Er), and heavy transition metals with fourteen 4f-electrons in
the subvalence shell (Hf, Ta, Os, and Pt). The present theoretical results
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and the different characteristics of these groups of elements are ana-
lyzed in the following sections. Atomic units are used throughout this
work.

2. Theory

The description of the atomic relativistic states of heavy atoms is
obtained by solving the many—electron Dirac Hamiltonian,

H = H' + Hpit (i, j) + Hgep, D)

where Hgit (i, j) is the Breit term and Hggp accounts for quantum
electrodynamic effects.

w3 -]z L,
i hi i T

(2)

where hP is the single-particle kinetic Dirac Hamiltonian. The other
terms in (2) correspond to the nuclei-electron and electron—electron
interaction. The nuiiac code package (see Ref. [8] and references
therein for more details) was used to solve numerically the Dirac
equation. In this suite, the rerac code is used to calculate first order
energies and wave functions by implementing the relativistic para-
metric potential method. This method employs the first order re-
lativistic perturbation theory along with the central field approxima-
tion, allowing the Hamiltonian H' to be written as an unperturbed term

Hy= Y hP + U,
’ Z 3)

plus a first orden perturbation
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Table 1
Present theoretical and experimental [9] electron binding energies and (r) values in a.u. of Zr, Nb, Pd, Gd, Er, Hf, Ta, Os and Pt.

nljm Eexpt Eth <r>th Eexpt Eth <r>lh Eexpt Eth <r>[h

Zr Nb Pd
1s 661.40 651.34 0.0372 697.71 685.57 0.0362 894.83 880.77 0.032
2s 93.05 90.40 0.163 99.15 95.94 0.159 132.4 128.7 0.138
2p 84.78 82.78 0.139 90.59 87.85 0.136 122.4 119.7 0.117
2p, 81.69 79.66 0.144 87.13 84.40 0.140 116.6 113.9 0.122
3s 15.81 14.76 0.460 17.15 16.08 0.445 24.68 23.16 0.382
3p 12.62 11.95 0.456 13.82 13.12 0.441 20.58 19.52 0.374
3p,. 12.12 11.45 0.467 13.25 12.55 0.452 19.56 18.53 0.385
3d_ 6.656 6.505 0.450 7.53 7.41 0.431 12.51 11.98 0.359
3d; 6.571 6.413 0.454 7.434 7.300 0.435 12.32 11.78 0.363
4s 1.86 1.99 1.20 2.07 2.19 1.14 3.20 3.23 0.937
4p 1.05 1.21 1.32 1.20 1.35 1.26 2.05 2.09 1.01
4p, 0.996 1.14 1.36 1.13 1.26 1.29 1.87 1.91 1.04
4d_ 0.103 3.15 0.121 2.62 0.216 1.61
4dy 0.100 3.29 0.116 2.73 0.198 1.67
58 0.182 4.34 0.189 4.20

Gd Er Hf
1s 1846.2 1834.6 0.0220 2112.5 2114.2 0.0203 2401.6 2400.4 0.0190
2s 307.8 303.1 0.0927 358.3 353.7 0.0859 414.19 408.98 0.0798
2p 291.4 288.9 0.0773 340.4 337.5 0.0714 394.64 390.26 0.0662
2p, 266.2 263.2 0.0841 307.1 303.3 0.0788 351.4 346.4 0.0740
3s 69.12 67.00 0.245 81.07 79.34 0.225 95.58 93.55 0.208
3p 62.03 60.48 0.234 73.72 72.00 0.215 86.91 85.40 0.198
3p. 56.74 55.29 0.247 66.59 64.92 0.229 77.43 75.97 0.213
3d_ 44.903 43.633 0.219 53.40 51.91 0.202 63.06 62.14 0.187
3d; 43.716 42.492 0.224 51.78 50.38 0.206 61.08 60.12 0.191
4s 13.91 13.36 0.554 16.53 15.62 0.507 19.8 18.8 0.468
ap 10.5 10.8 0.565 13.46 12.69 0.516 16.10 15.46 0.474
4p, 9.96 9.65 0.596 11.77 11.06 0.549 13.99 13.28 0.508
4d_ - 5.405 0.635 6.159 6.186 0.580 8.08 7.81 0.530
4d4 5.240 5.193 0.646 6.159 5.892 0.592 7.772 7.418 0.542
5s 1.3 2.0 1.37 1.86 1.95 1.26 2.36 2.55 1.12
5p. 0.74 1.3 1.54 1.13 1.16 1.41 1.4 1.6 1.24
5p,. 0.74 1.1 1.65 0.908 0.954 1.51 1.10 1.28 1.35
4f_ 0.32 0.32 1.01 - 0.18 0.851 0.584 0.725 0.666
Af, 0.32 0.30 1.05 0.17 0.14 0.876 0.522 0.660 0.679
6s 0.40 3.79 0.19 3.43 0.214 3.83
5d_ 0.35 2.77 0.125 2.27
5d4 0.34 2.84 0.109 3.13

Ta Os Pt
1s 2477.4 2479.9 0.0186 2714.6 2718.1 0.0177 2880.9 2881.6 0.0171
2s 429.30 423.71 0.0784 476.55 471.11 0.0743 510.07 504.78 0.0718
2p 409.23 404.55 0.0649 455.13 450.34 0.0614 487.76 483.25 0.0591
2p, 363.1 357.6 0.0728 399.49 393.93 0.0696 424.96 419.70 0.0676
3s 99.51 97.33 0.205 112.0 109.9 0.193 121.1 118.8 0.187
3p 90.73 88.97 0.194 102.6 100.9 0.183 111.2 109.4 0.177
3p, 80.63 78.86 0.209 90.29 88.54 0.199 97.20 95.37 0.192
3d_ 65.89 64.63 0.184 74.64 73.56 0.174 80.92 79.83 0.168
3dy 63.76 62.47 0.188 72.03 70.92 0.178 77.98 76.83 0.172
4s 20.70 19.78 0.459 24.19 23.12 0.432 26.66 25.53 0.416
4p 17.03 16.35 0.465 20.18 19.36 0.436 22.38 21.55 0.419
4p, 14.73 14.01 0.499 17.30 16.46 0.471 19.09 18.22 0.453
4d_ 8.742 8.353 0.519 10.77 10.29 0.484 12.19 11.70 0.463
4d, 8.320 7.931 0.530 10.23 9.763 0.496 11.56 11.09 0.474
5s 2.56 2.72 1.09 3.1 3.4 0.995 3.737 3.829 0.942
5p. 1.55 1.71 1.20 2.1 2.2 1.09 2.40 2.53 1.02
5p; 1.20 1.37 1.31 1.64 1.70 1.19 1.90 1.94 1.12
4f_ 0.864 0.990 0.631 1.96 1.99 0.551 2.74 2.75 0.513
4f+ 0.794 0.916 0.642 1.86 1.89 0.560 2.62 2.62 0.520
65 0.218 3.75 0.237 1.96 0.250 3.30
5d_ 0.130 2.61 0.194 2.18 0.250 1.71
5d4 0.112 2.97 0.159 3.46 0.200 1.88
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while the Breit term and the QED effects are added to the energies as
second order perturbations. The parametric potential U (r;) describes in
a simple maner the screening of the charge distribution and is de-
termined by minimizing the first order configuration average energies.
The parametric potential method is implemented within the config-
uration interaction (CI) scheme, i.e., the potential is minimized for
different groups of configurations, clustered by similar energies and the
same parity. The Hamiltonian H’, is then constructed on the basis of the
mixed configurations included in the U (1) calculation, allowing to take
into account, in this way, correlation effects.

The expectation value of any operator A is given by
o~ oo o~ —~
@)= [TIPFOAPE +Q (DA QM]dr ®)
where P(r) and Q(r) are the large and small components of the Dirac
spinors, respectively. For the relativistic orbitals, we use the notation
nl,, which means nl;, where the index j = [ + 1/2 is referred as +.

3. Results
3.1. Binding energies and mean radii for isolated atoms

Configuration interaction effects are very important for the atoms
considered here. Therefore, details about the mixing included in our
calculations deserve special consideration. The transition elements ex-
amined here are arranged into two sets according to their period; Zr
(40), Nb (41), Pd (46), in one group, and Hf (72), Ta (73), Os (76), Pt
(78) in the other. In both groups, the nd subshell of the atom is being
filled, with n = 4 for the first group, and n = 5 for the second. The
ground configuration of these elements are of the type nd®(n + 1)s?,
where for the first set of atomsa = 2, 4, 10 and b = 2, 1, 0, while for the
second, a =2, 3,6,9 and b = 2, 2, 2, 1. The nd and (n + 1)s electrons
have similar binding energies. Therefore, the nd®(n + 1)s?,
nd*+'(n + 1)s' and nd**? configurations have comparable energies.
Since these configurations have the same parity, they must be included
in the mixing configuration calculations. For example, for Zr, in which
the ground state is [Kr]4d?5s?, we included mixing between
4d?5s%, 4d35s, and 4d*. Similarly, for Pt, the ground state is [Xe] 5d°6s,
and we included mixing interaction with the 5d'° configuration.

The lanthanides atoms considered for examination — Gd (64) and Er
(68) —, have ground configurations [Xe] 4f75d6s? and [Xe] 4f26s2, re-
spectively. In the case of Gd, we also need to include interactions be-
tween the unfilled 4f and the 5d orbitals. Then, the most important
contributions to the configuration interaction are given by the mixing
of the 4f75d6s? and the 4f®6s? configurations. In the case of Er, the main
mixing is produced by the 4f'%26s? and the 4f'25d6s configurations.

The relativistic binding energies obtained from the present calcu-
lations are displayed in Table 1. The mean values (r), defined by Eq. (5),
are also given in the table. The binding energies for the nine atoms
studied here are displayed in Figs. 1 and 2 using filled symbols. The
experimental binding energies for solids, compiled by Williams [9], are
included in these figures with hollowed circles, and the theoretical
binding energies yielded by Desclaux [10] implementing the Dirac-Fock
method are shown with X symbols.

The agreement between the present theoretical results and the ex-
perimental binding energies is very good overall. Since Figs. 1 and 2
display the binding energies in a five-order magnitude range, it is not
possible to discern the discrepancies between the data listed in Table 1
and the corresponding results of Ref. [10]. In order to assess the dif-
ferences, the ratios ESP'/E™ and E®P!/E!'% between the experimental
and both of the theoretical binding energies are presented in Fig. 3,
with black solid and red dashed lines, respectively. The binding en-
ergies we obtained for Zr and Nb show an overall agreement of about
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Fig. 1. Present theoretical relativistic binding energies (filled symbols), Dirac-
Fock relativistic results [10] (X symbols) and experimental values [9] (hol-
lowed circles) of Zr, Nb, Hf and Ta.

4% for all the shells, except for the subvalence 4p. Similarly, the results
obtained for Hf and Ta agree with the experimental values in ~ 3%,
except the 5p and 4f subshells. The lanthanides Gd and Er also present
agreement of about 3%, with exception of the outermost subshells
5s, 5p and 4f. Surprisingly, for the transition metals Pd, Os and Pt,
whose nd subshells are more filled, the agreement is better than 3% for
all the subshells, even the subvalence 4p of Pd and the 5p, 4f of Os and
Pt. In all the cases, the present results describe the experimental data
more accurately than [10].

3.2. Discussion on the values for solids

In this work, we calculated binding energies for isolated atoms
(gases). However, the experimental energies considered for compar-
isons [9] correspond to measurements in solids (ionization of the bound
electrons). As expected, the main gas-solid discrepancies are found for
the outer shells. The electrons in the orbits adjacent to the conduction
band in a solid are loosely bound, compared to the tightly bounding of
the electrons in an isolated atom. The vertical dashed lines in Figs. 1
and 2 separate the bound and the valence electrons. The present results
give a good insight about the number of electrons in the free electron
gas (FEG) of solids, which are particularly relevant in stopping power
calculations.

The FEG is characterized by the density of electrons, or equivalently
by the Wigner-Seitz radio rs, directly related to the Fermi energy Er. To
obtain these values, a thorough analysis of the binding energies is
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Fig. 2. Present theoretical relativistic binding energies (filled symbols), Dirac-
Fock relativistic results [10] (X symbols) and experimental values [9] (hol-
lowed circles) of Pd, Gd, Er, Os and Pt.
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Fig. 3. Ratio between experimental and theoretical binding energies; E<?t/E'h

is shown with black solid line and E®?!/E1% with red dashed line. The orbitals
correspond to the given in Figs. 1 and 2.

needed to determine the actual number of electrons belonging to the
FEG. Our theoretical results for each target are displayed in Table 2. For
Zr, Nb, Hf, and Ta, the experimental ry are derived from the optical
energy loss function [11-14], resulting in rg® = 2.18, 1.72, 2.12 and
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Table 2

Present theoretical FEG parameters for Zr, Nb, Pd, Gd, Er, Hf, Ta, Os, and Pt: Z,
nuclear charge, N,, the number of electrons in the FEG; rs, the Wigner-Seitz
radio; and Ep, the Fermi energy.

Zr Nb Pd Gd Er Hf Ta Os Pt
z 40 41 46 64 68 72 73 76 78
N, 4 5 10 10 14 4 5 8 10
rs 2.11 1.80 1.34 1.75 1.52 2.14 1.80 1.41 1.34
Ep 0.41 0.57 1.02 0.602 0.792 0.40 0.57 0.921 1.02

1.73, respectively. Our theoretical results agree within 4% with these
values. On the other hand, no experimental data was found for Gd and
Er, while for Pd, Os and Pt the number of electrons in the FEG are
subject of discussion. For example, for Pd, assuming that only 6 elec-
trons belong to the valence band (part of the 4d electrons), the Fermi
energy is Er = 0.74 a.u.. Otherwise, considering the whole subshell as
10 electrons in the conduction band, the corresponding value is
Er = 1.02 a.u. (displayed in Table 2). Analogously, for Pt, assuming 6
valence electrons (part of the 5d electrons) produces Er = 0.72 a.u.,
instead of Er = 1.02 a.u., obtained with the assumption of 10 electrons
belonging to the valence shell.

For the atoms studied here, we noted that the binding energies of
the outermost electrons lay below the Fermi energies. However, the
lower curves in Fig. 2 show a clear contrast between the lanthanides
and the rest of the atoms. For Gd, Table 2 shows that the 4f electrons
have very close energies to the outer 5d and 6s subshells. This feature
lead us to consider them as part of the FEG. The same conclusion is
attained for Er. As stated previously, the specific determination of the
valence and subvalence shells are important in solid state physics.
Particularly, admitting the 4f electrons into the FEG allows to explain
[15,16] the main features of recent low-energy measurements of stop-
ping power of protons in Gd [7].

4. Summary

Binding energies and wave functions were computed for several
atoms having nuclear charges ranging between 41 and 78, by solving
the fully-relativistic Dirac equation with the set of codes HuLLAc, which
includes the Breit term and QED corrections. The agreement between
the present theoretical results and the experimental values is excellent,
with the sole exception of the subvalence shells of some transition
elements. The present results are found to be closer to the experimental
ones than other theoretical computations. The fact that the theoretical
calculations have been performed for isolated atoms, and the experi-
mental values correspond to binding energies of solids, accounts for the
differences encountered. Our results allow to propose theoretical
Wigner-Seitz radii for all the targets. We found a particular feature for
the lanthanides, which indicates that the 4f electrons belong to the free
electron gas.

Acknowledgements

The authors acknowledge the financial support from the following
institutions of Argentina: Consejo Nacional de Investigaciones
Cientificas y Técnicas (CONICET), Agencia Nacional de Promocién
Cientifica y Tecnolégica (ANPCyT), and Universidad de Buenos Aires
(UBA).

References

[1] Available codes for stopping power calculations can be found in https://www-nds.
iaea.org/stopping/stopping_prog.html.
[2] H. Paul, A. Schinner, At. Data Nucl. Data Tables 85 (2003) 377-452.


https://www-nds.iaea.org/stopping/stopping_prog.html
https://www-nds.iaea.org/stopping/stopping_prog.html
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0010

A.M.P. Mendez, et al. Nuclear Inst. and Methods in Physics Research B 460 (2019) 114-118

[3] C.C. Montanari, J.E. Miraglia, Adv. Quantum Chem. 65 (2013) 165. [9] G. Williams in http://xdb.Ibl.gov/Section1/Sec_1-1.html.
[4] C.C. Montanari, C.D. Archubi, D.M. Mitnik, J.E. Miraglia, Phys. Rev. A 79 (2009) [10] J.P. Desclaux, At. Data Nucl. Data Tables 12 (1973) 311.
032903. [11] W.S.M. Werner, K. Glantschnig, C. Ambrosch-Draxl, J. Phys. Chem. Ref. Data 38
[5] C.C. Montanari, D.M. Mitnik, J.E. Miraglia, Rad. Eff. Defects Sol. 166 (2011) 338. (2009) 1013-1092.
[6] M. Oswal, Sunil Kumar, Udai Singh, G. Singhe, K.P. Singh, D. Mehta, D. Mitnik, [12] D.W. Lynch, C.G. Olson, J.H. Weaver, Phys. Rev. B 11 (1975) 3617.
C.C. Montanari, T. Nandi, Nucl. Instr. Meth. Phys. Res. B 416 (2018) 110. [13] D. Isaacson, Compilation of RS values, New York University Rep. No. 02698
[7]1 D. Roth, B. Bruckner, M.V. Moro, S. Gruber, D. Goebl, J.I. Juaristi, M. Alducin, (National Auxiliary Publication Service, NY 1975).
R. Steinberger, J. Duchoslav, D. Primetzhofer, P. Bauer, Phys. Rev. Lett. 118 (2017) [14] P. Romaniello, P.L. de Boeij, F. Carbone, D. van der Marel, Phys. Rev. B 73 (2006)
103401. 075115.
[8] A. Bar-Shalom, M. Klapisch, J. Oreg, J. Quant. Spectrosc. Radiat. Transf. 71 (2001) [15] C.C. Montanari, J.E. Miraglia, Phys. Rev. A 96 (2017) 012707.
169. [16] A.M.P. Mendez, C.C. Montanari, D.M. Mitnik, J.E. Miraglia, to be published.

118


http://refhub.elsevier.com/S0168-583X(19)30073-4/h0015
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0020
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0020
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0025
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0030
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0030
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0035
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0035
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0035
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0040
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0040
http://xdb.lbl.gov/Section1/Sec_1-1.html
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0050
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0055
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0055
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0060
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0070
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0070
http://refhub.elsevier.com/S0168-583X(19)30073-4/h0075

	Relativistic atomic structure calculations of heavy targets for inelastic collisions
	Introduction
	Theory
	Results
	Binding energies and mean radii for isolated atoms
	Discussion on the values for solids

	Summary
	Acknowledgements
	References




