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Abstract
A hyperspherical Sturmian approach recently developed for three-body break-up processes is
tested through an analytically solvable S-wave model. The scattering process is represented by
a non-homogeneous Schrödinger equation in which the driven term is given by a
Coulomb-like interaction multiplied by the product of a continuum wavefunction and a bound
state in the particles’ coordinates. The model contains most of the difficulties encountered in a
real three-body scattering problem, e.g., non-separability in the electrons’ spherical
coordinates and Coulombic asymptotic behaviour, and thus provides an interesting benchmark
for numerical methods. Since the Sturmian basis functions are constructed so as to include the
correct asymptotic behaviour, a very fast convergence of the scattering wavefunction is
observed. Excellent agreement is found with the analytical results for the associated transition
amplitude. This holds true down to very low energies, a domain which is usually challenging
as it involves huge spatial extensions. Within our method, such calculations can be performed
without increasing significantly the computational requirements.

(Some figures may appear in colour only in the online journal)

1. Introduction

The quantal description of three-body break-up processes is
a notoriously difficult problem and, at the same time, of
fundamental importance in atomic and molecular physics.
Thanks to the fast evolution of computational capabilities,
and the development of efficient numerical methods, huge
progress has been made. Ab initio time-independent methods
such as the convergent close coupling [1], the J-matrix [2]
and the exterior complex scaling [3], have yielded many
successful results, including the single ionization of hydrogen
and the double photoionization of helium. These different
methods managed—numerically—to describe accurately a
double continuum of a three-body Coulomb system, i.e. two

electrons escaping from a nucleus; an overall satisfactory
agreement between them is observed. However, the application
of the same methods to other processes (e.g. double ionization
of helium [4]) or specific kinematic domains does not yield the
same picture, probably due to convergence issues. Indeed, we
should point out that these—now well established methods—
generally require an enormous amount of computational
resources. Thus, though fantastic progress has been made,
three-body break-up problems still offer huge challenges to
theoreticians. Another related issue is the fact that the above
methods use spherical coordinates. One major obstacle when
solving three-body break-up processes is imposition of proper
asymptotic boundary conditions, for which hyperspherical
coordinates are known to be better suited. Indeed, when
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the three particles are far from each other, the three-body
wavefunction asymptotically behaves as a distorted spherical
wave which depends on all the coordinates (Peterkop’s
asymptotics) [5, 6]. Thus, hyperspherical coordinates are more
adequate than, say, interparticle distances for which slow
convergency rates are usually encountered to describe such
an asymptotic behaviour [7]. It is thus important to continue
to develop alternative and complementary methods that can
deal with numerous physical problems and possibly with
reasonable computational resources. This is also related to
the idea of envisaging the next step: the four-body problem.

Over the last few years, a spectral method based on
generalized Sturmian functions in spherical coordinates has
been proposed to deal with scattering and structure problems.
The efficiency of the method was illustrated in a number
of applications involving two-electron systems (see [8–13]
and references therein). For Coulomb scattering problems,
in particular, one provides the Sturmian basis functions
with adequate outgoing flux asymptotic conditions. In this
way, the expansion on the basis is restricted to the region
where the interaction between the particles takes place.
As some of the relevant physical information is already
built into the basis functions themselves, the expansions
convergence rate is considerably increased when calculating
the scattering wavefunctions and transition amplitudes. The
method transforms the Schrödinger equation into an algebraic
problem which can be solved with standard matrix techniques.

To solve general three-body systems, a method based
on the use of generalized hyperspherical Sturmian functions
(GHSF) has been recently developed and different strategies
may be envisaged [14, 15]. In the numerical study presented in
this paper, the scattered wavefunction is evaluated through an
expansion in terms of GHSF constructed with a complete set
of coupled hyperangular Jacobi polynomials and hyperradial
Sturmian functions, the latter already accounting for the
appropriate boundary conditions. With such a property, the
hyperspherical Sturmian approach is expected to be very
efficient. It is the aim of this paper to illustrate this.

In [16], we have presented an S-wave three-body break-
up model with most of the difficulties of the real problem
(Coulomb potential and non-separability). The model is
physically meaningful, and presents the great advantage of
having an analytical solution. It therefore provides a very
useful, complete and solid test to validate numerical methods.
Moreover, as the analytical solution is known, the model may
be used to explore how the three-body asymptotic regimes are
reached in different domains and different kinematics. This
may help in identifying possible convergence difficulties of
existing ab initio methods, in particular, at low energies for
which large spatial domains are usually required. In this paper,
the model is used to validate the hyperspherical Sturmian
approach mentioned above, and to illustrate its numerical
efficiency.

Model calculations can be found throughout the collision
literature; benchmark studies are useful, in general, as they
allow us to put on a strong footing different numerical methods
which do not necessarily yield converging results when applied
to complicated scattering processes which involve several

ingredients. When the model is close to the description of
a given process, it serves also to provide physical insight
(see, for example, [17–22] for ionization processes). However,
the models do not necessarily involve physical interactions
(see, e.g. [23, 24]), and do not necessarily produce measurable
quantities, but serve to illustrate the efficiency of a novel
numerical method or to intervalidate two different methods.

The model proposed here consists in solving a driven
Schrödinger equation for the scattering wavefunction. The
driven term is the product of a Coulomb-like potential in the
hyperradius ρ by a bound-free initial asymptotic state (it is built
as the symmetrized, or not, product of a standing spherical
wave and a bound state). The Coulomb-driven Schrödinger
equation corresponding to this model presents the main
difficulties encountered in the real three-body case and has the
remarkable property of admitting a known analytical solution
[16]. As far as we know, no other meaningful examples of the
three-body scattering model—with analytical solution—has
been provided in the literature.

The rest of this paper is arranged as follows. In section 2.1,
we present a general scattering problem, which is simplified by
using the model presented in section 2.2; the model problem is
then presented in hyperspherical coordinates in section 2.3. In
section 2.4, GHSF with outgoing wave asymptotic behaviour
are defined, and the numerical implementation to solve the
scattering problem is presented. Numerical and analytical
results are compared and discussed in section 3. Asymptotic
and energies considerations are treated in section 3.3. Finally,
a summary and some perspectives are given in section 4.

Atomic units are used throughout.

2. Theory

2.1. General scattering problem

A general three-body scattering problem requires the solution
of the three-body Schrödinger equation

[H − E]�(r1, r2) = [T1 + T2 + V1 + V2 + V12 − E]

×�(r1, r2) = 0 (1)

where Ti (i=1,2) are the kinetic energy operators and V are
the interparticle potentials. Without loss of generality, we may
consider a three-body scattering process in which an incident
electron collides with a one-electron atom of nuclear charge
Z. As a first step, we will consider an S-wave model, in which
all one-electron angular momenta are zero. The radial three-
body Coulomb Schrödinger equation describing the dynamics
of this particular problem is[

−1

2

∂2

∂r2
1

− 1

2

∂2

∂r2
2

− Z

r1
− Z

r2
+ 1

r12
− E

]
�(r1, r2) = 0, (2)

where ri represent the electron–nucleus coordinates, r12 is
the inter-electronic distance, �(r1, r2) ≡ r1r2�(r1, r2) is the
reduced radial solution, the total energy E is assumed positive,
and unit reduced masses are taken for simplicity.

It is quite common in scattering theory (e.g, [25, 26]) to
separate the solution of the scattering problem into two terms,
the first term is the scattering solution �sc, and the second, �0,
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represents the solution of a simplified-potential equation. The
Schrödinger equation

[H − E]�(r1, r2) = [H − E]�sc(r1, r2)

+ [H − E]�0(r1, r2) = 0, (3)

is then converted into a non-homogeneous equation for �sc

[H − E]�sc(r1, r2) = −[H − E]�0(r1, r2). (4)

Generally, �0 represents an asymptotically prepared
initial state. We assume that the target electron (particle 1) is
bound to the nucleus with a binding energy E1, and assume an
incident electron (particle 2) having an energy E2 = k2

2
2 . From

these, we have a natural bound-free state �0(r1, r2) given by
the product of a bound-state ψ1(r1) and a continuum free-
electron state ψk2 (r2), such that[

−1

2

∂2

∂r2
1

− Z

r1
− E1

]
ψ1(r1) = 0 (5)

and [
−1

2

∂2

∂r2
2

− k2
2

2

]
ψk2 (r2) = 0. (6)

The non-homogeneous Schrödinger equation (4) becomes

[H − E]�sc(r1, r2) = −[V2 + V12]�0(r1, r2)

=
[

Z

r2
− 1

r12

]
ψ1(r1)ψk2 (r2)

≡ −W (r1, r2)�0(r1, r2) ≡ ϕ(r1, r2),

(7)

where the driving term ϕ is called the source term andW (r1, r2)

is the interaction not solved by the chosen initial state �0. Of
course, there is no way to distinguish between the different
electrons. Expression (7) is written in that way for a simple
presentation, but in our model problem the driven term is
further symmetrized.

2.2. Scattering model problem

The model problem proposed in our previous work [16]
involves the replacement of the potential and the source by
a model potential

V1 + V2 + V12 → C
ρ

(8)

and the driven term by a model source

ϕ(r1, r2) → ρte−aρ 1

2

[
sin(r1)

r1

sinh(r2)

r2
+ sin(r2)

r2

sinh(r1)

r1

]
,

(9)

respectively, where the hyperradius ρ ≡
√

r2
1 + r2

2. As
discussed in that work, our model has several useful features.
Firstly, by choosing the parameter a such that R(a) > 1
and t � −1, the driven term can be associated with the
physical product of a bound-free state ψ1ψk multiplied by
a Coulomb-like potential, which is the source term requested
in the real problem (7). The potential election conforms also a
very useful choice, since it has similarities with the Temkin–
Poet potential (and hence, with the real scattering potential),
but represents a different type of correlation between the

particles. The model problem, thus, is not separable, presents a
level of difficulties similar to any typical three-body scattering
problem, and furnishes a new test for the different numerical
methods. It has an additional remarkable feature: it allows an
analytical solution. In the following sections, we will present a
numerical method designed to solve this model problem, and
will compare the results with the analytic solutions obtained
in [16].

2.3. Scattering model problem in hyperspherical coordinates

The Hamiltonian for a system of three particles of masses
m1, m2 and m3 can be written in terms of any of three pairs of
Jacobi or mass-scaled Jacobi coordinates [14, 15]. They can be
expressed in terms of a hyperradius ρ and five hyperangular
coordinates (denoted collectively by ω5). Leaving aside the

polar angles, we shall simply use ρ =
√

r2
1 + r2

2 and the
hyperangle α = arctan(r2/r1).

In hyperspherical coordinates, equation (2) is written as

[H − E]�(ρ, ω5) = [T +V (ρ, ω5) − E]�(ρ, ω5) = 0, (10)

where V (ρ, ω5) describes the interaction potentials between
the particles, and the kinetic energy operator takes the form

T = − 1

2μ

[
1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
− 
2

ρ2

]
, (11)

where 
2 is the grand orbital angular momentum
operator and μ is the three-body reduced mass μ =√

m1m2m3/ (m1 + m2 + m3) [14, 15].
The driven Schrödinger equation in hyperspherical

coordinates, analogous to equation (7), is

[T + V (ρ, ω5) − E]�sc(ρ, ω5) = −W (ρ, ω5)�0(ρ, ω5)

= ϕ(ρ, ω5). (12)

Equation (12) must be solved requiring regularity at the
origin and imposing pure outgoing asymptotic behaviour to
�sc(ρ, ω5) for ρ → ∞. The source (9) may be conveniently
expanded [16] in a series of Jacobi polynomials [27]

�n(α) = Nn 2F1(−n, n + 2, 3
2 ; sin2 α), (13)

with Nn = 4(n + 1)/
√

π (see also the definition (22) and
related properties in section 2.4), in such a way that

ϕ (ρ, α) =
∞∑

n=0

fn(ρ)�n (α) , (14)

where

fn(ρ) = bn e−aρρ2n+t (15)

and

bn = 1

Nn

1

22n
(

3
2

)
n
n!

[(−1)n + 1]

2
. (16)

In this contribution, we will consider both symmetric and
asymmetric sources. The term involving (−1)n (respectively 1)
in (16) is associated with the first term (respectively second) of
the driven term (9). In the symmetric case, the summation in
expansion (14) is limited to even numbers n only. In figure 1,
we plot ϕ(ρ, α)ρ5/2 as a function of the more familiar spherical
variable r1 and r2, for a = 2 and t = 0 (the factor ρ5/2,
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Figure 1. The source ϕ (ρ, α) ρ5/2, as it appears on the right-hand side of equation (19), is plotted as a function of the spherical coordinates
r1 and r2 for the symmetric (left panel) and asymmetric (right panel) case. ϕ (ρ, α) is defined by equation (9), and here t = 0 and a = 2.

0 5 10 15 20 25 30 35 40
n

c

0.00

0.25

0.50

0.75

1.00

R
ρ

Figure 2. Convergence ratio Rρ (nc) defined by equation (17) as a
function of nc, evaluated for α = 0 and for different ρ values
(unfilled symbols): diamonds (ρ = 5 au), circles (ρ = 10 au),
triangles up (ρ = 20 au) and triangles down (ρ = 50 au). The filled
squares represent the convergence ratio R∞(nc) defined by equation
(36) for the numerical expansion of the transition amplitude.

that appears in the reduced form (19), is added for illustration
purposes). In the left panel, the symmetric source (9) is shown,
while the right panel illustrates the asymmetric source where
only the first term in the squared bracket in (9) (or equivalently
in (16)) is retained. The study of the latter will allow us,
in section 3.2, to discuss symmetry and convergence issues.
At large r1 and r2, the source behaves as the product of a
Coulombic potential, multiplied by a decreasing exponential
(representing a hydrogenic bound state) and a Bessel function
(continuum state). Note that for ri larger than say 5 au the
source is already vanishing. The source function ϕ (ρ, α)

is reproduced to an accuracy of 10−3 up to the hyperradius
ρ = 60 through the expansion (14) with 45 terms. For larger
hyperradii ρ, the number of terms needed in the expansion
increases proportionally to ρ. The relationship between the
number of terms needed for the expansion of the source at
different hyperradius, and the hyperradius is illustrated in
figure 2, where the following convergence ratio

Rρ (nc) ≡
∑nc

n=0 fn(ρ)�n (α)

ϕ (ρ, α)
(17)

is shown for different hyperradii ρ. The calculations were
performed for the hyperangle α = 0, which is the case
requiring the highest number of terms in the expansion.

In summary, the model driven Schrödinger equation we
want to solve is[

− 1

2μ

[
1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
− 
2

ρ2

]
+ C

ρ
− E

]
�sc(ρ, α)

= ϕ(ρ, α). (18)

with the source (9) expanded as (14). Making the usual
hyperspherical change of function �sc(ρ, α) = �̄(ρ, α)/ρ

5
2 ,

the equation to solve becomes[
− 1

2μ

∂2

∂ρ2
+ 
2 + 15/4

2μρ2
+ C

ρ
− E

]
�̄(ρ, α) = ρ5/2ϕ(ρ, α).

(19)

The analytical solution of the presented model was
thoroughly studied in [16]. The general solution of
the complete scattering problem is built as a linear
combination of products of hyperradial functions with
outgoing asymptotic behaviour times hyperangular �n(α)

functions. The hyperradial functions are the sum of the general
solution (χn(ρ)) of the corresponding homogeneous equation
and the particular solution (Rn(ρ)) of the non-homogeneous
equation [28]. Thus, the total solution reads

�+(ρ, α) = 1

ρ
5
2

∑
n

(Anχn(ρ) + Rn(ρ)) �n (α) , (20)

where the coefficients An are chosen in order to eliminate the
incoming wave component of Rn(ρ) [16, 28]. Asymptotically,
we have the desired outgoing behaviour

�+(ρ, α) → f (α)
ei(Kρ−η ln(2Kρ))

ρ
5
2

, (21)

where K is the hyperspherical momentum related to the total
energy E = K2

2μ
and η = Cμ

K is the corresponding Sommerfeld
parameter. This is the expected asymptotic behaviour for a
Coulomb scattering problem [5]. This limit finally provides an
analytical expression for the transition amplitude f (α).

2.4. Numerical implementation of the GSHF method

To numerically solve three-body break-up problems,
a hyperspherical Sturmian approach has been recently
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formulated [14, 15]. Different strategies can be followed to
build GHSF. Here we will consider the following product of
coupled functions. For the angular part, and for our S-wave
problem, we solved the hyperangular eigenvalue equation


2�n(α) = (
q2

n − 4
)
�n(α), (22)

where 
2 is the S-wave simplified form of the grand angular
operator. Analytically, the �n(α) are Jacobi polynomials, and
(q2

n − 4) = λn(λn + 4), with λn = 2n (n = 0, 1, ...) [27].
The eigenfunctions �n(α) form a complete set and satisfy the
orthonormality relation∫ π/2

0
�n(α)�m(α) sin2 α cos2 α dα = δnm. (23)

Coupled to these angular polynomials, for a given n,
we take as hyperradial basis functions, the Sturmian Sn,m(ρ)

satisfying the equation[
− 1

2μ

∂2

∂ρ2
+ q2

n − 1/4

2μρ2
+ U (ρ) − E

]
Sn,m(ρ)

= βn,m Vg(ρ) Sn,m(ρ), (24)

where U (ρ) and Vg(ρ) are, respectively, the auxiliary and
the generating potentials; here E is externally fixed (as the
energy of the system), while βn,m are the eigenvalues. All
the basis functions Sn,m (ρ) are regular on the whole domain.
The potential Vg(ρ) is assumed to be of short-range and
we take U (ρ) equal to the interaction potential, i.e. in our
model problemU (ρ) = C/ρ. With this choice, asymptotically,
equation (24) reduces to a Coulomb homogeneous equation
providing all basis GHSF, a unique—and appropriate—
asymptotic behaviour, i.e. the one of the full solution sought
after; for our problem, we choose outgoing behaviour

S+
n,m (ρ) → H+

n (η, ρ), (25)

where H+
n (η, ρ) is a linear combination of the regular and

irregular Coulomb functions, and is defined and analysed for
example in appendix A in [29]. We call ρ0 the hyperradius
value at which, numerically, this boundary condition is
imposed. Since by construction, the asymptotic function only
depends on the hyperangular quantum number n, and it is the
same for all the hyperradial quantum numbers m, we can define
a ρ-independent phase φn such that the asymptotic behaviour
of the basis functions becomes

S+
n,m (ρ) → ei(Kρ−η ln(2Kρ)+φn ). (26)

For later discussions, we denominate ρσ the hyperradial
distance beyond which the Coulomb function can be
considered an outgoing function.

We thus expand the numerical solution of the scattering
problem (18) with the above GHSF basis set

�NUM(ρ, α) = 1

ρ
5
2

∑
m

∑
n

an,m S+
n,m(ρ) �n(α). (27)

Since both �NUMρ5/2 and S+
n,m have the same asymptotic be-

haviour, the above expansion is restricted to the internal region
where the interaction between the particles takes place. We first

use the eigenvalue equation (22) for the angular part and then
equation (24) for the radial part, so that equation (19) reduces
to∑

m

∑
n

an,m βn,m
Vg(ρ)

ρ
5
2

S+
n,m(ρ) �n(α) = ϕ(ρ, α). (28)

Projecting over S+
q,p(ρ)�q(α)/ρ

5
2 , integrating over ρ and

α and using the orthonormality relation (23), the unknown
coefficients an,m are given by the following matrix equation:∑

m

[SVS]q,pm aq,m = Iq,p, (29)

where the matrix elements [SVS]q,pm are defined as

[SVS]q,pm =
∫ ∞

0
βq,m S+

q,p(ρ) Vg(ρ) S+
q,m(ρ) dρ , (30)

i.e. the overlap between the Sturmians under the generating
potential. The right-hand side vector Iq,p elements are defined
by

Iq,p =
∫ π/2

0
�q(α) sin2 α cos2 α dα

∫ ∞

0
S+

q,p(ρ)ϕ(ρ, α)ρ
5
2 dρ.

(31)

Within the Sturmian approach, the Schrödinger equation (in
our case the driven equation (19)) is transformed into an
algebraic problem which can be easily solved using standard
matrix techniques [14, 15, 12].

With the source (9) considered in our model, the angular
integration coincides with the orthonormality property (23),
and Iq,p finally reduce to simple one-dimensional integrals:

Iq,p = bq

∫ ∞

0
S+

q,p(ρ) e−aρρ2q+tρ
5
2 dρ. (32)

The transition amplitude can be easily extracted from
�NUM(ρ, α). Indeed, using the outgoing asymptotic behaviour
(26), the wavefunction becomes

�NUM(ρ, α) →
∑

m

∑
n

an,m
ei(Kρ−η ln(2Kρ)+φn )

ρ
5
2

�n(α),

(33)

yielding, by comparison with (21),

f (α) =
∑

n

(∑
m

an,m

)
eiφn�n(α). (34)

3. Results

3.1. Numerical GHSF basis calculation

The calculations of the hyperangular basis polynomials �n(α)

have been thoroughly studied in [14]. We solve numerically
the hyperangular eigenvalue equation (22) by discretizing
the functions in a uniform angular lattice. Within a finite-
difference scheme and using a second-order approximation,
a discretized version of this equation is obtained and solved
using standard matrix diagonalization routines, such as those
from a Lapack package [30]. As discussed there, we can obtain
in our computation a very rapid convergence to the analytical

5
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Figure 3. The first 20 eigenvectors of the hyperangular basis set
�n(α).
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S
0,

m
(ρ

)
+

Figure 4. The first 15 generalized hyperspherical Sturmian basis set
S+

n,m(ρ), for n = 0 and E = 0.5 au.

eigenvalues, by using a numerical grid having only a few
number of points (less than 100). In figure 3, we show the
first 20 eigenvectors of the angular basis set �n(α), obtained
when solving equation (22) with a numerical grid having
500 points. Within this scale, the analytic (given by
equation (13)) and numerical results are indistinguishable.
The numerical eigenvalues are also very accurate; in the worst
case (the largest eigenvalue), an error of less than 0.1% was
obtained.

Different techniques can be implemented to numerically
generate the GHSF, and we refer to [12] for details. The
Sturmian equation (24) is numerically solved for different
hyperangular n-quantum numbers, for the generalized
potential U (ρ) = C/ρ with a model attractive charge C = −1,
assuming a reduced mass μ = 1, and for an energy E = 0.5 au.
The basis was calculated using a Yukawa generating potential

Vg(ρ) = −exp(−δρ)

ρ
(35)

where the range δ = 0.2. We plot, in figure 4, the
functions S+

n,m(ρ), corresponding to the first 15 hyperradial
quantum numbers m, and for the hyperangular quantum
number n = 0. The hyperradius ρ0 at which the asymptotic

boundary condition (25) is assumed determines univocally
the eigenvalues and eigenvectors. Although for the particular
choice of the parameter δ, the potential at ρ = 30 au is less
than 10−4, we impose the outgoing condition at a hyperradius
ρ0 = 1500 au, a choice that will be discussed in section 3.3.
As shown in the figure, every function in the set achieves the
asymptotic behaviour smoothly, and the set is dense for low
hyperradial values. Therefore, any well-behaved function that
vanishes for values ρ < 15 au can be perfectly expanded by
this basis. For higher n values, the basis is dense for higher
ρ values, allowing the expansion at a more extended range.
The generating potential choice, and the adequate asymptotic
behaviour, makes the basis very efficient as illustrated in the
following section.

3.2. Numerical expansion in the GHSF basis

In this section, we present an illustration of the scattering
solution and transition amplitudes, comparing the analytical
results with the numerical GHSF expansion. We take hereafter
the hyperspherical momentum of the system K = 1 au (i.e.
the energy E = 0.5 au), the parameters of the source are taken
to be a = 2 and t = 0 and the interaction charges as C = −1
(a repulsive charge C = 1 has also been tested, and provides
similar results).

The GHSF used in our calculation were defined in such a
way that all of them have the correct asymptotic behaviour of
the problem fixed by the chargeC and K, i.e. by the Sommerfeld
parameter η. Thus, most of the Hamiltonian is diagonalized
by the basis functions, and only the coupling produced by the
driven term has to be dealt with. In that sense, the generating
potential Vg(ρ) has to be defined according to the source term.
In our case, we need to expand the right-hand side of equation
(18)—actually, it is the source ϕ(ρ, α)ρ5/2—which decreases
very rapidly. As observed in figure 1, we can safely consider
the source as zero, for hyperradial values of ρ larger than
20 au. This value limits the region defined as the driven region
R1 in [16]. Again, the reason for choosing a much higher
ρ0 value for imposing the boundary condition in the basis
generation procedure will be discussed later.

In figure 5, we plot the modulus of the numerical scattering
solution �NUM(ρ, α)ρ5/2 given by equation (27) (the modulus
is shown as to avoid the oscillations which would crowd the
figure). This function is the solution of the driven Schrödinger
equation (18), for E = 0.5 au. To appreciate the symmetry
related to that of the source (symmetric (left panel) and
asymmetric (right panel) source), the solution is presented as
a function of the more familiar spherical variable r1 and r2.
The numerical results were obtained with 16 (only 8 for
the symmetric case) hyperangular n- and 15 hyperradial
m-terms. Overall excellent agreement (not shown as practically
indistinguishable) is found with the analytical solution (20). A
quantitative comparison is provided for the symmetric source,
in figure 6, where the analytical solution is also shown (dotted
line) as a function of ρ along the cut α = π/4. We show
the comparison at two regions, close to the origin (left) and
at very large hyperradii (right). We also show separately the
real (upper figures) and the imaginary (lower figures) part
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Figure 5. The modulus of the reduced numerical scattering solution �NUM(ρ, α)ρ
5
2 as given by equation (27) is plotted as a function of r1

and r2 for the symmetric (left panel) and asymmetric (right panel) source. The hyperspherical momentum K = 1 au, i.e. the energy E =
0.5 au.
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Figure 6. Upper figures: real part of the numerical (full line) scattering solution �NUM(ρ, α)ρ5/2 given by equation (27) as a function of ρ
along the cut α = π/4, for K = 1 au; the dotted line is the real part of the analytical solution �+(ρ, α)ρ5/2 given by equation (20). Lower
figures: the same functions, but the imaginary parts.

of the functions. In every case, a perfect agreement between
the analytical and the numerical solutions, obtained with the
GHSF method, is achieved.

Concerning the expansion in hyperangular quantum
number terms, we have noted that an almost indistinguishable
result can be obtained by using only a total of four terms
in expansion (27). It is remarkable that although the source
expansion (14) requires a large number of terms (specially
for large ρ values), the expansion of the scattering solution
(27) converges rapidly employing only a very few terms. This
powerful characteristic is illustrated through figure 7, where
the expansion coefficients |an,m| are shown as a function of
the hyperradial numbers m, for five hyperangular quantum
numbers n.

We now turn to the transition amplitude. In figure 8, we
compare the analytical result (20) obtained summing only
the first eight terms, i.e. up to n = 7 (full line), with the
one calculated numerically (dotted line) through expression
(34). We show here, again, the cases with the symmetric (left
panel) and asymmetric (right panel) sources. The symmetry

with respect to α = π/4 (i.e. r1 = r2) is clearly observed
on the left panel. Coming back to figure 5, one can observe
how, as r1 and r2 both increase (and thus ρ also), the value
of the reduced function tends (see equations (33) and (34)) to
the shape of the transition amplitude presented—in squared
modulus—in figure 8. Finally, the very fast convergence of the
numerical expansion (34) can be easily appreciated through the
partial n summations (dashed lines); the exact result is reached
to an accuracy of 10−4 with only three terms (summing the
correspondent terms for n = 0, 2 and 4). In order to emphasize
the extraordinary effectiveness of our numerical methods,
we have also added, in figure 2, a curve (filled squares)
representing the convergence of the transition amplitude

R∞(nc) ≡
∑nc

n=0(
∑

m an,m�n(α))

f (α)
(36)

as a function of the number of hyperangular terms needed in
the numerical expansion (34). Since for the symmetric case
only the even n-terms contribute to the sum, the number of
terms included in each case is nc/2. The results are given for
the case α = 0.
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Figure 7. Modulus of the coefficients |an,m| of equation (27) as a
function of the hyperradial numbers m, for five hyperangular
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(n = 4), triangles up (n = 6) and triangles right (n = 8).

3.3. Asymptotic and energy considerations

Another important issue to investigate is the one related to the
required distances to be reached in order to obtain convergent
results, and, consequently, meaningful transition amplitudes.
It was mentioned in section 3.1 that the asymptotic boundary
condition (25) was imposed at a ρ0 > 1000 au. Since the
potential used in the Sturmian basis generation is negligible
at a much lower distance (say ρ ∼ 20 au), and then—as
figure 4 shows—the basis functions already take their
asymptotic behaviour, we need to clarify this choice. When we
refer to the asymptotic condition, we must clearly distinguish
between ρ values for the conditions prescribed for the basis
generation, and for the scattering amplitude calculation.

Regarding the basis, the most important concern is to use a
generating potential having a short range (in order to ensure the
outgoing asymptotic condition), but sufficiently large in order
to allow the correct representation of the solution expanded by
this basis. A different argument is considered for the distances
assigned to enforce the asymptotic condition when dealing
with the proper scattering calculation. In this case, the outgoing

asymptotic behaviour is an essential requirement to extract the
scattering amplitude. When spanning the hyperradial domain,
we first need to drive the expansion up to a region, named R2

in [16], where the required asymptotic behaviour begins. At
this point, both the driven term and the generating potential can
be safely considered as numerically zero, and the interaction
appearing in the Hamiltonian dictates the dynamics and
determines the solution to be the Coulomb function H+

n (η, ρ).
For the parameters chosen in our generating potential, the
lower limit of the region R2 can be assumed at a hyperradial
distance of about ρ0 ∼ 30 au. Beyond this point, the solution is
purely Coulombic. However, this range is still not appropriate
for the scattering calculation because the Coulomb solution
H+

n (η, ρ) does not possess—yet—a purely outgoing function.
In order to ensure that the numerical expansion, equation (33),
yields the amplitude (34), it is necessary to calculate the phase
φn at a very large distance ρσ , located at the so-called region
R3 (see [16]), where the Coulomb function becomes a truly
outgoing wave. This region is well beyond the limit of region
R2, and for the case studied here (the solution for an outgoing
electron with an energy E = 0.5 au), one needs to go up to at
least a distance of about ρσ ∼ 2000 au. As a matter of fact,
we calculate the phase φn through the numerical ratio of the
Coulomb function H+

n (η, ρσ ) to its asymptotic form

eiφn ≡ H+
n (η, ρσ )

ei(Kρσ −η ln(2Kρσ ))
. (37)

To recapitulate our numerical procedure, equation (29) is
solved in the region R2, where the expansion coefficients
an,m of solution (27) are also determined. However, although
the scattering wavefunction is obtained via this unique set
of coefficients, the evaluation of the phase φn—and thus of
the scattering amplitude f (α)—varies with the considered
hyperradius ρσ . This is illustrated through figure 9 where we
plot the values of the scattering amplitudes at a hyperangle
α = 0, calculated with different choices of ρσ . As seen in
the figure, although ρ = 20 au is a fair enough value to
represent the expanded function, it is clearly not sufficient for
the scattering amplitude calculation. We developed (see [12]) a
very efficient computational code that allows us to generate the
basis functions up to large distances, without any considerable
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Figure 8. Analytical (full line) and numerical (dotted line) transition amplitude for K = 1 au, as a function of α for the symmetric (left
panel) and asymmetric (right panel) source. Inset: partial summations (different hyperangular quantum numbers n in equation (34)) for the
numerical transition amplitudes, with two terms (dashed line), three terms (dot–dashed line), and eight terms (dotted line). Right panel:
partial summations with 1, 2, 3, 4 and 16 terms.
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Figure 9. Transition amplitudes at α = 0, calculated through
equation (37) at different hyperradii ρσ .

computational effort. Therefore, although our choice of the
parameter δ for the Vg(ρ) potential (35) determines a short
R2 range, we impose the boundary condition (25) at a much
larger hyperradial value of ρ0 = 1500 au. Once the expansion
coefficients are determined there, we just need to calculate the
sum of them (and the phase φn), at only one point ρσ , located
at the outgoing asymptotic region R3. This hyperradius can be
extremely large (20000 au), nevertheless, the computational
requirements are immutable, since it is only one calculation.
This feature distinguishes our method from other numerical
techniques.

We can challenge our GHSF method, calculating the
scattering amplitudes at other energies. It is well established
that the convergence of the numerical methods is strongly
energy dependent and becomes more difficult as the energy
approaches the ionization threshold. An excellent example of
this feature is found in the papers of Malegat and co-workers
[31, 32], where the photoionization of He is studied under
different conditions. In some of the calculations, they needed
to propagate the evolution of the system up to a million
atomic units. For this reason we have, therefore, repeated
the calculations for the cases in which the outgoing electron
has an energy of E = 0.005 au (hyperspherical momentum

K = 0.1), and the resulting scattering amplitudes are displayed
in figure 10 (left). The solid line represents the analytic results,
and the dashed line is the GHSF numerical calculation. Note
the excellent agreement between both calculations: for every
angle, the error is less than 0.06%. In order to perform these
calculations, a much more extended GHSF basis set has been
used. By taking an exponential parameter δ = 0.005 au
in the generating potential (35), the basis functions achieve
the Coulomb asymptotic behaviour at a hyperradius of about
1000 au. Although that is a fairly reasonably point to establish
the regionR2—and therefore, to perform there the coefficients
calculation—we set up the asymptotic boundary condition at
ρ0 = 15000 au. On the right-hand side of figure 10, we show
the convergence of the scattering amplitude (at α = 0), as a
function of ρσ . It is clear that calculating the amplitudes at
hyperradii smaller than 500 au introduces a very large error in
the final results.

The situation is even more challenging at lower energies.
For the case in which the outgoing electron energy E =
0.00125 au (K = 0.05 au), we use the same GHSF basis as
before, but now the scattering amplitude needs to be calculated
at ρσ = 150000 au. In that case, an error larger than 10% is
produced if the numerical grid size is smaller than 5000 au,
and meaningless results are obtained when calculating the
scattering amplitude with grids smaller than 1000 au. We
found, as a rule of thumb, that for a hyperspherical momentum
K, one should calculate the transition amplitudes at distances
beyond 3000/K. The transition amplitudes | f (α)| for E =
0.00125 are shown, as a function of the angle α, in figure 11
(left). In order to show the impressive agreement between
the analytical and numerical HGSF results, both scattering
wavefunctions along the cut α = π/4 are shown in the right
part of the figure, exhibiting an excellent agreement on the
whole hyperradial range, for both the real (upper figures) and
the imaginary (lower) parts of the solutions.

4. Summary and perspectives

In this paper, we have demonstrated the capability and
efficiency of hyperspherical Sturmian functions to deal with
three-body break-up problems. This was shown through the
accurate reproduction of the analytical solution of a three-body

0 π / 8 π / 4 3 / 4 π π / 2
α

1.071

1.0715

1.072

1.0725

1.073

| f
(α

) |
2

100 1000 10000 100000
ρσ (a.u.)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

| f
(0

) 
|2

Figure 10. Left: analytical (full line) and numerical (dashed line) transition amplitude for K = 0.1 au (E = 0.005 au), as a function of the
hyperangle α. Right: transition amplitudes at α = 0, calculated at different hyperradii ρσ .
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S-wave ionization model. This model, which contains most of
the difficulties of the real problem, consists in solving a driven
Schrödinger equation with a Coulombic interaction in the
hyperradius. The knowledge of a closed form of the solution
and of the transition amplitude provides a solid benchmark to
test numerical three-body methods; here, it is used to show
that using optimal basis functions yield a very fast numerical
convergence.

A hyperspherical Sturmian approach has been recently
formulated to treat three-body break-up problems [14, 15].
Here, we used an expansion on a complete basis set of coupled
hyperangular Jacobi polynomials and hyperradial Sturmian
functions which account for appropriate asymptotic outgoing
behaviour. All hyperradial basis elements not only diagonalize
the kinetic energy and the interaction, but also possess
the same appropriate asymptotic behaviour; they thus only
need to expand the solution in the interaction region. These
properties strongly accelerate the expansion convergence rate
for the scattering wavefunction, and allow for a straightforward
extraction of the transition amplitude. Excellent agreement
with the analytical results is found with only very few
expansion terms. The model driven Schrödinger equation is
transformed into a straightforward algebraic problem which
requires the evaluation of only Sturmian overlap matrix
elements, and vector elements (involving the driven term)
which, in our model, reduce to one-dimensional integrals.

The model problem proposed here allowed us to explore
how the wavefunction takes different behaviours in different
hyperradial domains, and how far one should go to extract
the transition amplitude from the wavefunction itself. We
found that the required hyperradial distances are very large,
especially for low energies. With our GHSF method, we can
reach the truly outgoing asymptotic region, where no other
numerical method (besides the propagations performed by
Malegat et al [31]) can handle the calculations.

The results presented in this contribution showed that
the Sturmian hyperspherical approach is very efficient, with
the hyperradial basis being ideally suited for the scattering

problem under consideration. The next step is to explore the
ability of the method to deal with more physical collision
problems, with the final aim of considering the full three-body
break-up situation with the full potential interaction. As an
intermediate step, we plan to investigate first the corresponding
Temkin–Poet model, in which the 1/r12 term is replaced
by 1/r> where r> = max(r1, r2). In a longer term, it is
then planned to apply the present hyperspherical Sturmian
method (and a more elaborate version based on the formulation
presented in [15]) to single and double ionization of atoms by
electron or photon impact.

It is worth underlying once more that for three-body break-
up processes, when all particles are far from each other, the
Peterkop-type asymptotic behaviour

�+
sc(ρ, ω5) ∝ ρ−5/2 eiKρ+i

C(ω5 )

K ln(2Kρ) (38)

indicates that a hyperspherical approach should be more
adequate than the use of interparticle (spherical) coordinates.
The comparison of their efficiency, in particular with respect
to asymptotic issues, is also part of our current investigations
[7]. Formula (38) shows that, in the asymptotic region, the
Coulomb interactions couple the angles with the hyperradius
in a particular form, through the Coulomb logarithmic phase.
All the angles, on the other hand, are coupled via the transition
amplitude. These couplings arise from two sources: first,
the non-separable character of the Coulomb interactions and,
second, the coupling due to the driven term. By considering
an appropriate initial state, the driven term turns out to be of
short range. In that case, outside that range, the scattering
wavefunction should satisfy a homogeneous Coulomb
problem where, e.g, outgoing type behaviour should be
imposed. Within our method, this could be easily achieved by
using hyperradial functions having asymptotically fixed charge
Coulomb behaviour. This can be further extended, as we can
include parametrically the charge C(ω5) yielding the correct
three-body behaviour to the generalized Sturmian functions
(it should be underlined that such a method has nothing to
do with effective charge approaches used to model double
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continuum). We are considering using such an approach first
for the Temkin–Poet model and then for the real physical
problem. We expect to be able to evaluate the wavefunction
up to very large distances being sure that we are having the
correct wavefunction behaviour. This intrinsic property should
provide optimal convergence.
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