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Abstract. An analytically solvable S-wave model for three particles break-up processes is presented. The
scattering process is represented by a non-homogeneous Coulombic Schrödinger equation where the driven
term is given by a Coulomb-like interaction multiplied by the product of a continuum wave function and
a bound state in the particles coordinates. The closed form solution is derived in hyperspherical coordi-
nates leading to an analytic expression for the associated scattering transition amplitude. The proposed
scattering model contains most of the difficulties encountered in real three-body scattering problem, e.g.,
non-separability in the electrons’ spherical coordinates and Coulombic asymptotic behavior. Since the co-
ordinates’ coupling is completely different, the model provides an alternative test to that given by the
Temkin-Poet model. The knowledge of the analytic solution provides an interesting benchmark to test
numerical methods dealing with the double continuum, in particular in the asymptotic regions. An hyper-
spherical Sturmian approach recently developed for three-body collisional problems is used to reproduce
to high accuracy the analytical results. In addition to this, we generalized the model generating an ap-
proximate wave function possessing the correct radial asymptotic behavior corresponding to an S-wave
three-body Coulomb problem. The model allows us to explore the typical structure of the solution of a
three-body driven equation, to identify three regions (the driven, the Coulombic and the asymptotic), and
to analyze how far one has to go to extract the transition amplitude.

1 Introduction

The efficient treatment of collision problems is of funda-
mental importance in atomic and molecular physics. One
key feature to treat ionization processes is the ability to
describe three-body collision processes. For single ioniza-
tion processes huge progress has been made in the last few
years. Methods such as the convergent close coupling [1],
the J-matrix [2] and the exterior complex scaling [3] have
yielded many successful results. They managed to describe
accurately a double continuum, i.e. two electrons escap-
ing from a nucleus. This is the case of single ionization
of hydrogen ((e, 2e) process) and the double photoioniza-
tion of helium ((γ, 2e) process). This very satisfactory pic-
ture suggests that all the methods provide an appropriate
description of the the double continuum of a three-body
Coulomb system (or at least they numerically manage to
find convergence towards the exact solution of the prob-
lem). This idyllic situation, however, is not encountered
when applying the same double continuum wave function
to describe, for example, the double ionization of helium
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((e, 3e) process) by high energy electron impact (within
the first Born approximation, the four-body problem can
be treated as a three-body one). Several ab initio meth-
ods (including time-dependent ones [4]) do not reproduce
absolute experimental (e, 3e) data, and do not agree with
each other (see a review of the situation in Ref. [5], and
the recent J-matrix contribution [6]). This is difficult to
understand (and accept) because they should all provide
the exact (numerical) solutions of the three-body problem.
Of course, though using the same tools, the application of
rather well established methods to certain collision pro-
cesses or specific kinematic domains may be problematic
due to convergence issues.

Since the situation is still unclarified for the (e, 3e)
case, and with the aim to search for explanations, it may
be useful to further test the existing methods on a simpli-
fied three-body problem. This is what historically has been
done before the electron-hydrogen problem was numeri-
cally solved [7]. Indeed, the S-wave model [8,9] – often re-
ferred to as Temkin-Poet model – calculations have played
a very important role in the developments of theoretical
and numerical methods. Higly accurate calculations used
as benchmark were presented in, e.g., references [10,11].
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This model is the lowest order of the real physical prob-
lem but contains most of its technical difficulties. Model
calculations for (e, 3e) can be found throughout the colli-
sion literature. Single- and double-ionization processes in
electron scattering from a model helium atom have been
calculated by Pindzola et al. using a time-dependent close-
coupling approach [12]. Plottke and co–workers made a
systematic study of single ionization [13] of an S-wave
model helium using the convergent close-coupling method.
A similar model was considered by Horner et al. [14] who
studied excitation and single ionization with low projec-
tile energies. Bartlett and Stelbovics considered the same
model for the study of various two electron processes, and
particularly (e, 3e), using the propagating exterior com-
plex scaling method [15,16]. More recently, J-matrix cal-
culations of electron-helium S-wave scattering have been
presented by Konovalov et al. [17]. All these benchmark
studies are useful, in general, as they allow to put on a
strong footing different numerical methods which do not
necessarily yield converging results when applied to com-
plicated scattering processes which involve several ingre-
dients. When the model is close enough to the description
of a given process it serves also to provide physical insight.
However, there are also studies based on models who do
not involve physical interactions (see, e.g. [18,19]), and do
not necessarily produce measurable quantities, but serve
to illustrate the efficiency of a novel numerical method or
to intervalidate two different methods.

Since most of the ab initio methods available for
describing the double continuum seem to agree with
each other for the electron hydrogen ionization (and the
Temkin-Poet subcase), and to some extent for double pho-
toionization of helium, it may be useful to test the three-
body problem in a different way. This is what is proposed
in the present paper. We introduce a three-body scattering
model problem which (i) contains similar difficulties to the
real problem (Coulomb potential and non-separability);
(ii) tests the double continuum in a different manner; and
(iii) has an analytical solution, thus providing an unques-
tionable solid test for any numerical method.

A three-body scattering problem is described by the
Schrödinger equation [H − E] Ψ+ = 0 where Ψ+ has out-
going behavior. One way to describe break-up processes
consists in splitting the total wave function as Ψ+ =
Ψ0+Ψ+

sc [20,21]. Here Ψ0 is a known asymptotically pre-
pared initial state (corresponding to no scattering) which
solves an approximate (asymptotic) Hamiltonian H0, i.e.,
[H0 − E] Ψ0 = 0; Ψ+

sc is the scattering wave function, de-
fined with outgoing wave asymptotic behavior, which pos-
sesses all the dynamics information. If W is the neglected
interaction, i.e. H = H0 + W , then Ψ+

sc solves the driven
Schrödinger equation [H − E] Ψ+

sc = −WΨ0 which comes
generally with two conditions: regularity at the origin and
pure outgoing behavior at large distances.

The S-wave break-up model proposed in this paper
applies to any three charged particles, and is presented
in hyperspherical rather than spherical coordinates, thus
testing the coupling between the interparticle distances
in a different way than, say, the Temkin-Poet approach.

When solving three-body break-up processes, hyperspher-
ical coordinates are known to be better suited to deal with
proper asymptotic boundary conditions. Indeed, when the
three particles are far from each other, the three-body
wave function asymptotically behaves as a distorted spher-
ical wave which depends on all the coordinates (Peterkop’s
asymptotics) [22–24]. In our model, the interaction W
neglected in the initial channel is given by a Coulomb-
like potential in the hyperradius ρ. A bound-free initial
state Ψ0 is considered and built as the symmetrized prod-
uct of a standing spherical wave and a bound state. The
scattering wave function of our model is expanded in terms
of Jacobi polynomials for the hyperangular part. The cou-
pled hyperradial solutions, regular at the origin and with
outgoing asymptotic behavior, are found analytically. This
is the essential feature of our model. As far as we know, no
other meaningful example of three-body scattering model,
analytically solvable, as the one presented here has been
provided in the literature.

The analytical results are validated through the appli-
cation of an hyperspherical Sturmian approach recently
formulated to treat three-body break-up problems [25,26].
In the numerical study presented in this paper, the scat-
tered wave function is evaluated through an expansion in
terms of hyperspherical Sturmian functions (HSF). These
are constructed here with a complete set of coupled hy-
perangular Jacobi polynomials and hyperradial Sturmian
functions, the latter already accounting for the appropri-
ate boundary conditions. As the basis elements possess the
correct asymptotic behavior, the hyperspherical Sturmian
approach is expected to be very efficient.

In this report we thus present a three-body fragmenta-
tion model which can be used to test different numerical
approaches. It is solved analytically and verified numer-
ically, and can thus serve as a benchmark and a strong
challenge for other ab initio methods. As the analytical
solution is known, the model is also used to explore how
the three-body asymptotic regimes are reached in differ-
ent spatial domains and different kinematics; the proposed
analysis may help in identifying possible convergence dif-
ficulties of existing methods in particular at low energies.
This is the aim of this paper.

The rest of this paper is arranged as follows. In Sec-
tion 2, we present the model scattering problem. Sec-
tion 3 provides analytical expressions for the scattering
wave function, as well as for the transition amplitude. In
Section 4, hyperspherical Sturmian functions with outgo-
ing wave asymptotic behavior are defined, and the nu-
merical implementation to solve the scattering problem is
presented. Numerical and analytical results are then com-
pared. Section 5 is dedicated to asymptotic considerations
of the Temkin-Poet problem. A brief summary is given in
Section 6.

Atomic units are used throughout.

2 Model potential and scattering problem

Consider three particles of masses m1, m2 and m3, and
charges Z1, Z2 and Z3; for illustration, and for the present
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discussion, we may take for simplicity a nucleus of charge
Z3 = Z > 0, and two electrons with Z1 = Z2 = −1.
The Hamiltonian of the system can be written in terms
of any of three pairs of Jacobi or mass-scaled Jacobi co-
ordinates [25,27]. The hyperspherical coordinates are one
hyperradius ρ and five hyperangular coordinates (denoted
collectively by ω5). Leaving aside the four polar angles,
and for presentation purposes, in what follows we shall
simply use

ρ =
√

r2
1 + r2

2, α = arctan(r2/r1), (1)

i.e. r1 = ρ cosα and r2 = ρ sin α, where r1 and r2 are
the usual spherical coordinates of two particles (electrons)
with respect to the third one (nucleus).

2.1 Model potential

For three-body scattering problems, the full Coulomb in-
teraction potential

V (ρ, ω5) =
Z1Z3

r1
+

Z2Z3

r2
+

Z1Z2

r12
, (2)

(r12 is the inter-electronic distance) may be written in
hyperspherical coordinates as

V (ρ, ω5) =
Z1Z3

ρ cosα
+

Z2Z3

ρ sin α
+

Z1Z2

ρ
√

1 − sin(2α) cos θ12

=
C(ω5)

ρ
, (3)

where cos θ12 = r̂1 · r̂2 defines the angle between parti-
cles 1 and 2. C(ω5) may be viewed as an angular depen-
dent charge and the corresponding three-body problem is
notoriously difficult. In principle, the scattering solution
Ψsc(ρ, ω5) should have, in the region where all the particles
are far from each other, the following outgoing Peterkop-
type asymptotic behavior [22,23]

Ψ+
sc(ρ, ω5) ∝ A(ω5)ρ−5/2e

i
(

Kρ−C(ω5)
K log[2Kρ]

)
, (4)

where A(ω5) is the scattering amplitude, and K is the
hyperspherical momentum related to the energy E = K2

2μ

of the system.
In the S-wave Temkin-Poet model, the interelectronic

potential 1/r12 is spherically averaged and replaced by
1/r> where r> = max(r1, r2). The resulting poten-
tial, and thus the three-body Schrödinger equation, is
quasi separable in spherical coordinates r1 and r2. A
coupling exists through the domain, i.e., whether r1 is
larger/smaller than r2. In terms of hyperspherical coordi-
nates, the “charge” C(ω5) is replaced by C̃(α) with

C̃(α) = − Z

cosα
− Z

sin α
+

{ 1
cos α 0 ≤ α ≤ 1

4π
1

sin α
1
4π ≤ α ≤ 1

2π.
(5)

Thus only an α dependence is retained. In these coor-
dinates, the Schrödinger equation corresponding to the

Temkin-Poet model provides a simplified version of the
physical problem which tests the angular separation at
α = π/4. Note that, in the case of hydrogen (Z = 1),
in each domain the potential reduces simply to −1/r2

or −1/r1. Though rather simple, the model contains the
essential difficulties of the real problem (Coulomb poten-
tials and non-separability) thus providing a very interest-
ing benchmark which served to validate many numerical
methods.

In the model we present and study in this paper, we
suggest something different. We replace C(ω5) by a con-
stant charge C, i.e. the following Coulomb potential

V (ρ) =
C
ρ

; (6)

the model interaction can be considered as either attrac-
tive (C > 0) or repulsive (C < 0). Note that the potential
is not one of the three Coulomb interactions that appear
in the physical case (3). Although seemingly simple in hy-
perspherical coordinates, it is not separable in spherical
coordinates r1 and r2; assuming for example that r2 < r1,
their coupling is very particular

C√
r2
1 + r2

2

=
C
r1

[
1 − 1

2

(
r2

r1

)2

+ . . .

]

=
C

ρ cosα

[
1 − 1

2
tan2 α + . . .

]
, (7)

where the second equality illustrates the expansion in
terms of the hyperangle α. The lowest order (first term)
of expansion (7) corresponds to retaining the first term
of the real potential (3). The model potential (6) there-
fore tests the r1 and r2 dependence in a way which dif-
fers substantially from the Temkin-Poet model. On top of
that, it offers the possibility to make a detailed and in-
teresting asymptotic investigation of the scattering wave
function. Indeed, for a given “angular” set (fixed ω5), the
angular dependent charge C(ω5) takes a constant value
and thus the physical three-body potential reduces to our
model. The knowledge of the analytic solution will allow
us to investigate for what hyperradius the corresponding
asymptotic regime is actually reached. By varying the an-
gles, one may explore different asymptotic domains, and
related convergence issues.

2.2 Scattering model problem

As briefly described in the introduction, the wave func-
tion Ψ(ρ, ω5) for a collision process may be separated in
two parts Ψ(ρ, ω5) = Ψ0(ρ, ω5)+Ψsc(ρ, ω5) where Ψ0(ρ, ω5)
is a known initial state, eigensolution of an approximate
Hamiltonian H0 = H − W (H is the full Hamiltonian
and W is the neglected, unsolved, interaction); Ψsc(ρ, ω5),
on the other hand, is a wave function solving all the inter-
actions V (ρ, ω5). According to this separation, the func-
tion Ψsc(ρ, ω5) satisfies a driven Schrödinger equation

(T + V (ρ, ω5) − E)Ψsc(ρ, ω5) = −W (ρ, ω5)Ψ0(ρ, ω5)
= ϕ(ρ, ω5), (8)

http://www.epj.org
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where ϕ(ρ, ω5) denotes the driving term. Equation (8)
must be solved imposing outgoing behavior to Ψsc(ρ, ω5)
for large values of ρ (ρ → ∞). With our model poten-
tial (6) the Schrödinger equation to be solved reads

[
− 1

2μ

1
ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+

Λ2

2μρ2
+

C
ρ
− E

]

× Ψ (ρ, α) = ϕ (ρ, α), (9)

where the dependence is limited to ρ and α as no polar
angles are considered here.

Above, the kinetic energy operator takes the form

T = − 1
2μ

[
1
ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
− Λ2

ρ2

]
,

where Λ2 is the grand orbital angular momentum operator

Λ2 = − 1
sin2 α cos2 α

d

dα

(
sin2 α cos2 α

d

dα

)

+
j2

cos2 α
+

l2

sin2 α
, (10)

where μ =
√

m1m2m3/ (m1 + m2 + m3) is the three-
body reduced mass of the system, and j and l denote the
rotational and centrifugal angular momentum operators.
The eigenfunctions of Λ2 are known for any quantum num-
bers j and l. However, as we consider a S-wave model, we
can set j = l = 0. In this case, the functions

Ωn(α) = Nn 2F1

(
−n, n + 2,

3
2
; sin2 α

)
, (11)

with Nn = 4(n + 1)/
√

π, satisfy the eigenvalue equation

Λ2Ωn(α) = λn(λn + 4)Ωn(α), (12)

with λn = 2n (n = 0, 1, . . .); 2F1 represents Gauss hy-
pergeometric function [28]. The eigenfunctions Ωn(α) are
Jacobi polynomials: they form a complete set and satisfy
the orthonormality relation

∫ π/2

0

Ωn(α)Ωm(α) sin2 α cos2 α dα = δnm. (13)

In our model the initial state is taken to be a symmetrized
bound-free product of a standing spherical wave in the rel-
ative coordinate r1 between the incoming particle and the
center of the target and a bound-like state in the target co-
ordinate r2; the interaction neglected in the initial channel
is given, for example by a Yukawa potential e−aρ/ρ. More
specifically, we take the following source (driving term)

ϕ(ρ, α)=ρte−aρ 1
2

[
sin r1

r1

sinh r2

r2
+

sin r2

r2

sinh r1

r1

]
, (14)

with a parameter a such that �(a) > 1. At large dis-
tances, the decreasing exponential e−aρ gives an overall
asymptotically vanishing source (the hyperradial width of
the source depends on �(a)). The bound-like state comes

Fig. 1. The source ϕ (ρ, α) ρ5/2, as it appears on the right-
hand-side of equation (20), is plotted as a function of the spher-
ical coordinates r1 and r2. ϕ (ρ, α) is defined by equation (14),
and here t = 0 and a = 2.

from the combination of e−aρ with sinh rj/rj (j = 1, 2): it
is well-behaved close to rj = 0, and for large values of rj ,
the dominant asymptotic behavior reads e−aρ sinh rj ∝
e−aρ+rj thus simulating an angularly screened hydrogenic
s state in coordinate rj . The sinus term in ri (i �= j) is the
Bessel function of order zero, and represents a free stand-
ing wave. In (14), the real power t ≥ −1 is arbitrary; when
t = 0, ρte−aρ sinh rj/rj (j �= i) represents the product of a
Coulomb-like potential multiplied by a bound-like s state.
Hence, the driven term (14) can be associated to a phys-
ical bound-free picture as would appear in a scattering
problem (see Eq. (8)); moreover, as we shall see in the
next sections, it allows for an analytical solution of the
driven Schrödinger equation (9).

The source (14) may be expanded in a series of Jacobi
polynomials Ωn(α) as (see details in the Appendix)

ϕ (ρ, α) =
∞∑

n=0

bnfn(ρ)Ωn (α) , (15)

where

fn(ρ) = e−aρρ2n+t (16)

bn =
1
Nn

1
22n

(
3
2

)
n

n!
[(−1)n + 1]

2
. (17)

Notice that due to the symmetry of the source, the sum-
mation in expansion (15) is limited to even numbers n
only.

In Figure 1, we plot ϕ (ρ, α) ρ5/2 as a function of the
more familiar spherical variable r1 and r2, for a = 2
and t = 0. The factor ρ5/2, that appears in the reduced
form (20) of equation (9), is added for illustration pur-
poses. At large r1 and r2, the source behaves as the prod-
uct of a Coulombic potential, multiplied by a decreasing
exponential (representing a hydrogenic bound state) and a
Bessel function (continuum state). Note that for ri larger
than say 5 a.u. the source is already vanishing. The source
function ϕ (ρ, α) is reproduced to an accuracy of 10−3 up
to the hyperradius ρ = 60 through the expansion (15) with
45 terms. For larger hyperradius ρ, the number of terms
needed in the expansion increases proportionally to ρ.
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One further remark. If spherical, rather than hyper-
spherical, coordinates are used, the model driven equation
reads
[
− 1

2r2
1

∂

∂r1

(
r2
1

∂

∂r1

)
− 1

2r2
2

∂

∂r2

(
r2
2

∂

∂r2

)

+
C√

r2
1 + r2

2

− E

]
Ψ (r1, r2) =

[√
r2
1 + r2

2

]t

× e−a
√

r2
1+r2

2
1
2

[
sin r1

r1

sinh r2

r2
+

sin r2

r2

sinh r1

r1

]
. (18)

The Coulomb potential is simple in hyperspherical, but
not in spherical, coordinates. The driven term is not sep-
arable in either set of coordinates, not even asymptot-
ically. Thus, the model equation (9) together with the
source (14) provides a physically meaningful Coulomb
scattering problem which presents typical three-body
problem difficulties including non-separability.

3 Analytical solution

To solve the driven equation (9) with the source (14), we
shall first provide the general solution ΨG

H of the corre-
sponding homogenous equation (Sect. 3.1), and then the
particular solution ΨP

NH (Sect. 3.2). The general solution
ΨG

NH of the problem, its asymptotic limit and the transi-
tion amplitude, will be given in Section 3.3. All this can
be provided in analytic form.

It is convenient first to make the change of function

Ψ(ρ, α) =
Ψ̄(ρ, α)

ρ
5
2

, (19)

so that the non-homogeneous differential equation to solve
reads
[
− 1

2μ

∂2

∂ρ2
+

Λ2 + 15/4
2μρ2

+
C
ρ
− E

]
Ψ̄ (ρ, α) = ρ5/2ϕ (ρ, α) .

(20)
(We take this opportunity to signal a typographical mis-
take in Eq. (15) of Ref. [25], where −15/4 appears instead
of 15/4.)

3.1 General solution of the homogeneous
differential equation

The homogeneous equation corresponding to equa-
tion (20) can be readily solved by variable separation.
The angular part is given by Ωn(α), and property (12)
yields a centrifugal barrier [λn(λn + 4) + 15/4]/(2μρ2) =
νn(νn + 1)/(2μρ2) where νn + 1 = 5

2 + λn = 5
2 + 2n. The

general solution (regular at the origin) of the hyperradial
Coulomb equation reads

ΨG
H (ρ, α) =

1
ρ

5
2

∑
n

χn(ρ)Ωn(α) (21)

where

χn(ρ) = NC(νn)eiKρρνn+1
1F1 (an, cn;−2iKρ) , (22)

with

an = iη + νn + 1 (23a)
cn = 2νn + 2, (23b)

and where η = Cμ/K defines the Sommerfeld parameter.
The normalization constant

NC(νn) =
(2K)νn+1

2
|Γ (an)|
Γ (cn)

e−
π
2 η, (24)

is chosen in order to provide the following asymptotic
behavior

χn(ρ) → sin
(
Kρ− η ln (2Kρ)− π

2
νn + σc(νn)

)
, (25)

where the Coulomb phase-shift is given by σC(νn) =
Arg [Γ (an)].

3.2 Particular solution of the non-homogeneous
differential equation

As the potential appearing on the left-hand-side of equa-
tion (20) does not depend on the angular variables, it may
be convenient to express the solution as a combination of
radial and angular functions:

ΨP
NH (ρ, α) =

1
ρ

5
2

∑
n

bnRn(ρ)Ωn (α). (26)

Replacing into (20) and using again property (12), we
obtain

∑
n

Ωn(α)
[
− 1

2μ

∂2

∂ρ2
+

νn(νn + 1)
2μρ2

+
C
ρ
− E

]
(bnRn(ρ)) = ρ

5
2 ϕ (ρ, α) , (27)

where the source ϕ (ρ, α) is given by equation (15). By
projecting on the angular functions Ωn(α), and using the
orthonormality property (13), we get the following hyper-
radial equation

[
− 1

2μ

d2

dρ2
+

νn(νn + 1)
2μρ2

+
C
ρ
− E

]
Rn(ρ) = ρ

5
2 fn(ρ).

(28)
Introducing the change of function

Rn(ρ) = (−2μ)(−2iK)−2−teiKρρ2n+5/2vn(ρ) (29)

the equation for vn(ρ) results

[
ρ

d2

dρ2
+ (2iKρ + cn)

d

dρ
+ 2iKan

]
vn(ρ)

= (−2iK)2+te−iKρρ−2n+1fn(ρ).
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Next we introduce the following change of variable
r = −2iKρ, and use the definition (16) of the source to get

[
r

d2

dr2
+ (cn − r)

d

dr
− an

]
vn(r) = eγrr1+t, (30)

where γ = 1
2

(
1 + a

iK

)
. This latter form of the non-

homogeneous differential equation is exactly the one stud-
ied quite in details in [29] (see Eq. (18)). The particu-
lar solution, regular at the origin, is given analytically
by equation (23) of [29] with the labelling replacement
[k, l, σ, λ] → [K, νn, 1 + t, a]. Writing the final result for
Rn(ρ) we have:

Rn(ρ) = (−2μ)eiKρρνn+3+t 1
(2 + t)(cn + 1 + t)

×Θ(1)

(
2+t, 1| cn + 1 + t, an+2+t

an+ 2+t|3+t, cn + 2+t

∣∣∣∣∣ ;−2iKγρ,−2iKρ

)
,

(31)

where Θ(1) is a two variables hypergeometric function in-
troduced and discussed in reference [30] in a different con-
text, and whose series representation is given by

Θ(1)

(
a1, a2| b1, b2

c1| d1, d2

∣∣∣∣∣ ; x1, x2

)

=
∞∑

m1=0

∞∑
m2=0

(a1)m1
(a2)m2

(b1)m1
(b2)m1+m2

(c1)m1
(d1)m1+m2

(d2)m1+m2

xm1
1 xm2

2

m1!m2!
.

(32)

It is interesting to note that, when a is real, the particular
solution Rn(ρ) is a real function [29].

From the asymptotic study [31] of the Θ(1) function,
if �(a) > 0 the large ρ behavior Rn(ρ) of reads

Rn(ρ) → bnNsource cos
[
Kρ− η ln (2Kρ)

− π

2
(νn + t + 3) + δ(νn, 1 + t, a)

]
(33)

where

Nsource =(−2μ)
(1)1+t (2νn + 2)1+t

(2νn + 2)2t+4

| 2F1|
NC(νn + t + 2)

(34)

is a constant fixed by the source; above

δ(νn, 1 + t, a) = σC(νn + t + 2) − Δ, (35)

and

2F1 (t + 2, 2νn + t + 3, iη + νn + t + 3; γ) = | 2F1|eiΔ.
(36)

As can be seen from equation (33), the solution Rn(ρ)
possesses both incoming and outgoing behaviors.

3.3 General solution of the non-homogeneous
differential equation

To build the general solution of the non-homogeneous dif-
ferential equation, we have to combine the results (22)
and (31) of the previous two subsections. In order to find
a pure outgoing behavior, we propose the following solu-
tion for the scattering problem

H+
n (ρ) = Anχn(ρ) + Rn(ρ), (37)

where the constant An will be chosen appropriately below.
According to (25) and (33), the function H+

n (ρ) behaves
for large values of ρ as

H+
n (ρ) → An sin

(
Kρ − ηln (2Kρ)− π

2
νn + σc(νn)

)

+ Nsource cos
[
Kρ − η ln (2Kρ) − π

2
(νn + t + 3)

+ δ(νn, 1 + t, δ)] . (38)

We can choose An in such a way to eliminate the incoming
wave [32]. This is achieved by setting

An = iNsourcee
iφ(νn) (39)

with φ(νn) = σc(νn) + π
2 (t + 3)− δ(νn, 1 + t, a). With this

choice we find the required H+
n (ρ) outgoing behavior

H+
n (ρ) → Nsource cos (φ(νn))

ei(Kρ−η ln(2Kρ)−π
2 νn+σc(νn)). (40)

The complete solution of the problem is then

ΨG
NH(ρ, α) =

1
ρ

5
2

∑
n

bn (Anχn(ρ) + Rn(ρ)) Ωn (α). (41)

Asymptotically it behaves, in accordance with refer-
ence [22], as

ΨG+

NH(ρ, α) → f(α)
ei(Kρ−η ln(2Kρ))

ρ
5
2

, (42)

providing the following analytical expression for the tran-
sition amplitude

f(α)=
∑

n

bn

(
Nsource cos (φ(νn)) ei(−π

2 νn+σc(νn))Ωn (α)
)
.

(43)

4 Numerical verification and results

The basic idea in using Sturmian functions to solve scat-
tering problems is to increase the convergence rate when
calculating both the scattering wave function as well as
transition amplitudes (see [25,26,33–38] and references
therein). This can be achieved by providing the basis func-
tions with the appropriated information (physics) of the
problem, in particular the correct asymptotic behavior
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that the scattering function has. In this way the expan-
sion on the basis is restricted to the region where the
“interaction” between the particles takes place. Besides,
the basis functions may diagonalize some of the interac-
tion appearing on the Hamiltonian of the full scattering
problem, so that some of the relevant physical information
will be already built in the basis functions themselves.

To solve general three-body systems we recently de-
veloped a method based on the use of hyperspherical
Sturmian functions (HSF) [25,26]. Here we propose to use
a product of coupled functions, and expand the numerical
solution of the scattering problem (9) as

ΨNUM (ρ, α) =
1
ρ

5
2

∑
m

∑
n

an,mS+
n,m (ρ)Ωn (α) , (44)

where, for the angular part, and for this particular prob-
lem, we have taken the Jacobi polynomials Ωn(α) pre-
sented in Section 2.2. Coupled to these, for a given n, we
take a HSF set of hyperradial functions Sn,m (ρ) satisfying
the equation
[
− 1

2μ

1
ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+

λn(λn + 4)
2μρ2

+ U(ρ) − E

]

× Sn,m (ρ)
ρ5/2

= βn,mVg(ρ)
Sn,m (ρ)

ρ5/2
, (45)

where U(ρ) and Vg(ρ) are, respectively, the auxiliary and
the generating potentials; here E is externally fixed (as
the energy of the system) while βn,m are the eigenvalues.
For Sturmian functions, generally [33–37], the range of the
generating potential Vg(ρ) – assumed of short range – is
taken similar to that of the left-out interaction, i.e., in re-
lation with the driving term in equation (9). The auxiliary
potential U(ρ) is taken here equal to the interaction po-
tential, i.e., in our model problem U(ρ) = C/ρ. With this
choice, asymptotically equation (45) reduces to a Coulomb
homogeneous equation providing all basis HSF, a unique –
and appropriate – asymptotic behavior, i.e., the one of the
full solution sought after; for our problem we choose out-
going behavior

S+
n,m (ρ) → ei(Kρ−η ln(2Kρ)). (46)

From this behavior, the transition amplitude can be easily
extracted from ΨNUM (ρ, α), since

ΨNUM (ρ, α) → ei(Kρ−η ln(2Kρ))

ρ
5
2

∑
n

(∑
m

an,m

)
Ωn (α) ,

(47)
yielding, by comparison with (42),

f(α) =
∑

n

(∑
m

an,m

)
Ωn (α). (48)

Note that all the basis functions Sn,m (ρ) are regular on
the whole domain, and satisfy, for any n, closure and or-
thogonality relations with respect to the generating poten-
tial. Different techniques can be implemented to numeri-
cally generate the Sturmians functions as explained with

Fig. 2. The modulus of the reduced numerical scattering so-

lution ΨNUM (ρ,α)ρ
5
2 as given by equation (44), is plotted

as a function of r1 and r2. The hyperspherical momentum
K = 1 a.u., i.e., the energy E = 0.5 a.u.

details in references [25,37]. The Schrödinger equation, in
our case the driven equation (9), is transformed into an al-
gebraic problem which can be easily solved using standard
matrix techniques [25,26,37]. Actually, for the source (14)
considered in our model, the problem reduces even fur-
ther: the expansion coefficients aq,p are directly obtained,
and are proportional to simple one dimensional integrals.

From equation (45) we see that the HSF basis func-
tions diagonalize not only the kinetic energy but also the
Coulomb interaction C/ρ of the scattering equation (9).
This choice, and the adequate asymptotic behavior, makes
the HSF basis particularly efficient. To illustrate this, let
us look at the scattering solution and the transition am-
plitudes, comparing the analytical results (Sect. 3) with
the numerical HSF expansion (44). We take hereafter a
reduced mass μ = 1, the momentum of the system K = 1
(i.e., the energy E = 0.5 a.u.), the parameter of the ex-
ponential in the source is taken to be a = 2, and the
interaction product charges as C = −1 (C = 1 has also
been tested, and provides a similar analysis).

The HSF used in our calculation were defined in such
a way that all of them have the correct asymptotic behav-
ior of the problem fixed by C and K. Thus most of the
Hamiltonian is diagonalized by the basis functions, and
only the coupling produced by the driven term has to be
dealt with. In that sense, the generating potential Vg(ρ)
has to be defined according to the source term. As can be
seen in Figure 1, the source is of short range, and for val-
ues of ρ larger than 30, it can be considered as zero: in that
region the scattering asymptotic regime should be already
reached. We therefore defined the generating potential as
having that range so that the constructed basis functions
need to expand only the inner region. More specifically, we
have taken Vg(ρ) as being a Yukawa potential in ρ with a
parameter similar to the one appearing in the right-hand-
side of equation (9).

In Figure 2, we plot the modulus of the numerical scat-
tering solution ΨNUM (ρ, α)ρ5/2 given by equation (44)
(the modulus is shown as to avoid the oscillations which
would crowd the figure). While hyperspherical coordinates
are used to calculate it, the solution is presented as a
function of the more familiar spherical variable r1 and r2
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Fig. 3. (Color online) The analytical (full line) and numerical
(dotted line) transition amplitude for K = 1 a.u., are shown
as a function of α. Inset: partial summations (different hyper-
angular quantum numbers n in equation (48) for the numeri-
cal transition amplitudes, with 2 terms (dashed line), 3 terms
(dot-dashed line), and 8 terms (dotted line).

allowing one to appreciate the symmetry related to that
of the source. Overall excellent agreement (not shown as
practically indistinguishable) is found with the analytical
solution (41). For the numerical results, we used 8 hyper-
angular and 15 hyperradial terms; we observed, however,
that an indistinguishable curve can be obtained by us-
ing as few as a total of 16 terms in expansion (44). It is
remarkable that although the source expansion (15) needs
a large number of terms (specially for large ρ values), the
expansion (44) needs only a very few terms. This is related
to the intrinsic adequate property set into the basis itself.

In Figure 3, we compare the exact transition ampli-
tude (43) obtained with only n = 8 terms (full line) with
the one calculated numerically through expression (48).
It is shown here in squared modulus, and presents a U-
shaped form typical of double photoionization or electron
impact ionization single differential cross sections. The
symmetry with respect to α = π/4 (i.e. r1 = r2) is clearly
observed. Coming back to Figure 2, one can observe how,
as r1 and r2 both increase (and thus ρ also) the value of
the reduced function tends (see Eqs. (47) and (48)) to the
shape of the transition amplitude presented in Figure 3.
Finally, the very fast convergence of the numerical expan-
sion (48) can be easily appreciated through the partial n
summations (dashed lines); the exact result is reached to
an accuracy of 10−4 with only 3 terms (summing the cor-
respondent terms for n = 0, 2 and 4).

The above illustration was given for an energy E =
0.5 a.u. (hyperspherical momentum K = 1). It is well
known that the convergence of numerical methods is
strongly energy dependent and becomes more difficult
as the energy approaches the ionization threshold. For a
much smaller hyperspherical momentum K = 0.1 (energy
of E = 0.005 a.u.), we were able to reproduce the ana-
lytical transition amplitude with great accuracy (error of
less than 1%) with about 20 m-terms per hyperangular
quantum number n, giving a total of about 60–80 terms.

This required also adapting the exponent parameter of the
Yukawa generating potential (0.005 a.u.). Thus, the con-
vergence can be reached even at very small energy values
(the case K = 0.05 was also tested successfully).

5 Asymptotic considerations related
to the Temkin-Poet problem

It is well known from scattering theory that the transition
amplitude corresponding to different collision processes
occurring in a given system can be extracted from the
asymptotic limit of the wave function. This was shown
explicitly in the previous section for the model problem
proposed here. How and where to extract this informa-
tion depends strongly on the problem under consideration,
but some general trends can be identified. There are ba-
sically three regions to be considered when studying the
solution of a driven scattering Schrödinger equation. The
first one, R1, is the region where the driven term is dif-
ferent from zero. The second, R2, is the region starting
where the driven term becomes negligible and up to the
domain where the solution’s asymptotic behavior begins.
The third region, R3, is the true asymptotic region. The
transition amplitude should be extracted in R3; to the
best of our knowledge, however, no studies have been done
to clarify how far from the origin this region is located
when dealing with the three-body Coulomb problem. This
is of importance for its numerical treatment because the
problem is difficult and computationally expensive.

With a modification of our model problem we can con-
tribute in understanding the asymptotic domains’ issue.
Consider the following approximate wave function

Ψ+
app(ρ, α) =

Ψ̄+
app(ρ, α)

ρ
5
2

=
1
ρ

5
2

∑
n

dnH̄+
n (ρ, α)Ωn (α)

(49)
where dn are some coefficients, and H̄+

n (ρ, α) are defined
by equation (37) but with the Temkin-Poet charge C̃ (α)
(see Eq. (5)) replacing C. According to the study presented
in Section 3.3, instead of equation (42), the asymptotic
behavior of Ψ+

app(ρ, α) is

Ψ+
app(ρ, α) → fapp(α)

e
i
(

Kρ− C̃(α)
K ln(2Kρ)

)

ρ
5
2

, (50)

that is to say it possesses Peterkop’s asymptotic behavior
for the Temkin-Poet model. The transition amplitude has
the following analytical expression

fapp(α) =
∑

n

dn

(
Nsource (α) cos [φ(α, νn)]

× ei[−π
2 νn+σc(α,νn)]Ωn (α)

)
, (51)

where the α dependence has been explicitly added every-
where. The approximate wave function Ψ+

app(ρ, α) is inter-
esting as it allows us to make a detailed investigation of
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Fig. 4. The function R̄n(ρ,α) for n = 0 is plotted as a function
of ρ and α.

where the three regions Ri are located, the analysis be-
ing greatly facilitated by the knowledge of the analytic
expression. The functions H̄+

n (ρ, α) satisfy the following
non-homogeneous differential equation
[
− 1

2μ

∂2

∂ρ2
+

νn(νn + 1)
2μρ2

+
C̃ (α)

ρ
− E

]

× H̄+
n (ρ, α) = ρ5/2fn (ρ) , (52)

and involve again a – α dependent – Coulomb solution of
the corresponding homogeneous equation and a particu-
lar solution, noted herefater R̄n(ρ, α). The latter are real
functions, and have been evaluated analytically for many
values of α. The results for n = 0, Z = 1 and K = 1
are shown in Figure 4 as a function of α and ρ. The α
dependence clearly affects the radial behavior. In the re-
gion R1, the function depends strongly on the driven term.
As already discussed through Figure 1, the driven term
is not negligible for hyperradii smaller than about 5 a.u.
Therefore, for ρ > 10 a.u., the right-hand-side can be nu-
merically considered as zero, meaning that the solution
of the driven equation is already located in R2 where
the interaction appearing on the Hamiltonian dictates the
dynamics.

It remains to be seen where the function Ψ+
app(ρ, α)

reaches the asymptotic regime. The region R3 is attained
when the functions H̄+

n (ρ, α) will reach their asymptotic
behavior, and this for all the necessary n values to get
convergence for the total wave function and the transition
amplitude. For this purpose, we should compare H̄+

n (ρ, α)

with the asymptotic expression e
i
(

Kρ− C̃(α)
K ln(2Kρ)

)
for dif-

ferent values of n; it is simpler, however, to compare
only the real function R̄n(ρ, α) and its asymptotic ex-
pression (33). This comparison is illustrated in Figure 5
where the functions, normalized asymptotically to one,
have been plotted as a function of ρ, shown up to 150 a.u.,
for α = π

3 (similar results are obtained for other values
of α), and for n = 0, 4 and 8. First of all, we observe
a phase shift, which is larger for larger values of n. Sec-
ondly, good agreement between the full function and the
asymptotic expression is achieved for values of the hyper-
radial coordinate of about 100 a.u., for n = 0. However,
for higher n values, the asymptotic behavior is reached at
much larger values of ρ, for example, at distances larger

25 50 75 100 125

-1

0

1 n=0

25 50 75 100 125

-1

0

1

R
n(ρ

,α
) n=4

0 25 50 75 100 125 150
ρ (a.u.)

-1

0

1 n=8

Fig. 5. (Color online) The functions R̄n(ρ, α) (full line) are
plotted as a function of ρ, for α = π

3
, and for n = 0 (top), n = 4

(middle) and n = 8 (bottom). The asymptotic expression (33)
is also shown (dashed line) for comparison. Both quantities are
shown with unit modulus asymptotically.

than 250 for n = 4, and even larger than 2500 a.u., for
n = 8. This means that to accurately calculate a converged
transition amplitude (say including up to n = 8 terms),
one should evaluate the wave function up to an hyperra-
dius of about 2500–3000 a.u. When restricting the calcu-
lation to, say, 100 a.u. one observes an error of about 3%,
and even a non negligible difference in shape, for the cross
sections. Of course, these values correspond to the chosen
physical parameters, and in particular to the system’s en-
ergy. For smaller energies one should go up to much larger
hyperradius values: for example, up to 30 000 a.u. for
E = 0.005 a.u. and even 60 000 a.u. for E = 0.00125 a.u.
(as a rule of thumb, for an hyperspherical momentum K,
one should go to distances beyond 3000/K). Thus, from
this analysis, it seems that it is not sufficient to limit
the scattering wave function calculation to a domain of
about 100 or even 300 a.u.: this is directly related to the
long range nature of the Coulomb interaction.

As a consequence of the above analysis, the follow-
ing question arises: how methods such as the Exterior
Complex Scaling [3] or our Generalized Sturmians ap-
proach [33] manage to generate the full three-body solu-
tion in a square region (r1 and r2) of less than 300 atomic
units? Extrapolation methods have been implemented to
extract the transition amplitude from a wave function de-
fined in a region of less than 200 or 300 a.u. It is, how-
ever, fair to ask whether such extrapolations are really
yielding the exact result? In order to explore and an-
swer these questions, we are currently using our Gener-
alized Sturmian method for different collision problems,
imposing different types of asymptotic behaviors to the
basis functions, and comparing the convergency obtained
with spherical and hyperspherical coordinates. As illus-
trated in the present manuscript, hyperspherical Sturmian
functions allowed to treat efficiently the model problem
and to extract the transition amplitude very accurately.
Only very few angular and radial basis functions were
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required, but the extraction of the transition amplitude
was performed, for E = 0.5 a.u., at hyperradius values of
about 2500–3000 a.u. The model presented here has the
advantage of possessing an analytic solution; this allowed
us to compare the numerical to the exact solution, and
finally to illustrate the efficiency of our generalized hyper-
spherical Sturmian approach.

6 Summary

In this report we introduced a model for three-body frag-
mentation/ionization which applies both for attractive or
repulsive cases. The full wave function is split into a cho-
sen bound-free initial state and a scattering wave function
which satisfies a driven Schrödinger equation. We were
able to find an analytical solution with outgoing wave be-
havior at large distances, as well as a closed form expres-
sion for the transition amplitude. As our model differs
substantially from the Temkin-Poet model, it provides an
alternative benchmark to test numerical three-body meth-
ods. Moreover, contrary to the Temkin-Poet model, in
our case the solution is analytical. We thus invite those
developing three-body codes to test them by solving the
driven Schrödinger equation (18) in spherical coordinates
or equation (9) in hyperspherical coordinates (results for
different energies E and charge values C may be obtained
from the authors, upon request).

The analytical results of the model scattering problem
were verified numerically through an expansion on a com-
plete basis set of the hyperspherical Sturmian functions.
All hyperradial basis elements not only diagonalize the ki-
netic energy and the interaction, but also possess the same
appropriate asymptotic behavior; thus, they only need to
expand the solution in the interaction region. These prop-
erties strongly accelerate the expansion convergence rate
for the scattering wave function, and allow for a straight-
forward extraction of the transition amplitude. Excellent
agreement with the analytical results is found with only
very few expansion terms.

We also extended the scattering model to allow for
an hyperangular charge dependence. In that way, we
were able to define an approximate S-wave three-body
wave function possessing the correct Peterkop behavior
at large distances. This extension allowed us to explore
how the wave function takes different behaviors in differ-
ent hyperradial domains. The configuration space can be
subdivided in three regions. In the first one, the source
term governs the wave function. In the second region,
where the driven term is negligible, the dynamics are
ruled purely by the (Coulomb) interactions appearing in
the hamiltonian. Finally, for sufficiently large distances,
the asymptotic region is reached. The proposed model al-
lowed us to quantitatively identify at which hyperradial
distances the asymptotic region is really reached, and thus
how far one should go to extract the transition amplitude
from the wave function itself. Similar deductions apply
for other three-body problems involving Coulomb interac-
tions, and we found that the required distances are larger
than 2500 a.u. (this value, of course, depends on the en-
ergy of the system). In this respect, it has to be underlined

that no full numerical calculations, with numerical grids of
such size, have been performed for either (e, 2e) or (e, 3e)
processes.
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Appendix

In this Appendix we provide the demonstration of expan-
sion (15) for the proposed source given by equation (14).
We start from the mathematical formula (8.442)(2) of ref-
erence [39], specified for ν = μ = 1/2 and taking b as
purely imaginary (i.e., ib),

J1/2(az)J1/2(ibz)
[(az/2)1/2(ibz/2)1/2]

=
∞∑

n=0

(−1)n(az/2)2n
2F1(−n,−n− 1/2, 3/2;−b2/a2)

n!Γ (3/2)Γ (3/2 + n)
.

(A.1)

Let us set az = ρ cosα = r1 and
bz = ρ sin α = r2. The left-hand-side is then simply
4
π j0(r1)j0(ir2) = 4

π
sin r1

r1

sinh r2
r2

. On the right-hand-side,
transforming the hypergeometric function 2F1 according
to formula (15.3.4) of [28], the Jacobi polynomials
Ωn(α)/Nn defined through equation (11) appear. After
trivial simplifications, we get

sin r1

r1

sinh r2

r2
=

∞∑
n=0

(−1)n

22n(3
2 )nn!

Ωn(α)
Nn

. (A.2)

By reversing the roles of a and b, i.e., r1 with r2, sin2 α
becomes cos2 α; this is also equivalent to replacing α by
π/2− α. Using relation (15.3.6) of [28], it is easy to show
that Ωn(π/2 − α) = (−1)nΩn(α), and hence

sin r2

r2

sinh r1

r1
=

∞∑
n=0

1
22n(3

2 )nn!
Ωn(α)
Nn

. (A.3)

Putting together results (A.2) and (A.3) in the
source (14), we finally obtain expansion (15).
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