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Abstract
We present the results of an 83-term, 180-level intermediate-coupling frame-
transformation (ICFT) R-matrix close-coupling calculation of the electron-
impact excitation of boron-like Ne5+. All levels of the 2s22p, 2s2p2, 2p3, 2s23�,
2s24�, 2s2p3�, 2p23�, 2s2p4s, 2s2p4p, and 2s2p4d configurations are included
in the close-coupling expansion. This sizable calculation was performed us-
ing our new ICFT R-matrix codes designed for distributed-memory parallel
computers. We compare our results from this calculation with those from our
11-term 20-level ICFT calculation and an earlier eight-term 15-level R-matrix
calculation. Here we describe the nature of these calculations and present ra-
diative rates and effective collision strengths for a selected number of the 16 110
transitions resulting from this work. The full set of data is available at the Oak
Ridge National Laboratory Controlled Fusion Atomic Data Center Web site.

1. Introduction

Data for the electron-impact excitation of Ne ions are of importance in laboratory and
astrophysical plasmas. In an earlier paper, we reported on large R-matrix close-coupling
calculations for C-like Ne4+ [1]; in addition, we have recently completed work on F-like Ne+ [2].
In this paper, we present results from R-matrix close-coupling calculations of electron-impact
excitation for B-like Ne5+. Emission lines from this ion have been observed for transitions
among the n = 2 levels in solar spectra and among the n = 2 and 3 levels in laboratory
plasmas [3]. There have been two previous R-matrix close-coupling calculations of electron-
impact excitation for this ion. The first was a ten-term LS calculation by Hayes [3]. In
addition, Zhang et al [4], as part of a larger study of the B-like ions, performed an eight-term
LS calculation and then transformed the resulting T -matrices to pure pair coupling so as to
obtain effective collision strengths among the 15 n = 2 levels; however, they only provided
data for transitions between the lowest seven levels.

Here we report on results from two R-matrix close coupling calculations for Ne5+ that
employ the same Breit–Pauli configuration-interaction (CI) description of the target. The first
was an 11-term, 20-level intermediate-coupling frame-transformation (ICFT) [5] R-matrix
calculation that included the levels arising from the 2s22p, 2s2p2, 2p3 and 2s23� configurations.
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The second was a much larger 83-term, 180-level ICFT calculation that included the levels
arising from the 2s22p, 2s2p2, 2p3, 2s23�, 2s24� 2s2p3�, 2p23�, 2s2p4s, 2s2p4p, and 2s2p4d
configurations. It was performed using our new parallel versions of the ICFT R-matrix codes.

The ICFT method is based on multi-channel quantum-defect theory (MQDT). One first
employs MQDT to generate ‘unphysical’ K-matrices in pure LS coupling [6]. These matrices
are then transformed to intermediate coupling using term-coupling coefficients and, finally,
the physical K-matrices are determined from the unphysical K-matrices and the level energies
using MQDT. This has been shown to avoid the problems associated with the term-coupling
transformation of physical K-matrices, as is done in the program JAJOM [7], and yields results
in excellent agreement with a full Breit–Pauli R-matrix calculation [5, 8].

Here we present our results for energy levels and dipole-radiative rates for selected transi-
tions. In addition, we compare some of the collisional data obtained from our two calculations
with each other and with the earlier results of Zhang et al [4]. The effective collision strengths
for all 16 110 transitions between the 180 levels included in our largest calculation, as well as
radiative rates for all dipole-allowed transitions, are available on the Internet at the Oak Ridge
National Laboratory (ORNL) Controlled Fusion Atomic Data Center (CFADC)3.

The remainder of this paper is organized as follows. In the next section, we give a brief
description of the parallel implementation of our ICFT R-matrix codes. In section 3, we
describe our structure and scattering calculations for this ion and, in section 4, we present our
results for energies, radiative rates and collision strengths for selected transitions. In section 5,
we provide a brief summary of our findings.

2. Parallel ICFT R-matrix codes

The 20-level ICFT R-matrix calculation was easily completed on one of our local workstations.
However, even though the ICFT method is significantly faster than the full Breit–Pauli R-matrix
method, calculations that include a large number of levels in the close-coupling expansion still
require substantial time on a single processor. For example, our 138-level ICFT calculation
on Ne+ [2] required nearly two full weeks of run time on a workstation. For that reason, the
180-level calculation was carried out using the parallel version of these programs, the coding
for which has just been completed. In this section, we provide a brief description of the parallel
implementation of these codes.

The inner-region part of an ICFT R-matrix calculation, is performed using a modified
version of the Queen’s University of Belfast (QUB) RMATRX I suite of programs [9]. For cal-
culations in LS coupling, it is divided into three stages. STG1 calculates the orbital basis and
all radial integrals in the inner region and STG2 determines LS coupling matrix elements in the
inner region. These two programs run quite efficiently as serial codes and have not been mod-
ified for parallel operation. STG3 (referred to as STGH in the RMATRX I package) reads the
inner-region information from STG1 and STG2 and diagonalizes the continuum Hamiltonian.
For large-scale calculations, the diagonalization of this (N + 1)-electron Hamiltonian is by far
the most time consuming part of the inner-region operations. The time needed for the diagonal-
ization of a matrix is proportional to N3

r , where Nr is the rank of the matrix. For a typical calcu-
lation involving more than 80 terms, hundreds of different matrices up to a rank of ≈5×103 are
diagonalized. Therefore, we wrote the parallel version of STG3 with an emphasis on distribut-
ing the diagonalization over the many processors of a distributed-memory parallel computer.

Using calls to the standard message-passing interface (MPI) library [10], the Hamiltonian
matrix is directly partitioned over the processors. ScaLAPACK routines [11] are then used

3 http://www-cfadc.phy.ornl.gov/data and codes.
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for obtaining all eigenvalues and eigenvectors of the (N + 1)-electron Hamiltonian. The
ScaLAPACK strategy is to perform as much of the calculation as possible by calls to the
parallel basic linear algebra subprograms (PBLAS), provided by computer vendors (and
others). The efficiency of ScaLAPACK software depends on the use of block-partitioned
algorithms that provide the best load balancing with the maximum use of the PBLAS library on
every processor. In addition to decreasing the time required for diagonalization, the partitioning
of the Hamiltonian matrix also reduces memory requirements. The global Hamiltonian matrix
is never constructed; only a local portion resides on each processor. In addition, global
eigenvectors are not required, since partitioned eigenvectors are used to calculate the R-matrix
surface amplitudes in parallel. There are a number of special features, such as the elimination
of pseudo-resonances attached to states included in the CI expansion of the target but not the
close-coupling expansion [12], that are included in our version of STG3, and not in the QUB
version. They have been implemented in the parallel version.

In an ICFT calculation, we generate the unphysical K-matrices in LS coupling using a
version of Seaton’s unpublished program STGF, that has been modified by Badnell et al [13]
to incorporate MQDT as an option. Finally, we employ our STGICF program to transform the
unphysical K-matrices to intermediate coupling, generate the physical K-matrices and then
calculate the collision strengths. These outer-region codes have now both been modified to
operate on distributed-memory parallel computers.

Typically ≈104 energy points are required in order to resolve the many resonances in a
large calculation. Since every calculation is independent, data parallelization is an effective
way to treat these large-scale problems. The energy points, at which the collision strengths are
to be evaluated, are distributed among the number of available processors. The computational
time required for a given energy is strongly affected by the number of open channels. Therefore,
care must be taken in order to ensure that the more time-consuming energy regions are equally
partitioned among all of the processors. For cases in which the number of energy points is much
larger than the number of processors, this is easy to implement. We normally calculate the
collision strengths at N energy points using a constant mesh separation 
E. We distribute the
calculation over M processors p = 0, . . . , M−1, in such a way that every processor calculates
roughly Np = N/M points. The balance is achieved by having processor p calculate the
collision strengths at points Ek = E0 + (k × M + p)
E, k = 0, . . . , Np − 1, where E0 is the
initial mesh point. If the mesh separation 
E is small, the number of open channels at any
step k remains approximately the same for every processor. This approach has the additional
advantage of reducing the memory requirements for storing the K-matrices. The matrices are
kept in (fast access) memory rather than stored in (slow access) disk files.

Scalability of STG3, STGF and STGICF has been achieved, at least with the use of 64
processors. For the 180-level calculation on Ne5+, STG3 required 55 h of total CPU time on the
Cray T3E-900 Supercomputer at the National Energy Research Scientific Computing Center
(NERSC) in Oakland, CA. The asymptotic codes were run on the IBM SP Supercomputer
at NERSC. For 11 648 energy mesh points, STGF required 206 h of total CPU time, while
STGICF consumed a total of 410 h. Thus STG3, STGF and STGICF required almost 28 days
of total CPU time. However, this entire calculation ran in half a day using 64 processors.

3. Description of the calculations

3.1. Target-state calculations

The bound-state radial wavefunctions employed in our scattering calculations were generated
using Froese Fischer’s multi-configuration Hartree–Fock (MCHF) programs [14]. The 1s, 2s
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and 2p, orbitals were determined from a Hartree–Fock (HF) calculation on the 2s22p ground
configuration, while the 3� and 4� orbitals were generated from frozen-core HF calculations on
the 2s2n� configurations. We also included three pseudo-orbitals in order to partially correct
the spectroscopic orbitals for variations between configurations. A 5p pseudo-orbital was
generated from an MCHF calculation in which the energy of the 2p3 2P term was minimized
and in which the 2p3 2P, 2p23p 2P, 2p24p 2P, and 2p25p 2P terms were included. 5s and
5d pseudo-orbitals were determined from an MCHF calculation in which the energy of the
2s2p2 2P term was minimized and in which the 2s2p2 2P, 2p23s 2P, 2p23d 2P, 2p24s 2P, 2p24d
2P 2p25s 2P and 2p25d 2P terms were included.

This set of orbitals was then employed in a large Breit–Pauli CI calculation. It included
the odd-parity levels arising from the 2s22p, 2p3, 2s23p, 2s2p3s, 2s2p3d, 2s24p, 2s24f, 2p23p,
2s2p4s, 2s2p4d, 2p24p, 2p25p, 2s2p5s and 2s2p5d configurations; the even-parity levels
included were those arising from the configurations 2s2p2, 2s23s, 2s23d, 2s2p3p, 2s24s, 2s24d,
2p23s, 2p23d, 2s2p4p, 2p24s, 2p24d, 2p25s, 2p25d and 2s2p5p.

3.2. Scattering calculations

Here we describe our scattering calculations for the electron-impact excitation of Ne5+ using
the intermediate-coupling frame-transformation R-matrix method. We first performed an
11-term, 20-level ICFT calculation in which we employed the large CI expansion discussed
above to describe the target. Here the close-coupling expansion in LS coupling included
the 11 terms arising from the 2s22p, 2s2p2, 2p3 and 2s23� configurations. The size of the
R-matrix box was 11.5 au, we used 25 basis orbitals to represent the continuum for each
value of the angular momentum and all LS� partial waves from L = 0 to 14 were included.
We generated unphysical K-matrices in LS coupling and then employed the ICFT method
to transform the unphysical K-matrices to intermediate coupling; finally, we determined the
physical K-matrices in intermediate coupling for all J� partial waves from J = 0 to 12. In
order to improve on the accuracy of the scattering calculations, the theoretical target energies
were adjusted to the experimental values.

For the 20-level results reported here, we employed an energy mesh in the resonance
region with a mesh spacing of 1.0 × 10−3 Ry; above all thresholds, we employed a mesh
spacing of 6.6 × 10−2 Ry up to an energy of 24 Ry, for a total of 7674 mesh points. We
performed several tests to ensure that this energy mesh was sufficiently fine so as to resolve
the dominant resonance contributions; this will be discussed further in our description of the
determination of effective collision strengths.

A J� partial-wave expansion up to J = 12, is not sufficiently complete for the
determination of collision strengths up to an energy of 24 Ry. Thus, we performed an R-matrix
calculation without exchange for all LS� partial waves from L = 11 to 42 and then used the
ICFT method to generate physical K-matrices in intermediate coupling for all J� partial
waves from J = 13 to 40. These high-J contributions were then topped-up as follows: the
dipole-allowed transitions were topped-up using a method originally described by Burgess [15]
for LS coupling and implemented here for intermediate coupling; the non-dipole transitions
were topped-up assuming a geometric series in J , using energy ratios, and with a special
procedure for handling transitions between nearly degenerate levels based on the degenerate
limiting case [16]. Finally, it is important to note that in the asymptotic region, we included
the long-range multipole potentials perturbatively for all partial waves.

For our 180-level ICFT R-matrix calculation, we first performed an R-matrix calculation
with exchange in LS coupling for which the close-coupling expansion included all 83 terms of
the 2s22p, 2s2p2, 2p3, 2s23�, 2s24�, 2s2p3�, 2p23�, 2s2p4s, 2s2p4p and 2s2p4d configurations.
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We employed the same CI expansion of the target as we employed in the 20-level calculation.
Therefore, the details regarding the 180-level ICFT calculation, including the no-exchange
part of the calculation and top-up, are identical to those given above. Again the theoretical
target energies were adjusted to the experimental values; however, there were no experimental
energies available for a number of the 180 levels included here, and some of the experimental
fine-structure levels arising from a given term are degenerate. Thus we had to make some
adjustments in order to obtain a consistent set of target energies for this calculation. First
we used the experimental values for the average energy of the degenerate fine-structure
energies, but adjusted the energy spacing to the theoretical values of the fine-structure splitting.
Secondly, where possible, we adjusted the theoretical energies for levels for which there were
no experimental values according to the average difference between experiment and theory
for known levels arising from the same configuration and the same parent. Of course, for
levels where no experimental values were available and no such adjustments were possible,
the theoretical energies were employed.

For the 180-level calculations we used an energy mesh similar to that employed for the
20-level calculation; however, for technical reasons associated with the number of processors
employed, they were slightly different. In the resonance region the mesh-spacing was
9.9 × 10−4 Ry, while above all thresholds it was equal to 9.9 × 10−2 Ry up to the maximum
energy of 24 Ry, for a total of 11 648 mesh points. Again we performed tests on this energy
mesh to be sure that it resolved the dominant resonance contributions.

3.3. Determination of effective collision strengths

The effective collision strength, ϒ , first introduced by Seaton [17], is defined by the equation

ϒij =
∫ ∞

0
�(i → j) exp

(−εj

kTe

)
d

(
εj

kTe

)
, (1)

where � is the collision strength for the transition from level i to level j and εj is the continuum
energy of the final scattered electron. We employed the integration technique of Burgess and
Tully [18] to calculate the effective collision strengths. One must use some approximate
technique for that part of the integration in equation (1) above the highest energy for which the
collision strengths have been calculated. We employ an interpolation method to the infinite-
energy limit for the collision strengths as discussed in detail in Whiteford et al [19]. In order to
test the accuracy of these interpolations, we recorded a number of plots of the reduced collision
strengths as a function of reduced energy, as described by Burgess and Tully [18]. We found
that all plots for transitions among the n = 2 levels went smoothly to their infinite-energy
limits. However, for transitions to the higher lying levels, some of these curves made more
abrupt changes in slope in the region where the interpolations began. For this reason, we
limited our calculations of effective collision strengths to temperatures of up to 2.5 × 106 K,
so that any errors in these interpolations will have a very minor effect on the effective collision
strengths.

We used the calculated effective collision strengths to test the ability of our energy mesh
to resolve narrow resonances. Because the 20-level calculation was relatively fast, even
on a single processor, we actually employed two energy meshes. The first one, described
above, used a spacing of 1.0 × 10−3 Ry in the resonance region; for the second mesh, we
employed a spacing of 2.5 × 10−4 Ry. We then compared the calculated effective collision
strengths. We found that they were very close for the majority of transitions and differed
by more than 10% in only a small number of the weaker transitions. For the mesh with a
spacing of 1.0 × 10−3 Ry, we then eliminated all resonances for which the resonance peak
occurred at a single mesh point and was more than a factor of ten greater than the background
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collision strength at the two adjacent mesh points. We compared collision strengths calculated
without the elimination of unresolved resonances with those calculated after the removal of
such resonances. Again the differences were negligible for the vast majority of transitions,
and differences of more than 10% occurred in only a small number of the weaker transitions.
These results indicate that the mesh spacing of 1.0 × 10−3 Ry was sufficiently fine for the
20-level calculation.

Even on a massively parallel machine, it would have been prohibitively expensive to
employ a mesh spacing of 2.5 × 10−4 Ry for the 180-level calculation. Thus we used a mesh
spacing of 9.9 × 10−4 Ry in the resonance region. We then compared the effective collision
strengths with and without the elimination of unresolved resonances, as described above. The
comparisons were quite similar, with differences of more than 10% occurring for a small
fraction of the weaker transitions. The final results, presented here, employed the collision
strengths with the elimination of resonances that occurred at a single mesh point and had a
peak height of more than a factor of ten greater than the background collision strengths. We
believe that this should provide the most accurate overall results.

4. Results

4.1. Bound-state energies and radiative rates

The energies determined from our Breit–Pauli CI calculations of the Ne5+ target are presented
in table 1. They are arranged in the order of the theoretical energies; however, the order
of the energies employed in the R-matrix calculations as described in the last section are
listed in the last column of this table. For the most part, the agreement between the
experimental and theoretical energies is quite good; the largest deviation is 4.4% for the
2s2p2(1S)2S1/2 level, while the deviations for the vast majority of the other levels are much
smaller.

In table 2, we present our calculated radiative rates for all possible dipole-allowed
transitions among the lowest 20 levels for which the radiative rates are greater than 104 s−1.
These are compared to the radiative rates available from the MCHF/MCDF Collection on
the Internet4. The overall agreement between these two sets of data is good; the average
difference for all transitions given in the table is 24%. The level of agreement is further
illustrated in figure 1, where we show a graphical comparison of the present radiative rates
with those from the MCHF/MCDF Collection. We see that most of the rates for the stronger
transitions agree very well; in fact, for rates above 108 s−1 the average difference is only 6%.
As one can see from figure 1, the deviations between these two sets of data are much larger for
the transitions with radiative rates between 104 and 108 s−1—the average difference between
these two sets of radiative rates for these weaker transitions is 49%. However, this should
be expected since these rates are extremely sensitive to weak mixing between states; in fact,
it is somewhat surprising that the agreement is as good as it is for a number of these weak
transitions.

All the radiative rates presented in table 2 and figure 1 were calculated in the length
gauge. We have compared our calculated rates given in table 2 with those calculated in the
velocity gauge and found an average difference of 46%. However, as one would expect, the
vast majority of the larger differences between these two forms is concentrated in the very
weakest transitions. There is an average difference of 87% for the 30 transitions in table 2
with rates below 108 s−1, while the average difference between these two forms for the 41
transitions with rates above 108 s−1 is 16%.
4 http:/www.vuse.vanderbilt.edu/∼georgio/html doc/header.html.
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Table 1. Energies in Rydbergs for the levels included in the 180-level ICFT R-matrix calculation
for Ne5+ relative to the 2s22p 2P1/2 ground level. No experimental values exist for the numbers
in (); they were estimated from the average difference between theory and experiment for levels
of the same configuration and with the same parent. The experimental levels in {} are degenerate
and were adjusted to have the theoretical fine structure splittings. The column labelled ’order’,
indicates the order of levels employed in the R-matrix calculation.

Level no Level Energy (Th.) Energy (Exp.a) Diff. Order

1 2s22p 2P1/2 0.0000 0.0000 0.0000 1
2 2s22p 2P3/2 0.0118 0.0119 −0.0001 2
3 2s2p2(3P) 4P1/2 0.9078 0.9137 −0.0059 3
4 2s2p2(3P) 4P3/2 0.9119 0.9177 −0.0058 4
5 2s2p2(3P) 4P5/2 0.9187 0.9235 −0.0048 5
6 2s2p2(1D) 2D3/2 1.6799 1.6314 0.0485 7
7 2s2p2(1D) 2D5/2 1.6800 1.6311 0.0489 6
8 2s2p2(1S) 2S1/2 2.1959 2.1037 0.0922 8
9 2s2p2(3P) 2P1/2 2.3140 2.2717 0.0423 9

10 2s2p2(3P) 2P3/2 2.3217 2.2792 0.0425 10
11 2p3 4S3/2 2.9706 2.9304 0.0402 11
12 2p3 2D3/2 3.3347 {3.2754} {0.0593} 12
13 2p3 2D5/2 3.3350 {3.2757} {0.0593} 13
14 2p3 2P1/2 3.8054 3.6996 0.1008 14
15 2p3 2P3/2 3.8063 3.7003 0.1060 15
16 2s23s 2S1/2 6.5970 6.5849 0.0121 16
17 2s23p 2P1/2 7.0448 7.0280 0.0168 17
18 2s23p 2P3/2 7.0473 7.0309 0.0164 18
19 2s23d 2D3/2 7.4807 {7.4387} {0.0420} 19
20 2s23d 2D5/2 7.4815 {7.4395} {0.0420} 20
21 2s2p(3P)3s 4P1/2 7.6106 7.5961 0.0145 21
22 2s2p(3P)3s 4P3/2 7.6146 7.6004 0.0142 22
23 2s2p(3P)3s 4P5/2 7.6214 7.6074 0.0140 23
24 2s2p(3P)3s 2P1/2 7.8420 7.7981 0.0439 24
25 2s2p(3P)3s 2P3/2 7.8495 7.8056 0.0439 25
26 2s2p(3P)3p 2P1/2 7.9990 7.9844 0.0146 26
27 2s2p(3P)3p 2P3/2 8.0025 7.9887 0.0138 27
28 2s2p(3P)3p 4D1/2 8.0179 (7.9920) — 28
29 2s2p(3P)3p 4D3/2 8.0201 (7.9942) — 29
30 2s2p(3P)3p 4D5/2 8.0240 8.0057 0.0183 30
31 2s2p(3P)3p 4D7/2 8.0300 8.0117 0.0183 31
32 2s2p(3P)3p 4S3/2 8.1061 (8.0802) — 32
33 2s2p(3P)3p 4P1/2 8.1800 (8.1541) — 33
34 2s2p(3P)3p 4P3/2 8.1827 (8.1568) — 34
35 2s2p(3P)3p 4P5/2 8.1866 (8.1607) — 35
36 2s2p(3P)3p 2D3/2 8.2418 8.2023 0.0395 36
37 2s2p(3P)3p 2D5/2 8.2490 8.2096 0.0394 37
38 2s2p(3P)3d 4F3/2 8.3809 (8.3333) — 38
39 2s2p(3P)3p 2S1/2 8.3828 8.3368 0.0460 40
40 2s2p(3P)3d 4F5/2 8.3834 (8.3358) — 39
41 2s2p(3P)3d 4F7/2 8.3868 (8.3392) — 41
42 2s2p(3P)3d 4F9/2 8.3914 (8.3438) — 42
43 2s2p(3P)3d 4D1/2 8.4739 8.4408 0.0331 43
44 2s2p(3P)3d 4D3/2 8.4746 8.4417 0.0329 44
45 2s2p(3P)3d 4D5/2 8.4759 8.4426 0.0333 45
46 2s2p(3P)3d 4D7/2 8.4782 8.4454 0.0328 46
47 2s2p(3P)3d 2D3/2 8.5025 8.4567 0.0458 47
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Table 1. (Continued.)

Level no Level Energy (Th.) Energy (Exp.a) Diff. Order

48 2s2p(3P)3d 2D5/2 8.5037 8.4586 0.0451 48
49 2s2p(3P)3d 4P5/2 8.5188 8.4894 0.0294 49
50 2s2p(3P)3d 4P3/2 8.5212 8.4921 0.0291 50
51 2s2p(3P)3d 4P1/2 8.5227 8.4944 0.0283 51
52 2s2p(1P)3s 2P3/2 8.6617 {8.5681} {0.0936} 52
53 2s2p(1P)3s 2P1/2 8.6622 {8.5686} {0.0936} 53
54 2s2p(3P)3d 2F5/2 8.6897 8.6197 0.0700 54
55 2s2p(3P)3d 2F7/2 8.6967 8.6270 0.0697 55
56 2s2p(3P)3d 2P3/2 8.7437 8.6771 0.0666 56
57 2s2p(3P)3d 2P1/2 8.7467 8.6808 0.0659 57
58 2s24s 2S1/2 8.9415 8.9578 −0.0163 58
59 2s2p(1P)3p 2D3/2 9.0958 8.9851 0.1107 59
60 2s2p(1P)3p 2D5/2 9.0970 8.9864 0.1106 60
61 2s2p(1P)3p 2P1/2 9.0972 9.0001 0.0971 61
62 2s2p(1P)3p 2P3/2 9.0997 9.0029 0.0968 62
63 2s24p 2P1/2 9.1628 — — 64
64 2s24p 2P3/2 9.1639 — — 65
65 2s2p(1P)3p 2S1/2 9.2495 9.0580 0.1912 63
66 2s24d 2D3/2 9.3194 {9.2861} {0.0333} 66
67 2s24d 2D5/2 9.3197 {9.2864} {0.0333} 67
68 2p2(3P)3s 4P1/2 9.3432 {9.3177} {0.0255} 70
69 2p2(3P)3s 4P3/2 9.3473 {9.3218} {0.0255} 71
70 2p2(3P)3s 4P5/2 9.3540 {9.3285} {0.0255} 72
71 2s2p(1P)3d 2F5/2 9.3858 {9.3132} {0.0726} 68
72 2s2p(1P)3d 2F7/2 9.3859 {9.3133} {0.0726} 69
73 2s2p(1P)3d 2D3/2 9.5176 9.3871 0.1305 73
74 2s2p(1P)3d 2D5/2 9.5187 9.3882 0.1305 74
75 2p2(3P)3s 2P1/2 9.5461 — — 77
76 2p2(3P)3s 2P3/2 9.5536 — — 78
77 2p2(3P)3p 2S1/2 9.6137 — — 79
78 2s2p(1P)3d 2P1/2 9.6222 {9.4068} {0.2152} 75
79 2s2p(1P)3d 2P3/2 9.6232 {9.4075} {0.2152} 76
80 2s24f 2F5/2 9.6864 — — 86
81 2s24f 2F7/2 9.6865 — — 87
82 2p2(3P)3p 4D1/2 9.6905 {9.6706} {0.0199} 82
83 2p2(3P)3p 4D3/2 9.6930 {9.6731} {0.0199} 83
84 2p2(3P)3p 4D5/2 9.6972 {9.6773} {0.0199} 84
85 2p2(3P)3p 4D7/2 9.7032 {9.6833} {0.0199} 85
86 2p2(1D)3s 2D3/2 9.7313 {9.6248} {0.1065} 80
87 2p2(1D)3s 2D5/2 9.7317 {9.6252} {0.1065} 81
88 2p2(3P)3p 4P1/2 9.7367 9.7068 0.0299 88
89 2p2(3P)3p 4P3/2 9.7391 9.7102 0.0289 89
90 2p2(3P)3p 4P5/2 9.7433 9.7154 0.0279 90
91 2p2(3P)3p 2D3/2 9.8091 (9.7872) — 91
92 2p2(3P)3p 2D5/2 9.8167 (9.7948) — 92
93 2p2(3P)3p 2P1/2 9.8874 (9.8655) — 93
94 2p2(3P)3p 2P3/2 9.8888 (9.8669) — 94
95 2p2(3P)3p 4S3/2 9.9086 9.8969 0.0117 95
96 2s2p(3P)4s 4P1/2 10.0189 — — 98
97 2p2(3P)3d 4F3/2 10.0200 — — 99
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Table 1. (Continued.)

Level no Level Energy (Th.) Energy (Exp.a) Diff. Order

98 2p2(3P)3d 4F5/2 10.0224 — — 100
99 2s2p(3P)4s 4P3/2 10.0229 — — 101

100 2p2(3P)3d 4F7/2 10.0258 — — 102
101 2s2p(3P)4s 4P5/2 10.0296 — — 103
102 2p2(3P)3d 4F9/2 10.0303 — — 104
103 2p2(3P)3d 4D1/2 10.0744 — — 105
104 2p2(3P)3d 4D3/2 10.0758 — — 106
105 2p2(3P)3d 4D5/2 10.0781 — — 107
106 2p2(3P)3d 4D7/2 10.0807 — — 108
107 2p2(3P)3d 2P3/2 10.0845 — — 109
108 2s2p(3P)4s 2P1/2 10.0871 — — 110
109 2p2(3P)3d 2P1/2 10.0900 — — 111
110 2s2p(3P)4s 2P3/2 10.0931 — — 112
111 2p2(1D)3p 2F5/2 10.0984 9.9859 0.1126 96
112 2p2(1D)3p 2F7/2 10.1004 9.9890 0.1114 97
113 2p2(3P)3d 2F5/2 10.1527 — — 115
114 2p2(3P)3d 2F7/2 10.1608 — — 116
115 2p2(3P)3d 4P5/2 10.1628 — — 117
116 2p2(3P)3d 4P3/2 10.1636 — — 118
117 2p2(3P)3d 4P1/2 10.1640 — — 119
118 2s2p(3P)4p 4D1/2 10.1928 — — 120
119 2s2p(3P)4p 4D3/2 10.1949 — — 121
120 2p2(1D)3p 2D5/2 10.1963 {10.0999} {0.0964} 113
121 2p2(1D)3p 2D3/2 10.1970 {10.1006} {0.0964} 114
122 2s2p(3P)4p 4D5/2 10.1983 — — 122
123 2s2p(3P)4p 4S3/2 10.2009 — — 123
124 2s2p(3P)4p 4D7/2 10.2032 — — 124
125 2s2p(3P)4p 2P1/2 10.2113 — — 125
126 2s2p(3P)4p 2P3/2 10.2138 — — 126
127 2s2p(3P)4p 2D3/2 10.2394 {10.2361} {0.0033} 129
128 2s2p(3P)4p 4P1/2 10.2444 — — 131
129 2s2p(3P)4p 2D5/2 10.2449 {10.2416} {0.0033} 130
130 2s2p(3P)4p 4P3/2 10.2457 — — 132
131 2s2p(3P)4p 4P5/2 10.2476 — — 133
132 2s2p(3P)4p 2S1/2 10.2917 — — 140
133 2s2p(3P)4d 4F3/2 10.2998 (10.2599) — 134
134 2s2p(3P)4d 4F5/2 10.3020 (10.2621) — 135
135 2s2p(3P)4d 4F7/2 10.3053 (10.2654) — 136
136 2s2p(3P)4d 4F9/2 10.3099 (10.2700) — 137
137 2p2(1D)3p 2P1/2 10.3204 (10.2150) — 127
138 2p2(1D)3p 2P3/2 10.3245 (10.2191) — 128
139 2s2p(3P)4d 4D1/2 10.3360 10.3028 0.0332 141
140 2s2p(3P)4d 4D3/2 10.3362 10.3032 0.0330 142
141 2s2p(3P)4d 4D5/2 10.3369 10.3055 0.0314 143
142 2s2p(3P)4d 4D7/2 10.3402 10.3073 0.0329 144
143 2s2p(3P)4d 4P5/2 10.3491 10.3210 0.0281 147
144 2s2p(3P)4d 4P3/2 10.3518 10.3219 0.0299 148
145 2s2p(3P)4d 2D3/2 10.3534 {10.3155} {0.0379} 145
146 2s2p(3P)4d 4P1/2 10.3536 10.3228 0.0308 149
147 2s2p(3P)4d 2D5/2 10.3556 {10.3177} {0.0379} 146
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Table 1. (Continued.)

Level no Level Energy (Th.) Energy (Exp.a) Diff. Order

148 2p2(3P)3d 2D3/2 10.3924 — — 156
149 2p2(3P)3d 2D5/2 10.3941 — — 157
150 2p2(1S)3s 2S1/2 10.4056 — — 160
151 2s2p(3P)4d 2F5/2 10.4208 10.3717 0.0491 152
152 2p2(1D)3d 2G7/2 10.4251 (10.2764) — 138
153 2p2(1D)3d 2G9/2 10.4259 (10.2775) — 139
154 2s2p(3P)4d 2F7/2 10.4271 10.3790 0.0481 153
155 2s2p(3P)4d 2P3/2 10.4352 (10.3953) — 158
156 2s2p(3P)4d 2P1/2 10.4391 (10.3992) — 159
157 2p2(1D)3d 2D3/2 10.5033 (10.3549) — 150
158 2p2(1D)3d 2D5/2 10.5035 (10.3551) — 151
159 2p2(1D)3d 2F7/2 10.5043 {10.3833} {0.1210} 154
160 2p2(1D)3d 2F5/2 10.5083 {10.3873} {0.1210} 155
161 2p2(1D)3d 2P1/2 10.6208 10.4085 0.2123 161
162 2p2(1D)3d 2P3/2 10.6233 10.4112 0.2121 162
163 2p2(1D)3d 2S1/2 10.6831 (10.5347) — 163
164 2p2(1S)3p 2P1/2 10.8195 — — 164
165 2p2(1S)3p 2P3/2 10.8208 — — 165
166 2s2p(1P)4s 2P1/2 11.0673 — — 166
167 2s2p(1P)4s 2P3/2 11.0679 — — 167
168 2p2(1S)3d 2D5/2 11.1422 — — 168
169 2p2(1S)3d 2D3/2 11.1427 — — 169
170 2s2p(1P)4p 2P1/2 11.2281 — — 170
171 2s2p(1P)4p 2P3/2 11.2289 — — 171
172 2s2p(1P)4p 2D3/2 11.2467 — — 172
173 2s2p(1P)4p 2D5/2 11.2469 — — 173
174 2s2p(1P)4p 2S1/2 11.2661 — — 174
175 2s2p(1P)4d 2F7/2 11.3547 — — 175
176 2s2p(1P)4d 2F5/2 11.3548 — — 176
177 2s2p(1P)4d 2D3/2 11.3629 — — 177
178 2s2p(1P)4d 2D5/2 11.3633 — — 178
179 2s2p(1P)4d 2P1/2 11.4002 — — 179
180 2s2p(1P)4d 2P3/2 11.4005 — — 180

a Kelly [20].

4.2. Collision strengths and effective collision strengths

In this section, we provide only a small representative sample of our excitation data among the
lowest seven levels of Ne5+. In figure 2, we compare the collision strength determined from the
20-level calculation with that from the 180-level calculation for the important fine-structure
transition 2s22p 2P1/2 → 2s22p 2P3/2. As we can see, the two calculated collision strengths
are very similar, both in terms of the background and the resonance contributions. Thus the
effects of coupling to the higher levels included in only the 180-level calculation, as well as
resonance contributions from these higher levels, are small for this transition.

The collision strengths for the transitions from both the 2s22p 2P1/2 ground level and the
2s22p 2P3/2 excited level to the 2s2p2(3P) 4P3/2 level are shown in figure 3. These transitions
are only weakly dipole-allowed through the spin–orbit interaction. In this figure, we see the
added resonance contributions in both transitions arising from the higher levels included in
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Table 2. Electric-dipole radiative rates for all possible transitions among the lowest 20 levels in
Ne5+ with rates greater than 104 s−1. The level numbers for each (j → i) transition given in the
first two columns of this table are the those listed in the last column of table 1.

j i Transition Presenta MCHF/MCDF Collectionb

3 1 2s2p2 4P1/2–2s22p 2P1/2 1.18 × 104 1.38 × 104

7 1 2s2p2 2D3/2–2s22p 2P1/2 1.02 × 109 9.88 × 108

8 1 2s2p2 2S1/2–2s22p 2P1/2 2.13 × 109 2.03 × 109

9 1 2s2p2 2P1/2–2s22p 2P1/2 6.54 × 109 6.66 × 109

10 11 2s2p2 2P3/2–2s22p 2P1/2 1.73 × 109 1.73 × 109

16 1 2s23s 2S1/2–2s22p 2P1/2 9.33 × 109 9.91 × 109

19 1 2s23d 2D3/2–2s22p 2P1/2 1.26 × 1011 1.26 × 1011

3 2 2s2p2 4P1/2–2s22p 2P3/2 1.06 × 104 1.25 × 104

6 2 2s2p2 2D5/2–2s22p 2P3/2 1.17 × 109 1.14 × 109

7 2 2s2p2 2D3/2–2s22p 2P3/2 1.84 × 108 1.78 × 108

8 2 2s2p2 2S1/2–2s22p 2P3/2 3.17 × 109 3.27 × 109

9 2 2s2p2 2P1/2–2s22p 2P3/2 3.85 × 109 3.74 × 109

10 2 2s2p2 2P3/2–2s22p 2P3/2 8.70 × 109 8.70 × 109

16 2 2s23s 2S1/2–2s22p 2P3/2 1.88 × 109 1.99 × 109

19 2 2s23d 2D3/2–2s22p 2P3/2 2.52 × 1010 2.52 × 1010

20 2 2s23d 2D5/2–2s22p 2P3/2 1.51 × 1011 1.51 × 1011

11 3 2p3 4S3/2–2s2p2 4P1/2 1.57 × 109 1.57 × 109

14 3 2p3 2P1/2–2s2p2 4P1/2 1.08 × 105 1.37 × 105

17 3 2s23p 2P1/2–2s2p2 4P1/2 3.67 × 104 4.07 × 104

11 4 2p3 4S3/2–2s2p2 4P3/2 3.13 × 109 3.11 × 109

12 4 2p3 2D3/2–2s2p2 4P3/2 1.10 × 105 1.41 × 105

13 4 2p3 2D5/2–2s2p2 4P3/2 1.16 × 104 1.15 × 104

14 4 2p3 2P1/2–2s2p2 4P3/2 2.15 × 104 2.86 × 104

15 4 2p3 2P3/2–2s2p2 4P3/2 2.44 × 105 3.34 × 105

17 4 2s23p 2P1/2–2s2p2 4P3/2 9.31 × 104 6.73 × 104

11 5 2p3 4S3/2–2s2p2 4P5/2 4.65 × 109 4.63 × 109

12 5 2p3 2D3/2–2s2p2 4P5/2 3.03 × 104 2.55 × 104

13 5 2p3 2D5/2–2s2p2 4P5/2 3.62 × 105 4.52 × 105

15 5 2p3 2P3/2–2s2p2 4P5/2 3.10 × 105 2.60 × 105

18 5 2s23p 2P3/2–2s2p2 4P5/2 1.04 × 105 1.12 × 105

12 6 2p3 2D3/2–2s2p2 2D5/2 2.63 × 108 2.68 × 108

13 6 2p3 2D3/2–2s2p2 2D5/2 2.21 × 109 2.32 × 109

15 6 2p3 2P3/2–2s2p2 2D5/2 3.85 × 109 3.76 × 109

18 6 2s23p 2P3/2–2s2p2 2D5/2 2.82 × 109 1.90 × 109

12 7 2p3 2D3/2–2s2p2 2D3/2 2.09 × 109 2.11 × 109

13 7 2p3 2D5/2–2s2p2 2D3/2 1.68 × 108 1.69 × 108

14 7 2p3 2P1/2–2s2p2 2D3/2 4.37 × 109 4.29 × 109

15 7 2p3 2P3/2–2s2p2 2D3/2 4.58 × 108 4.54 × 108

17 7 2s23p 2P1/2–2s2p2 2D3/2 3.13 × 109 2.12 × 109

18 7 2s23p 2P3/2–2s2p2 2D3/2 3.11 × 108 2.09 × 108

12 8 2p3 2D3/2–2s2p2 2S1/2 2.95 × 106 1.87 × 106

14 8 2p3 2P1/2–2s2p2 2S1/2 5.69 × 108 6.12 × 108

15 8 2p3 2P3/2–2s2p2 2S1/2 7.62 × 108 7.53 × 108

17 8 2s23p 2P1/2–2s2p2 2S1/2 3.90 × 108 2.99 × 108

18 8 2s23p 2P3/2–2s2p2 2S1/2 4.06 × 108 3.13 × 108

12 9 2p3 2D3/2–2s2p2 2P1/2 4.23 × 108 4.35 × 108

14 9 2p3 2P1/2–2s2p2 2P1/2 1.61 × 109 1.61 × 109

15 9 2p3 2P3/2–2s2p2 2P1/2 3.10 × 108 3.24 × 108

17 9 2s23p 2P1/2–2s2p2 2P1/2 3.41 × 107 5.17 × 107
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Table 2. (Continued.)

j i Transition Presenta MCHF/MCDF Collectionb

18 9 2s23p 2P3/2–2s2p2 2P1/2 2.10 × 106 6.93 × 106

11 10 2p3 4S3/2–2s2p2 2P3/2 1.09 × 104 1.27 × 104

12 10 2p3 2D3/2–2s2p2 2P3/2 7.61 × 107 7.70 × 107

13 10 2p3 2D5/2–2s2p2 2P3/2 4.87 × 108 4.97 × 108

14 10 2p3 2P1/2–2s2p2 2P3/2 7.30 × 108 7.41 × 108

15 10 2p3 2P3/2–2s2p2 2P3/2 1.90 × 109 1.93 × 109

17 10 2s23p 2P1/2–2s2p2 2P3/2 9.07 × 106 1.84 × 107

18 10 2s23p 2P3/2–2s2p2 2P3/2 2.97 × 107 5.45 × 107

19 12 2s23d 2D3/2–2s2p2 4P3/2 3.68 × 106 5.67 × 106

20 12 2s23d 2D5/2–2s2p2 4P3/2 2.21 × 105 4.80 × 105

19 13 2s23d 2D3/2–2p3 2D5/2 3.74 × 105 5.59 × 105

20 13 2s23d 2D5/2–2p3 2D5/2 3.74 × 106 5.74 × 105

16 14 2s23s 2S1/2–2p3 2P1/2 7.36 × 104 2.24 × 105

19 14 2s23d 2D3/2–2p3 2P1/2 2.00 × 106 2.84 × 105

16 15 2s23s 2S1/2–2p3 2P3/2 1.57 × 105 4.77 × 105

19 15 2s23d 2D3/2–2p3 2P3/2 3.96 × 105 4.99 × 105

20 15 2s23d 2D5/2–2p3 2P3/2 2.63 × 106 4.45 × 105

17 16 2s23p 2P1/2–2s23s 2S1/2 2.12 × 108 2.14 × 108

18 16 2s23p 2P3/2–2s23s 2S1/2 2.16 × 108 2.18 × 108

19 17 2s23d 2D3/2–2s23p 2P1/2 1.35 × 108 1.32 × 108

19 18 2s23d 2D3/2–2s23p 2P3/2 2.64 × 107 2.59 × 107

20 18 2s23d 2D5/2–2s23p 2P3/2 1.59 × 108 1.56 × 108

a Calculated using the same CI basis states that were employed to determine the energies in table 1.
b www.vuse.vanderbilt.edu/∼georgio/html doc/header.html.
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Figure 1. Graphical comparison of the present electric-dipole radiative rates with those from the
MCHF/MCDF Collection.

the 180-level calculation. What is more difficult to see on the scale of this graph is that
the additional coupling to the higher levels included in the 180-level calculation reduces the
background cross sections. For example, for the 2s22p 2P3/2 → 2s2p2(3P) 4P3/2 transition at
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Figure 2. Collision strength for excitation from the 2s22p 2P1/2 ground level to the 2s22p 2P3/2
excited level. In (a) we show the results from the 20-level ICFT R-matrix calculation, while the
curve in (b) is from the 180-level ICFT R-matrix calculation.

10.0 eV, the collision strength from the 180 level calculation is about 10% lower than that from
the 20-level calculation.

In figure 4, we show the dipole-allowed transitions from both the 2s22p 2P1/2 ground level
and the 2s22p 2P3/2 excited level to the 2s2p2(1D) 2D3/2 level. Here the results are similar
from both calculations, although the contributions from resonances are somewhat larger in the
collision strengths from the 180-level calculation.

In table 3, we present the effective collision strengths for all possible transitions between
the first seven levels in Ne5+ that are provided from the eight-term, 15-level calculation of
Zhang et al [4]. We compare our 20-level and 180-level results with each other and those
of Zhang et al. We see from the first entry in this table for the ground-term fine-structure
transition that our 20-level results are below those of Zhang et al at the lowest temperature by
about 33%, but are higher at the highest temperature by about 11%. The percentage differences
between these results averaged over all temperatures is 12%. The 180-level results for this
transition differ from the 20-level results by 10% at the lowest temperature, but by only 5%
when averaged over all temperatures.

We also see from this table that the 180-level effective collision strengths for the transitions
to the 2s2p2(3P) 4P3/2 level from both the 2s22p 2P1/2 ground level and the 2s22p 2P3/2 excited
level are below those of the 20-level calculation, except at the highest two temperatures.
Thus, despite the added contributions from resonances included in the 180-level calculation,
the effect of added coupling in the 180-level calculation is to reduce the effective collision
strengths for these two transitions, except at higher temperatures. However, as we would
expect from figure 4, the 180-level and 20-level effective collision strengths for the dipole-
allowed transitions from the two ground-term levels to the 2s2p2(1D) 2D3/2 level are in good
agreement, differing by less than 3% when averaged over the temperatures.
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Table 3. Effective collision strengths for all possible transitions between the first seven levels of Ne5+. Here, c1 and c2 denote the
2s22p and 2s2p2 configurations, respectively. For each transition, the first row is from Zhang et al [4]; the second row is from the
present 11-term, 20-level ICFT calculation, and the third row is from the present 83-term, 180-level ICFT calculation.

Electron temperature (K)

Transition 1.25 × 104 5.00 × 104 1.00 × 105 2.50 × 105 5.00 × 105 7.50 × 105 1.25 × 106

c1
2P1/2–c1

2P3/2 3.05 × 100 2.14 × 100 1.96 × 100 1.48 × 100 1.03 × 100 8.11 × 10−1 5.92 × 10−1

2.18 × 100 1.80 × 100 1.79 × 100 1.45 × 100 1.08 × 100 8.77 × 10−1 6.61 × 10−1

2.42 × 100 1.75 × 100 1.70 × 100 1.38 × 100 1.03 × 100 8.44 × 10−1 6.38 × 10−1

c1
2P1/2–c2

4P1/2 8.56 × 10−2 8.87 × 10−2 7.88 × 10−2 5.80 × 10−2 4.63 × 10−2 4.19 × 10−2 3.67 × 10−2

1.23 × 10−1 1.02 × 10−1 9.02 × 10−2 7.04 × 10−2 5.62 × 10−2 4.85 × 10−2 3.94 × 10−2

1.13 × 10−1 9.48 × 10−2 8.39 × 10−2 6.69 × 10−2 5.55 × 10−2 4.88 × 10−2 4.01 × 10−2

c1
2P1/2–c2

4P3/2 1.41 × 10−1 1.43 × 10−1 1.26 × 10−1 9.00 × 10−2 6.68 × 10−2 5.68 × 10−2 6.49 × 10−2

1.71 × 10−1 1.58 × 10−1 1.42 × 10−1 1.09 × 10−1 8.59 × 10−2 7.35 × 10−2 5.92 × 10−2

1.45 × 10−1 1.44 × 10−1 1.31 × 10−1 1.04 × 10−1 8.56 × 10−2 7.49 × 10−2 6.11 × 10−2

c1
2P1/2–c2

4P5/2 1.34 × 10−1 1.29 × 10−1 1.10 × 10−1 7.40 × 10−2 5.14 × 10−2 4.18 × 10−2 3.26 × 10−2

1.25 × 10−1 1.35 × 10−1 1.20 × 10−1 8.71 × 10−2 6.42 × 10−2 5.29 × 10−2 4.08 × 10−2

1.13 × 10−1 1.28 × 10−1 1.14 × 10−1 8.57 × 10−2 6.76 × 10−2 5.77 × 10−2 4.56 × 10−2

c1
2P1/2–c2

2D5/2 3.00 × 10−1 3.05 × 10−1 2.37 × 10−1 1.47 × 10−1 1.02 × 10−1 8.34 × 10−2 6.58 × 10−2

2.71 × 10−1 2.80 × 10−1 2.28 × 10−1 1.57 × 10−1 1.16 × 10−1 9.64 × 10−2 7.50 × 10−2

2.52 × 10−1 2.55 × 10−1 2.07 × 10−1 1.50 × 10−1 1.20 × 10−1 1.03 × 10−1 8.16 × 10−2

c1
2P1/2–c2

2D3/2 1.18 × 100 1.16 × 100 1.11 × 100 1.13 × 100 1.25 × 100 1.35 × 100 1.52 × 100

1.27 × 100 1.28 × 100 1.27 × 100 1.29 × 100 1.36 × 100 1.43 × 100 1.55 × 100

1.22 × 100 1.23 × 100 1.23 × 100 1.27 × 100 1.35 × 100 1.42 × 100 1.53 × 100

c1
2P3/2–c2

4P1/2 9.45 × 10−2 9.19 × 10−2 7.89 × 10−2 5.40 × 10−2 3.88 × 10−2 3.22 × 10−2 2.55 × 10−2

1.23 × 10−1 1.02 × 10−1 8.80 × 10−2 6.35 × 10−2 4.70 × 10−2 3.89 × 10−2 3.03 × 10−2

1.09 × 10−1 9.18 × 10−2 7.99 × 10−2 6.03 × 10−2 4.81 × 10−2 4.13 × 10−2 3.29 × 10−2

c1
2P3/2–c2

4P3/2 2.20 × 10−1 2.18 × 10−1 1.89 × 10−1 1.31 × 10−1 9.46 × 10−2 7.89 × 10−2 6.34 × 10−2

2.68 × 10−1 2.36 × 10−1 2.09 × 10−1 1.56 × 10−1 1.19 × 10−1 1.01 × 10−1 7.96 × 10−2

1.97 × 10−1 2.03 × 10−1 1.84 × 10−1 1.45 × 10−1 1.19 × 10−1 1.03 × 10−1 8.38 × 10−2
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Table 3. (Continued.)

Electron temperature (K)

Transition 1.25 × 104 5.00 × 104 1.00 × 105 2.50 × 105 5.00 × 105 7.50 × 105 1.25 × 106

c1
2P3/2–c2

4P5/2 4.06 × 10−1 4.12 × 10−1 3.62 × 10−1 2.59 × 10−1 1.94 × 10−1 1.66 × 10−1 1.37 × 10−1

3.99 × 10−1 4.17 × 10−1 3.81 × 10−1 2.98 × 10−1 2.36 × 10−1 2.03 × 10−1 1.64 × 10−1

3.46 × 10−1 3.74 × 10−1 3.43 × 10−1 2.79 × 10−1 2.34 × 10−1 2.06 × 10−1 1.69 × 10−1

c1
2P3/2–c2

2D5/2 2.36 × 100 2.32 × 100 2.17 × 100 2.11 × 100 2.27 × 100 2.43 × 100 2.71 × 100

2.47 × 100 2.53 × 100 2.47 × 100 2.44 × 100 2.53 × 100 2.63 × 100 2.82 × 100

2.35 × 100 2.42 × 100 2.38 × 100 2.39 × 100 2.50 × 100 2.61 × 100 2.79 × 100

c1
2P3/2–c2

2D3/2 5.99 × 10−1 6.02 × 10−1 5.10 × 10−1 4.07 × 10−1 3.78 × 10−1 3.79 × 10−1 3.92 × 10−1

5.56 × 10−1 5.82 × 10−1 5.19 × 10−1 4.35 × 10−1 3.97 × 10−1 3.86 × 10−1 3.81 × 10−1

5.30 × 10−1 5.56 × 10−1 4.97 × 10−1 4.30 × 10−1 4.04 × 10−1 3.94 × 10−1 3.88 × 10−1

c2
4P1/2–c2

4P3/2 5.96 × 10−1 7.57 × 10−1 7.40 × 10−1 5.87 × 10−1 4.44 × 10−1 3.71 × 10−1 2.92 × 10−1

5.43 × 10−1 6.78 × 10−1 6.89 × 10−1 5.82 × 10−1 4.59 × 10−1 3.89 × 10−1 3.08 × 10−1

5.07 × 10−1 6.47 × 10−1 6.57 × 10−1 5.70 × 10−1 4.76 × 10−1 4.13 × 10−1 3.32 × 10−1

c2
4P1/2–c2

4P5/2 4.14 × 10−1 5.39 × 10−1 5.17 × 10−1 4.01 × 10−1 3.01 × 10−1 2.55 × 10−1 2.11 × 10−1

3.42 × 10−1 5.02 × 10−1 5.07 × 10−1 4.17 × 10−1 3.28 × 10−1 2.82 × 10−1 2.37 × 10−1

3.15 × 10−1 4.75 × 10−1 4.80 × 10−1 4.05 × 10−1 3.39 × 10−1 3.00 × 10−1 2.55 × 10−1

c2
4P1/2–c2

2D5/2 1.67 × 10−1 1.42 × 10−1 1.26 × 10−1 9.49 × 10−2 7.28 × 10−2 6.20 × 10−2 5.01 × 10−2

1.32 × 10−1 1.27 × 10−1 1.20 × 10−1 1.02 × 10−1 8.47 × 10−2 7.40 × 10−2 6.02 × 10−2

1.19 × 10−1 1.15 × 10−1 1.09 × 10−1 9.89 × 10−2 8.90 × 10−2 8.00 × 10−2 6.60 × 10−2

c2
4P1/2–c2

2D3/2 2.91 × 10−1 2.22 × 10−1 1.93 × 10−1 1.46 × 10−1 1.13 × 10−1 9.66 × 10−2 7.82 × 10−2

2.49 × 10−1 2.11 × 10−1 1.92 × 10−1 1.62 × 10−1 1.35 × 10−1 1.18 × 10−1 9.62 × 10−2

2.21 × 10−1 1.91 × 10−1 1.75 × 10−1 1.55 × 10−1 1.38 × 10−1 1.23 × 10−1 1.01 × 10−1

c2
4P3/2–c2

4P5/2 1.17 × 100 1.51 × 100 1.46 × 100 1.15 × 100 8.68 × 10−1 7.29 × 10−1 5.86 × 10−1

9.84 × 10−1 1.36 × 100 1.38 × 100 1.15 × 100 9.08 × 10−1 7.75 × 10−1 6.31 × 10−1

9.17 × 10−1 1.30 × 100 1.32 × 100 1.13 × 100 9.41 × 10−1 8.25 × 10−1 6.81 × 10−1
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Table 3. (Continued.)

Electron temperature (K)

Transition 1.25 × 104 5.00 × 104 1.00 × 105 2.50 × 105 5.00 × 105 7.50 × 105 1.25 × 106

c2
4P3/2–c2

2D5/2 4.63 × 10−1 3.75 × 10−1 3.30 × 10−1 2.49 × 10−1 1.92 × 10−1 1.64 × 10−1 1.33 × 10−1

3.81 × 10−1 3.47 × 10−1 3.22 × 10−1 2.73 × 10−1 2.28 × 10−1 1.99 × 10−1 1.62 × 10−1

3.41 × 10−1 3.15 × 10−1 2.94 × 10−1 2.64 × 10−1 2.37 × 10−1 2.13 × 10−1 1.75 × 10−1

c2
4P3/2–c2

2D3/2 4.53 × 10−1 3.53 × 10−1 3.07 × 10−1 2.32 × 10−1 1.79 × 10−1 1.53 × 10−1 1.24 × 10−1

3.82 × 10−1 3.31 × 10−1 3.03 × 10−1 2.56 × 10−1 2.13 × 10−1 1.86 × 10−1 1.52 × 10−1

3.41 × 10−1 2.98 × 10−1 2.75 × 10−1 2.46 × 10−1 2.19 × 10−1 1.96 × 10−1 1.61 × 10−1

c2
4P5/2–c2

2D5/2 1.02 × 100 7.94 × 10−1 6.91 × 10−1 5.22 × 10−1 4.04 × 10−1 3.45 × 10−1 2.79 × 10−1

8.63 × 10−1 7.46 × 10−1 6.80 × 10−1 5.75 × 10−1 4.80 × 10−1 4.20 × 10−1 3.41 × 10−1

7.69 × 10−1 6.78 × 10−1 6.25 × 10−1 5.57 × 10−1 4.96 × 10−1 4.44 × 10−1 3.65 × 10−1

c2
4P5/2–c2

2D3/2 3.55 × 10−1 2.99 × 10−1 2.65 × 10−1 2.00 × 10−1 1.53 × 10−1 1.31 × 10−1 1.06 × 10−1

2.89 × 10−1 2.70 × 10−1 2.52 × 10−1 2.15 × 10−1 1.79 × 10−1 1.57 × 10−1 1.27 × 10−1

2.57 × 10−1 2.45 × 10−1 2.30 × 10−1 2.09 × 10−1 1.88 × 10−1 1.69 × 10−1 1.40 × 10−1

c2
2D5/2–c2

2D3/2 4.20 × 100 2.39 × 100 1.82 × 100 1.16 × 100 7.73 × 10−1 6.08 × 10−1 4.55 × 10−1

2.50 × 100 1.81 × 100 1.48 × 100 1.01 × 100 7.04 × 10−1 5.69 × 10−1 4.25 × 10−1

2.38 × 100 1.71 × 100 1.40 × 100 1.01 × 100 7.66 × 10−1 6.39 × 10−1 4.98 × 10−1
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Figure 3. Collision strength for excitation from the levels of the 2s22p configuration to the
2s2p2(3P) 4P3/2 level. We show the results for the transition from the 2s22p 2P1/2 ground level
from the 20-level ICFT calculation in (a) and from the 180-level ICFT calculation in (b). We show
the collision strength for the transition from the 2s22p 2P3/2 excited level from the 20-level ICFT
calculation in (c) and from the 180-level ICFT calculation in (d).

The overall agreement between the results of the 20-level calculation and those of Zhang
et al is 13%, when averaged over all the temperatures and all the transitions given in table 3. On
the other hand, the 180-level results differ from the 20-level results by only 6%, when averaged.
This would indicate that either our 20-level calculation or the eight-term calculation of Zhang
et al may be sufficiently accurate for transitions among the lowest seven levels. However, our
comparison of the 180-level and 20-level results shows that there are much more substantial
differences for transitions to and between the higher n = 2 and 2s23� levels, especially at the
lower temperatures. This should be expected, since there are substantial coupling effects to,
and resonance contributions from, the levels that are included in our 180-level calculation and
not our 20-level calculation. Thus, a detailed comparison of the effective collision strengths
determined from our 20-level calculation with those determined from our 180-level calculation
for transitions to and between the higher n = 2 and 2s23� levels would not be meaningful.

The complete set of effective collision strengths for the 16 110 transitions between the 180
levels included in the present study up to a temperature of 2.5 × 106 K, along with reduced
effective collision strengths at the infinite temperature limit and electric-dipole radiative rates,
all tabulated in the ADAS adf04 format [21], are available via the WWW under http://www-
cfadc.phy.ornl.gov/data and codes.

It is always difficult to estimate the accuracy of large-scale calculations of electron-impact
excitation, since the uncertainties vary dramatically from one type of transition to another.
Nevertheless, some general statements can be made. We would expect that the effective
collision strengths for strong dipole-allowed transitions, which normally are not affected
significantly by resonance contributions, should be good to about 20%. The accuracy of
the collision strengths for dipole-forbidden or weakly-allowed dipole transitions is much more
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Figure 4. Collision strength for excitation from the levels of the 2s22p configuration to the
2s2p2(1D) 2D3/2 level. We show the results for the transition from the 2s22p 2P1/2 ground level
from the 20-level ICFT calculation in (a) and from the 180-level ICFT calculation in (b). We show
the collision strength for the transition from the 2s22p 2P3/2 excited level from the 20-level ICFT
calculation in (c) and from the 180-level ICFT calculation in (d).

difficulty to estimate. Such transitions are often dominated by resonance contributions and this
introduces more uncertainty into the effective collision strengths. However, the tests we have
made on our energy mesh would indicate that it resolved the dominant resonances and this
will decrease the uncertainty in these contributions. In addition, the strong dipole transitions
have relatively small contributions from the dipole top-up, indicating that the sum over partial
waves is nearly converged. This is not true of the weak-dipole transitions, since a large fraction
of them had dipole top-up contributions of more than 30%.

It should also be noted that, even for strong-dipole transitions, the effective collision
strengths for excitation to and between the upper levels should be considered somewhat less
accurate. This is partially due to the fact that above the 2p2(3P)3p 4S3/2 level (level 95 in table 1),
levels arising from configurations with n � 5 begin to appear. Coupling to these states and
resonance contributions arising from them, which are not included here, will become more
important for excitation to and between these upper levels. Finally, coupling to the target
continuum has been shown to reduce the collision strengths for transition to the upper levels in
simple species [22–24]. Such coupling effects are not included here, but these effects should
be relatively small in a five times ionized species [24].

5. Conclusions

We have performed 20-level and 180-level intermediate-coupling frame-transformation R-
matrix coupling calculations for Ne5+. The electric-dipole radiative rates determined from
our large CI Breit–Pauli calculation are in good agreement with unpublished rates available
from the MCHF/MCDF Collection on the WWW. Our effective collision strengths from both
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calculations are consistent with the earlier calculations of Zhang et al [4]. The agreement
between our 20-level and 180-level results for the lower-energy transitions is quite good; this
indicates that if one is only interested in transitions among the lowest seven n = 2 levels or so,
that our 20-level calculation, or even the smaller calculation of Zhang et al [4], is sufficient.
However, in order to do accurate collisional–radiative modelling for this ion, a much more
complete set of collisional data is required, and that is provided by our 180-level calculation.
Furthermore, such large calculations for other atomic species are now much more practical
with the implementation of the parallel versions of the ICFT R-matrix codes. The complete
set of radiative rates from our Breit–Pauli calculation and effective collision strengths from our
180-level ICFT R-matrix calculation are available on the WWW at the CFADC site at ORNL.
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