
Helium atom in a box: a fully quantal solution

D. M. Mitnik a ∗

aDepartmento de F́ısica, FCEyN, Universidad de Buenos Aires, and Instituto de
Astronomı́a y F́ısica del Espacio (IAFE), Casilla de Correo 67, Sucursal 28,
(C1428EGA) Buenos Aires, Argentina.

A complete non–perturbative solution of the Helium atom in a box problem is presented
by developing two numerical techniques. The first technique is the direct solution by
diagonalization of the Hamiltonian, and the second is based on a constrained relaxation
of the wave functions. Time–dependent propagation of doubly–excited wave–functions is
analyzed, allowing the calculation and the visualization of the autoionization process.

1. INTRODUCTION

The use of discrete numerical methods to solve a real atomic–physical problem trans-
forms it, in fact, in the solution of a spatially confined system problem. In this way, the
Helium atom in a box problem represents the search for the Helium ion wavefunctions
by using finite and discrete numerical lattice methods. This method turns out to be a
very good approximation to the physical bound states for all orbitals that fit well into
the lattice (i.e., for such bound states in which the wave function at the boundaries ap-
proaches zero in a practical sense for numerical calculations). It also gives particularly
true continuum solutions of the ion, not necessarily confined inside a box.

2. THEORY: CLOSE–COUPLING REPRESENTATION FOR THE REAL
HELIUM HAMILTONIAN

In our previous work [1], we presented the solution of the spherical model (or Temkin–
Poet model) of the Helium atom. In this work, we have extended our methods with
the inclusion of other partial waves through the coupled–channel equations. The full
Hamiltonian for the real Helium is

H(�r1, �r2) = −∇2
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Any solution q of the two–electron real Helium Hamiltonian may be expanded as:
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where P LS
q �1�2

(r1, r2) is the two–dimensional reduced radial wave function, Y�m are spher-

ical harmonics in the remaining angular coordinates, and C l1l2L
m1m20 are Clebsch–Gordan

coefficients.
The question concerning us is how to represent the Hamiltonian (1) (having two spacial

dimensions) as a square matrix operating on a column vector. We chose to unfold the
square lattice of points spanning the two spatial dimensions into one column of points.
This discretization of the radial space is similar to that used for solving the Temkin–Poet
model atom. However, we now have to increase the dimensions in order to include the
different (�1, �2) channels that couple to the total L. The matrix representation of the
Hamiltonian for this basis is written as:
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The matrices V̂�1�2,�
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where r> (r<) is the biggest (smallest) between r1 = i × Δr1 and r2 = j × Δr2.

3. RESULTS

3.1. Wave–functions and energies
We developed two methods for solving the problem. In the first one, the complete

set of wave functions corresponding to the Helium atom were obtained from the direct
diagonalization of the matrix. In order to allow the diagonalization of such large matri-
ces, we wrote the computer programs to use on distributed–memory parallel computers.
The Hamiltonian matrix was directly partitioned over the many processors, so memory
requirements per processor was minimized and scalability in time thus achieved. The
procedure used in the parallelization of the codes is similar to that employed for the
parallelization of the R–matrix package [2].

In the second method (the relaxation method) the energies and wave functions are
calculated by relaxation of an initial wave function Φ in a fictitious imaginary time τ = it.
That means a transformation of the time–dependent Schrödinger equation into a diffusion
equation. The net result from this imaginary time propagation is the enhancement of those
components of the solution with smaller eigenvalues of H relative to those with larger
eigenvalues. Doubly–excited autoionizing states are calculated by imposing additional
constraints at the iteration of the relaxation, projecting out also the one–electron 1s
component of the wave functions [1,3].

Details of the result dependence on the numerical grid, and the different number of
coupled channels are found in [4]. In principle, the methods outlined here are exact, and
we can obtain solutions with arbitrary precision. However, our intention in the present
work has not been to obtain the best energies and wave functions for the helium atom.
Instead, we are interested in presenting a complete solution to the problem which could
be used to understand the nature and physical significance of many–body interactions
in confined atomic systems. We are interested also in the calculation of such atomic
processes which are strongly dependent of these interactions.

3.2. Time–dependent Propagation
Figure 1 shows the evolution of the probability density of the wave function Φ2s2(t),

under the time–propagation with the Schrödinger equation

Φ2s2(t) = e−iĤtΦ2s2(t0), (7)

where Φ2s2(t0) is the wave function Φ2s2 obtained by the constrained relaxation method.
The pictures show how the initial pure 2s2 wave function acquires a continuum feature,
as it evolves in time. At the beginning, a slow deformation of the wave developes, with
the probability dropping towards the wings of the wave. Then, the characteristic pattern
of a 1sks continuum wave is formed at the axes, advancing rapidly to the box borders.
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Figure 1. Snapshots of the total wave function amplitude |Φ(t)| = |e−i H
h̄

tΦ(0)| at times
0, 5, 10 and 15 a.u., during the autoionization process.

Information about the temporal evolution of each channel is given in Figure 2, where
the (l1, l2) = ss, pp and dd channels are displayed separately, at t = 5 a.u.. The full
movies for the propagation can be downloaded at the author’s personal webpage¶.

Figure 2. Snapshots of the function amplitude |Φl1,l2(t)| = |e−i H
h̄

tΦl1,l2(0)| at time t = 4.5
a.u., during the autoionization process, for the (l1, l2) = ss, pp and dd channels.
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