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Helium atom in a box: Doubly excited levels within theS-wave model
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A complete nonperturbative close-coupling solution of the helium atom in a box problem is presented by
developing two numerical techniques. The first technique is the direct solution by diagonalization of the
Hamiltonian, and the second is based on a constrained relaxation of the wave functions. A Feshbach projection
operator of the direct solutions to the bound-continuum subspaces allows a comparison of the low-lying
autoionization levels obtained in both methods. Time-dependent propagation of these doubly excited wave
functions is analyzed, allowing the calculation and the visualization of the autoionization process. In this work,
results are presented for tf®wave model in which the electrons are restricted to spherical states and all
angular correlations have been eliminated.
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[. INTRODUCTION zation. The method presented here has many other important
. . . advantages. It gives the exact solutions to the problem of an
Spectacular increases in computer power now provide o, confined in a box. If the discretized allowed energy lev-
portunities to obtain numerical solutions to the three-bodyy|g are positive, the eigenfunctions are true continuum solu-
problem. A profound understanding of atomic few-bodyjons of the ion, not necessarily confined inside a box. These
problems such as interference effects associated with resgyytions form a set selected by a particular boundary condi-
nances, correlation interactions between the charged pafion, j.e., these are the particular true continuum wave func-
ticles, rearrangement processes, and others can be obtaingshs with zero value at the boundaries of the box. All the
by using fully quantal nonperturbative methods. solutions obtained by direct diagonalization are naturally or-
Among the fully quantum nonperturbative theories, thethogonal, and most importantly, the set is complete. Finally,
time-dependent close-couplinfDCC) method has been the simplicity of the method is expected to lead to a greater
successfully employed for calculations of electron-impactunderstanding of the close-coupling formalism in general.
ionization [1-3]. We have recentlyj4] studied the dielec- The problem of a spatially confined system has been a
tronic capture into doubly excited resonances within thesubject of interest in many branches of physics and chemis-
time-dependent framework. This study required the developtry since the early years of quantum mechanics. Nowadays,
ment of methods for generating accurate wave functions foinvestigations on confined systems in physisse, for ex-
doubly excited autoionizing states and time-dependent closexmple,[5]) have focused especially on the study of artificial
coupling calculations of the capture and the subsequent detoms, also known as quantum d@ssentially a number of
cay of autoionizing states. Since in future applications weelectrons confined in a potential welHowever, an impor-
wish to consider resonances in the time-dependent frameant theoretical motivation for the study of enclosed systems
work and to study processes that involve transitions to anés to understand in detail the electron correlation effects on
among continuum states, we chose to discretize the waue properties of those systems.
functions and the action of operators which result from these In this work, we study how to obtain the exact wave func-
procedures, working therefore in a numerical lattice, thugions in two-electron systems by the direct solution of the
solving the problem of an ion inside a box. Schrddinger equation. Two methods are developed for this
Solving real atomic-physical problems with discrete nu-purpose. The first method consists of the direct diagonaliza-
merical methods is an approximation that relies on strondion of the two-electron Hamiltonian on the radial grid. The
logical grounds. It becomes a very good approximation tesecond method is a constrained relaxation of the wave func-
the physical bound states for all orbitals that fit well into thetions, until they relax on the successive doubly-excited levels
lattice (i.e., for such bound states in which the wave functionof He. The relaxation method was currently used in the
at the boundaries approaches zero in a practical sense fobCC method for calculation of the ground and first excited
numerical calculations Use of discrete lattice functions al- states of ions, and also for calculation of ground and low-
lows the system to be described by the dynamics of alwaydying excited states in Bose-Einstein condensffsHow-
square-integrable functions. Even if the states can be reprever, a particular treatment is needed for calculation of dou-
sented by fully analytical functions(such as the bly excited levels.
hypergeometrical functions for the continuum Coulomb In order to explain the main features of the different meth-
wavesy, a proper calculation with these functions could in- ods, a detailed presentation of the theory is given for the
volve a numerical work, and, therefore, finite-lattice discreti-spherically symmetric mode[7,8] (also known as the
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Temkin-Poet model or th&wave model. The remainder of 1 0

the paper is the following. Section Il shows the results for 0 0

the first doubly excited wave functions obtained in both

methods. Section 1ll B shows how to use the Feshbach ¢3=( 1 |[p=|0 (4)
projection-operator formalism in order to compare the results

obtained in both methods. In Sec. Il C, we propagate the 0 1

first doubly excited autoionizing level, showing how the
autoionization process evolves in time, and we also calculate

the autoionization rate from this level by monitoring the au- _ _ ) )
tocorrelation function in time. The dimensiorP=nXm, wheren andm are the dimensions

of ther, andr, coordenates, respectively. The natural basis
represents also the discretization of the physical two-
dimensional spacé4,r,) on a uniform mesh in the follow-

. THEORY: TEMKIN-POET HELIUM MODEL ing way: the firstn vectors(¢; to ¢,) represent the points

A. Direct solution of the Temkin-Poet He by diagonalization of
the Hamiltonian

The Hamiltonian for a nonrelativistic spherically symmet- {(ry=Arg,ry=Ary) — ¢,
ric helium model may be writte(in atomic unit3 as

1# 1# zZ zZ 1

H(rl,rz) = H(rl,rz):_ éﬂ_ri - 5(9_['% - r_l - r_2 + Z! (1) (rl: 2Ar1,l‘2: Arz) — ¢2, e

wherer-. denotes the larger of the two radiiandr,. This is
the simplest model for two electrons interacting with each
other and with a nucleus via long-ranged Coulomb forces. In (ry=nA, ,r;=Arp) — ¢ (5)
this model, both electrong andr, are restricted to spherical
states, and all angular correlations are eliminated. Therefore,
the full six-dimensional problem is reduced to a two-radial .
dimensional problem and no further distinctions between thé\IeXt' the vectorgy. 10 ¢z,) correspond to the points
total wave functions and the radial wave functions will be
made unless explicitly stated. However, this model retains
most of the other feature@nd computational difficultigs
associated with the full He calculation. Moreover, the
Swave model is quite a good approximation to the real he-
lium for the bound $nsconfigurations.

We first solve this problem by a direct diagonalization of

{(I’l = Arl,rz = ZArz) — ¢n+1,

the Hamiltonian (ry=2Arq,r;=2Ar5) — ez, -
H(ry,r)W(ry,ry) = EqWi(ry,ro), (2
where the functiona?,, are represented by a combination of (re=nA; ,r3=2Ar5) — ¢y (6)

the natural basis vectors,

=] . . . .
and so on. Therefore, the poifwt,r,)=(iArq,jAr,) is repre-
Wy(ry,rp) = 21 Cobp (3 sented by the vecta,, where
p:
and
k=n(j-1)+i. (7)
1 0
0 1
_ _ By discretization of the derivatives with low-order finite dif-
$=10 |.d= 0 |,

ferences, the matrix representation of the Hamiltonian in the
natural basis becomd&sx m) blocks, each one of sizén
X n), having the following structure:

o
o
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@ B
« « B ' 0 0
= a h « B =
a h B
= ,8 o h o ﬁ —
B a h « B 0
H = ’ (8)
- B a h « B _
_- B_ L a JL B- —
= B o —
B 1o 1o
L B a h o]
B a h
|
where the diagonal e|emer|&~kkz h, are achieved. The procedure used in the parallelization of the
codes is similar to that employed for the parallelization of
~ 1 1 Z Z 1 the R-matrix packagg10].
HkkEhk:P"'_z_.__. + —— ,
ri Ar; iAry  jAr, maxiArg,jAry)
9 B. The constrained-relaxation method
11 11 In this method, the energies and wave functions are cal-
== 2Ar2 B=- 2Ar2’ (10 culated by relaxation of an initial wave functiah in a fic-
! 2 titious imaginary timer=it [11]. That means a transforma-
andk is related toi andj through Eq.(7). tion of the time-dependent Schrédinger equation into a
The complete set of wave functions corresponding to theliffusion equation,
Swave model He are obtained from the direct diagonaliza-
tion of the matrixH [Eqg. (8)]. Standard diagonalization sub-
routines[9] produce a matrixC with rank (nxX m) where the dD(ry,rp, 7 _H® 12
column q is the g eigenvector of the Hamiltonian. In this or B (r,r2,7). (12)

case, the value of the eigenvectly, at the(ry,r,) point in
the numerical grid is given by

W(iAry, AT = G, (11) The solution of this equation is given by

wherec is a matrix element of the eigenvector mat€x
In order to allow the diagonalization of large matrices, we D(ry,rp,7) =€ HD(ry,r,,0). (13

wrote the computer programs to use on distributed-memory

parallel computers. The Hamiltonian matrix is directly parti-

tioned over the many processors, so memory requirement&xpanding the solution in terms of the time-independent

per processor are minimized and scalability in time isenergy-eigenvector basis,
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CD(rlar21 T) = 2 aq\Pq(rler)e_EqT: e_ElT alq’l(rlarZ) + 2 aq\Pq(rler)e_(Eq_El)T ’ (14)
g=1 g=2

whereW is the wave function of the lowest level having the cited autoionizing states are calculated by imposing addi-
same symmetry a®, andE, is its energy, as in Eq2). tional constraints at the iteration of the relaxation, projecting
Since (Eq—E;) >0, the net result from this imaginary- out also the one-electron component of the lower wave func-
time propagation is the enhancement of those components @bns. Therefore, we do not allow the function to have aay 1
the solution with smaller eigenvalues Kf relative to those  component in any of the radial coordenates. The relaxation
with larger eigenvalues. At the limit—c, ®—W,. Thus,  of coupled Hylleras-type functions with a damping kinetic
after_many iteration$renormalizing contin_uously the wave operator procedure was used by Schaltzal. [16] for the
function), only the lowest-level eigenvaluge., the ground  cajculation of the & autoionizing level of He. In this paper,
state, or the first metastable level, according to the parity ofhe authors outlined the basic theoretical method without
the initial function®) survives from the relaxation. Higher providing broad details concerning the computationally pro-
eigenvectors can be calculated by imposing constraints at thgdures. However, we found that this technique requires par-
iteration of the relaxation which requires the state to be orjcylar care in order to obtain convergent results and deserves
thogonal, thus preventing its collapse to lower levels. Thisjetajled explanations of the computational algorithm em-
procedure is a well-known method which has been employed|oyed. Based on our experience, the suggested receipt for
to determine energies of atomic and molecular systifs calculating (for example the &, wave function (corre-
as well as the ground-state energy of a quartic oscildt8j. sponding to the &€ level) is the following.
In particular, for the case of He, Kulandet al. [14] inte- (i) Beforehand we calculate thed;e(r;,r,) and
grated Hartrge-Fock tilme-dependent equations in imagina%y(rl,rz) (y=1snl) wave functions by the traditional relax-
time, to obtain the € *S ground state, and Bottchet al. - ion method, which does not involve any other constraints
[15] calculated the energies of the’t'S, and the $25°S 01 the mutual orthogonality of the wave functions.
and 1s2p °P singly excited levels, by relaxing coupled i) \we start the relaxation of by constructing a sym-

Hylleras-type functions with a damping kinetic operator.  magric product of two one-electron wave functions. Denoting
The relaxation method, however, will work well for the by the 25 level of He' initially (i.e., att=0)
S oy H

low-lying single-excited levelge.g., knl), but not for the

dogbly. excited levels. The reason for that is that the orthqgo- D2(I1,2,0) = Poo(T1) oe(T). (15)
nalization procedure becomes unstable, even for a relatively

low number of wave functions. In general, the relaxed wave (i) We let the wave functiod relax a fewn, time steps
function will collapse in any of thedinl bound levels, or any (typically n,.=50—-100,A;=0.01 a.u), and then, at this time
of the Iskl continuum levels, without any warranty that this 7, we project out the d state from ther; component of the
procedure will ends in a doubly excited level. Doubly ex- wave function using

dl’l q)lSZ(rl,rz)(DZSZ(rl, I’2, ’T)

Dog2(ry, 1o, 7) «— Doga(ry, 15, 7) = P12(rq, 1) (16)

f dry q)lsz(rl,rz)q)lsz(rlvrz)
0

This ensures that the imaginary-time-propagated wave function will not fall into stny)dl(r,) state during the relaxation. In
particular, one can easily check that

f dry ®pe(rq,rp, ) ®2(ry,r,) =0 (17)
0

for everyr,.
(iv) We project out the 4 state from tha, component of the wave function using
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o)

dry @g62(ry, 1) Poe2(ry,r2,7)

Doe2(ry, 1o, 7) «— Poga(ry,rp, 7) — Pr2(ry,ry) (18)

f dry @162(ry, 1) Pye2(ry,rp)
0

Combining the last two operations is similar to performing a Feshbach projddiigrP, to the propagated wave function,
where

Pq = wg(r)Xwq(ry)| + [ag(ra) Xwg(ra)l, (19
the w, are bound eigenstates of the one-elecfiida’) Hamiltonian, and enforcing
P1sP(ry,rz,7) = 0. (20)

(v) The next step is to keep the total wave function orthogonal with all the low-lying levels previously calculated following
a two-dimensional Gramm-Schmidt procedure,

252 f drldrz CI)ZSZ(rLrZI T)(I)'y(rlvrz)
0
Dy(ry,15,7) — Poa(ry, 15,7 = > D (ry,r5, 1) : (21)
=18 f drydry @ .(rq,r)®,(ry,r5)
0

where thed (ry,r,) are all the finally relaxed dnl wave  are presented, which contains many of the electron-electron
functions, already calculated with the standard relaxatioreorrelations, but it is simple enough to illustrate the main
procedure. The procedure outlined below should be repeatdgatures and the time evolution of the solutions. Our numeri-
every r time steps, until convergence is achievédequires cal results can be improved, and we will show better close-
a time of about 10-50 a.u. for thdifferent wave func- coupling results in forthcoming work, together with the cal-
tions). culation of different atomic processes.
(vi) At this point, the one-electron projection method de- e have computed first the ground state of Hieave

veloped here produces a wave function that is not spatiallf'0de! He with different numerical grids in order to check the
symmetric, even after applying the two-dimensional orthogo- ensitivity and convergence of the calculations and the com-

o tibility of the two different numerical methods. Table |
nalization. Thus, at everystep, the order of the one-electron pa . ;
projections[Egs. (16) and (18)] should be alternated. shows that the energy of thes?llevel, obtained with a nu-

The computer codes which implement this method aremerlcal grid having a mesh spacingr=0.2 IS €152
: —2.759 a.u., compared with the best value available in the

also adapted to run on parallel computers. In this case, th . s
; e [iterature of —2.879 03 a.ywith 14 other digits that are not

wave functions are partitioned over the many processors in . . . .
such a way that the communications between the rocessorrglevam in our comparisopsbtained by Goldmafl9]. Itis
A way : P important to notice that for this numerical lattice, the one-

are minimized and performed at every time step only for the

artitioned domain borders. This parallelization scheme is aelectron energy of the Hels level is €= -1.926 a.u., com-
P ' P ared to the exact value of —2.000 a.u. We found an excellent

; p
standard procedure for many of the TDCC different Worksagreement between the results obtained with the constrained
(see, for example18]).

relaxation method and with the direct diagonalization
method. We performed a better calculation, with a mesh size
Ill. RESULTS of Ar=0.15 a.u., wheree;s=-1.9569 a.u., and obtained a
ground-state energy ef.>=-2.809 a.u. with both theoretical
methods. Better energies can be generated by decreasing the
In principle, the methods outlined here are exact, and wenesh step size and increasing the number of points. Conver-
can obtain solutions with arbitrary precision. However, ourgence is demonstrated by using a grid witr;=Ar,
intention in the present work has not been to obtain the best0.075 a.u., where;,=-1.9889 a.u. and¢;»>=-2.861 a.u.,
energies and wave functions for the helium atom. Instead, wand with Ar=0.01, in which €,4=-1.9998 a.u. ande;=
are interested in presenting a complete solution to the prob-2.8787 a.u. Table | also shows the energies for the first
lem which could be used to understand the nature and physéxcited levels 42s and 1s3s, for both the singlet and triplet
cal significance of many-body interactions in confinedterms. The results are in good agreement with the results
atomic systems. We are interested also in the calculation afiven by Draeger, up to a 2% error.
such atomic processes which are strongly dependent on theseFigure 1 shows the probability densities of the first wave
interactions. In this work, only results for tt®wave model functions obtained with the direct diagonalization method,

A. Wave functions and energies
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TABLE |. Calculated energies for the first levels in tBavave model He, in atomic units. CR means the
constrained relaxation method, and DD means the direct diagonalization method.

(A;=0.2 (A;=0.15
CR DD CR DD Draegeet al. [20]
1s? -2.759 -2.759 —2.809 -2.809 —-2.87903
1s2s %S -2.097 -2.098 -2.129 -2.130 -2.17426
1s2s 1s -2.067 -2.067 -2.099 -2.100 -2.14419
1s3s3S -1.991 -1.993 -2.022 -2.025 -2.06849
1s3s!s -1.984 -1.984 -2.016 -2.016 -2.06079

for the numerical grid with a mesh spacingyr;=Ar, laxation and the direct diagonalization results.
=0.15 a.u., and a number af=m=150 points. We show The probability density of these wave functions, obtained
only one set of figures because the wave functions obtainedith the relaxation method, is shown in Fig. 2. Among the 57
from both methods, for these levels, are indistinguishablenegative-energy levels obtained with the diagonalization, we
We used the same numerical grid to calculate the energies ahn easily identify the dnl, and Lkl functions. It is also very
the He 1s level and found five bound orbitalds to 5s), simple to find the 8 wave function by direct inspection
therefore we expect the plots of the figures to be similar tdbetween the many continuum functions. This is shown in
those obtained without a confining box. Fig. 3, where the 22nd through 25th wave functignéth

We have computed the energy of many doubly exciteceigenvalues —0.844, -0.817, -0.718, and -0.612 a.u., re-
states by direct diagonalization, and after the proper identispectively are plotted. However, for thes2 level, the func-
fication of the states, we compared them with the resultsions calculated with both theoretical methods are different.
obtained with the relaxation method. The numerical gridin the next section, we will establish the relationship be-
having a mesh spacingr;=Ar,=0.15 and a number af  tween them.
=m=150 points has 57 negative eigenenergies. Many of their
eigenfunctions are bound functions of the forreng and
most of them are single-continuum wave functions of the
form 1sks We also found in this group of functions with Figure 4 shows, in a detailed scale, the first doubly ex-
negative energy doubly excited levels correspondingsfp 2 cited wave function®,, obtained with the constrained
2sns and 3. Table Il shows the results of the calculated damped relaxation metha@), and ¥,e, obtained with the
energies for the first doubly excited levels in tBevave  direct diagonalization methotb). It is noticeable that both
model He. Very good agreement is obtained for tte8s2 functions are different because the relaxed functigg is a
terms (both singlet and triplgtbetween the constrained re- “pure” bound function which does not contain any interac-

B. Feshbach projection-operator (PQ) formalism

0.87 0.157

0.67]
0197

0.057]

FIG. 1. Probability densities of
the first wave functions obtained
with both the constrained damped
relaxation and the direct diagonal-
ization methods.(a) 1s?'S, (b)
1s2s3S, (c) 1s2s’S, and (d)
1s3s s
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TABLE II. Calculated energies for the first doubly excited levels eigenfunctioni¥,, onto the subspad®@, whereQ=1-P. The

in the Swave model He, in atomic units. CR means the constrainethrocedure applied in order to obtain the projected wave
relaxation method, and DD means the direct diagonalizationQ|y,y) is to calculate

method.
QW 2e2(r1,72))=|W252(r 1,1 2)) = [ 1a(r 1)) rs(r )| Wos2(r,r2))
(A,=0.15
- r ro)|Woe(rq,r
CR DD Draegeret al. [20] |¢1s( 2)><¢1s( 2)| 252( 1 2)>

+ r r
2¢? -0.714 -0.718 -0.72265 [A16(r) 1sr2)
2s3s 35 -0.581 -0.582 -0.58485 X(p1s(r 1) as(r2)[Woe(ry,ro)). (23

1

2535 7S -0.567 -0.567 -0.57188 If the numerical procedures are correct, the new wave
3’ -0.365 -0.320 -0.32142 function Q|W,s) must be very similar to thé, wave func-

tion obtained from the relaxation method. Graphic results of
the probability densities for the function®|¥,») and
tion with the Continuym. FO”OWing Fan[jﬂl], we will ob- P|\If252> are shown in F|g 5. ltis clear that tl@l[]252> func-
serve that both functions are related by tion is very similar to thed,e function displayed in Fig. 2
(first figure). On the other hand, the|¥,.) function has the
form of a 1sksfunction, like the second of the continuum
Vo = aq)252+f dk DDy, (22)  functions displayed in Fig. 3. The overlap between ihg.
function (obtained by diagonalizatigrand the®, function
(obtained by relaxationis (®,¢|W¥,2)=-0.990, which ac-
counts for all the &kl components presented in the eigenvec-
tor ¥,». The overlap of the relaxed function with the new

where®d ., represents the “pure” single-electron continuum
functions. The coefficienta andb are functions of the en-

ergy. While the function® are eigenfunctions of the Hamil- . S o
tonian, thed functions are not. In this section, we will dis- Projected function I8 P22| QW) =-0.998, an indication of

cuss the relationship between these functions. the great similarity between the relaxed and the Feshbach
In order to test the results obtained for the @ave func-  Projected functions. It is also consistent with the fact that the
tions with both methods, we employ a Feshbach projectio?Verap (¢is(r1) ¢is(r2)[Poe(r1,r))=0.002, meaning that
formalism, but in a way inverse to the procedure used bgzhe projection mechanism in the relaxation did not eliminate
Fano[21]. In general, the problem is how to obtain the true COMpletely the & components.
eigenvector¥ of the total Hamiltonian, starting from the
restricted functionsb, and combining them as expressed in
Eq. (22). Here, we will obtain the restrictedt,> wave func-
tion from the eigenfunction of the total Hamiltonigthe As we propagate the Schrddinger equation in imaginary
wave function¥,e). That is equivalent to projecting the time [Eqg. (13)], we approach théreal) energy of the doubly

C. Time-dependent propagation

O-1O‘ 0'040‘

0.087
0.0397

0.0297

FIG. 2. Probability densities of
e the first doubly excited wave
functions obtained with the con-
strained damped relaxation
method. (a) 252 1S, (b) 2s3s3s,
(c) 2s3s 'S, and(d) 3s2 'S,
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0.08
.08
0.0%
0.02
0.00
FIG. 3. Probability densities of
= the wave functions with eigenval-
@) ues close to the< doubly excited
autoionizing level energy, ob-
o g tained with the direct diagonaliza-
Ce G2 tion method. The energies of the
0.08 0.06 - levels arei(a) —0.844,(b) —0.817,
0.06 (c) —0.718 andd) —0.612 a.u.
’ OA'O4
0.0%
0.02 6,0%
0.00 0.00
- _ . i
(C) < 78 GSQ< \\s,_\s'.‘\ (d)
excited level. We need to propagate it further in real time in Doa(ry,rpt) =€ L, o(r 100 t), (24)

order to obtain the imaginary part of the energies, i.e., the

I'fEtk')mg.l.(,:f ;he I'evel.f {:hlgure 6 ?homtliéhe(evolugon gf the where®,¢(r1,r,,10) is the wave functionb,g obtained us-
probability density of the wave functioias(ry, 2, t) under ing the constrained relaxation method.

the time propagation with the Schrodinger equation, The different frames of the figure show snapshots at early
times from the beginning of the propagation. The velocity of

0.191
0087

0.061

0.0%1

O_OZ B

0.00 kg’

A
PRt
\\

(b) Sva Tw

FIG. 4. The first doubly excited wave functios?'S. (a) ®,e,
obtained with the constrained damped relaxation mettimdy ,e, FIG. 5. Probability densities of the Feshbach-projected waves.
obtained with the direct diagonalization method. (@) Q|¥,e); (b) P|Wye).
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0.301
0.257
0.204

0015—
0.101
0.057

0.00-

FIG. 6. Snapshots of the wave-

@ = < function amplitude |®(ry,r,,1)|
=|e MY (ry,r,,0)| at times 3.6,

0.30+ 0.301 7.3, 10.8, and 14.4 a.u., during the

0.257 0.251 autoionization process.

0.2901

0.1%1

0.101

0.054

A
™
PRI
‘\\

Y
() ST Tk

the autoionizing electron can be obtained approximatelyvave is formed at the axes, advancing rapidly to the box
from the energy difference between the Revel and the He  borders. After this time, the wave function bounces back and
ground state, i.ek=\2¢,, where .= e,2— €,=—0.71«-2) we found oscillations which under specific conditions can
=1.3 a.u. is the energy of the free electron. That gives aeturn the propagated function to roughly the original shape
velocity of 1.6 a.u. for the free autoionized electron. Takingat particular times. We are aware of the possibility of intro-
into account the size of the b@®2.5 a.u), this free electron ducing a mask function in order to absorb the wave at the
will rebound from the box borders at an approximate time ofborders preventing the rebound, but this revival of the origi-
14 a.u. Snapshots of the propagation of theg(r;,r,,t)  nal wave function can have a particular further interest. The
wave function are shown at the times 3.6, 7.3, 10.8, andull movie for the propagation can be downloaded at the
14.4 a.u. The pictures show how the initial puré? vave  author’s personal webpag@4].

function acquires a continuum feature, as it evolved in time. The dynamical behavior of autoionization in two-electron
At the beginning, a slow deformation of the wave is devel-Systems has been studied previously by monitoring the decay
oped, with the probability dropping through the wings of theof the autoionizing stateb in time [16]. This requires the
wave. Then, the characteristic pattern of skdcontinuum computation of the autocorrelation amplitude defined by
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FIG. 8. Autocorrelation amplitude(solid curve Ag,(t)
FIG. 7. Autocorrelation amplitude  Ag, (1) =|(dD(F;,F,,t0)|P(F1,F2,1))]. The dashed curve corresponds to an
=KD (1,5, t0) | P(F7,F>,1))]. The dashed curve corresponds to anexponential fit. Other curves: analytic expansion from &3), for
exponential fit. a different numbep of functions included in the sum.
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Ap(t) = (D (rq,r5,0)|D(r,r5,t))], (25) TABLE [l Calculated energie$E,2= ex2+il,2/2) for the &2
level in theS-wave model He, and;, the energy of thedlevel in

whered(r,,1,,t) represents the initial relaxed wave function He', in atomic units.
evolved in time. This method has been used to study auto- .
ionization in a one-dimensional two-electron mog22], a He Ep He e
two-dimensional two-electron modgl6], and in anS-wave (A,=0.2) ~0.7114+ 0.00142 -1.9258
model [16,23. The result forA,»(t) is shown in Fig. 7. In (A,=0.15 _0.71824 0.00133 19569
this case, in order to allow the study of the propagation forDr;1e éret al. [20] —0.7227—6 0'00162 _2'0000
longer times, we extended the numerical mesh to 75 a.u 9 i i ' '
(i.e., we used 500 points, in place of 258n exponential fit
of the form exg—(I'/2)t) to the data(shown in the same
figure by a dashed curyeyields a value ofl',2=2.7
%X 1073 a.u., compared to the width determined by Draegjer
al. [20] of 3.24x 1072 a.u.

wave functiond,.(rq,r,,t) with product functions gks on
the other hand, does depend on time. After an initial pre-
dominance of low energies, the overlap profile shows a steep

We found many other interesting features propagatin ouPeak centered & close to 1.6 a.uas is expected
wave functions ir?ltime First, we g ropa atetltjJ thpe ggjia gnal— One can notice the presence of wiggles in the autocorre-
. . ) ' propaga g lation amplitude at the initial steps of the time evoluticee
ized eigenvector¥;, constructing the function¥;(r,r,,t).

. . Fig. 7). In order to understand the origin of these wiggles, we
We found that the autocorrelation amp"t“d‘aﬁ(t) for these repeated the calculations with a smaller number of mesh

functions are unity,_ even for a very long time. Thi_s is a good oints, in this case 75 points separatedby 1 a.u., and the
test for the numerical accuracy of the propagation method.qgits are plotted in Fig. 8. Since the eigenfunctiohs

We checked that the real and imaginary part of the autocOrgained from the diagonalization process constitute a com-

relation functiqn oscillate with a per_iod corresponding to plete group, we can expand the relaxkgl, wave function
21/ €, whereg; is the energy of the levél We also tested the

overlap of the propagated relaxed wave function
D,(rq,15,t) with the diagonal eigenvector;. These over-
lapping values also remained constant for a very long time Do = > GV (26)
even after the wave function bounces back many times '

against the boundaries. Projection of the propagated relaxethus, the autocorrelation amplitude can be written

P

P P
Ag, (1) = (Pos(r1, 12, )| Poe2(r, 2, to))| = [(eMILT2MD (1 1,15, to) [ oe2(r 1, T2 t)= | | 2 e ™MW (1, 1) 2 G4, 1)
i k

P P P
=2 I¢;|%e ™= \/E |o;|*+ 22 [¢j|?cilPcod B - E)t, (27)
] ] >k
[
whereP is the dimension of the space defined in E4). back portion of the wave and other irregularities. Surpris-

We calculated the final expression in Eg7), cutting off  ingly, the expansio27) reproduces perfectly the autocorre-
the numberP of terms in the sum to a different number of lation amplitude of the propagated wave function including
termsp; these results are shown in Fig. 8. We found that thethe oscillations and the irregularities at long times. It is also
c; coefficients in the expansio(26) have a very sharply interesting to notice how the frequency of the oscillations is
peaked distribution around thk; states located close to the related to the size of the box. For bigger boxes, the propa-
®, function. However, a large number of terms in the ex-gating wave function takes more time to reach the bound-
pansion(27) are needed in order to reproduce an exponentia@iries, so the frequency of the oscillations is smaller. On the
behavior similar to the autocorrelation amplitude of theother hand, for bigger boxes the eigenvalue spectra are more
propagated wave function. The relatively large size of thedense. Therefore, the energy differentgs-E;) in the lead-
box allows us to study the propagation of the wave functioning terms of the sung27) are smaller, tracking exactly the
until long times(about 150 a.y. At times beyond 150 a.u., oscillations in the autocorrelation amplitude.
an important part of the propagating wave function reaches As we pointed out above, our result may improve by us-
the boundaries, bouncing back to the origin. Therefore, aing a finer radial mesh. For a summary of our findings, Table
long times the autocorrelation amplitude is no longer a dedll shows our results for the calculated energieg=e,e
creasing exponential; it has an oscillatory behavior—it+iI',e/2 for the 22 level in He, ande,, the energy of thed
shows interferences between the propagating and bouncidgvel in He", for different numerical grids.
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IV. CONCLUSIONS function allows the calculation of the autoionization rate by
monitoring the autocorrelation amplitude in time. Further-
We have developed an exact numerical method for calcumore, computer animations were produced to visualize the
lating the full spectrum of the helium atom in a box. It con- dynamics of the autoionization process. Work is in progress
sists of a direct diagonalization of the Hamiltonian in a nu-to present better numerical results, including total close-
merical grid. Since we have a particular interest in thecoupling results, and for the calculations of other processes
doubly excited autoionizing levels, we developed an addiinvolving transitions among the different continuum states.
tional method, consisting of a constrained relaxation of the
wave function. Calculations were performed for tBavave
model He, in which only spherical states are taken into ac-
count. Even though our goal is not to present the best wave We would like to thank Professor Jorge Miraglia for many
functions but to obtain a good insight into the physical cor-fruitful discussions. Computational work was carried out at
relations, both methods show very good agreement amonhe National Energy Research Supercomputer Center in Oak-
them and with other existing calculations. A Feshbach protand, CA. These computational resources are supported
jection of theW,. eigenvector is absolutely consistent with through a grant from Scientific Discovery through Advanced
the relaxedb,, wave function, proving the reliability of the Computing(SciDAC) (U.S. Department of Energyadmin-
numerical procedure. Time propagation of the relaxed waveéstered through Auburn University.
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