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ABSTRACT: In this article, the angular correlated configuration interaction method
previously introduced by some of the authors is extended to three-body atomic systems
with general masses. A recently proposed angularly correlated basis set is used to
construct ground state wave functions which: (i) satisfy exactly Kato cusp conditions at
the two-body coalescence points; (ii) have only linear coefficients; and (iii) show a fast
convergency rate for the energy. The efficiency of the construction is illustrated by the
study of the negatively charged hydrogen-like systems (�H�, T�, D�, 1H�, and Mu�),
neutral helium-like systems (e�e� �He�2,e�e� 4He�2, e�e� 3He�2, e��� �He�2, e��
�4He�2, and e��� 3He�2), and positively charged lithium-like systems (e�e� �Li�3,
e�e� 7Li�3, e�e� 6Li�3, e��� �Li�3, e��� 7Li�3, and e��� 6Li�3). The ground state
energies and other mean values are compared with those given in the literature, when
available. Wave functions with a moderate number of (20 maximum) linear coefficients
are given explicitly; they are sufficiently simple and accurate to be used in practical
calculations of atomic collision in which multidimensional integrations are involved.
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1. Introduction

T he three-body problem plays a fundamental
role in atomic physics. From a theoretical

point of view, it is very important because it pre-
sents most of the properties of the many-body prob-
lem. For bound states of three-body atomic sys-
tems, and in particular for helium, many trial wave
functions have been proposed and optimized to
obtain the best ground state energy. They all are not
of the same quality and can be grouped in at least
three different groups. Highly sophisticated wave
functions, built with a large number of basis func-
tions, lead to very accurate energies (see, e.g., [1–9]).
A second, analytical, group includes rather simple
wave functions possessing some of the correct func-
tional properties (see, e.g., [10–15]). A third cate-
gory, deals with wave functions (typically Hyller-
aas-type) and energies of quality, which are
intermediate between the two already mentioned
(see, e.g., [16–18]). All these trial wave functions
have separate, and possibly complementary, pur-
poses: obtain very accurate mean quantities (in-
cluding the energy), search for a solution as formal
as possible, or useful for applications such as colli-
sion studies. For the latter, it is useful to remind
that the evaluation of fully differential cross sec-
tions for processes such as double ionization by
electron [19–22] or photon [23, 24] impact involve
large dimensional numerical integrations; this is
even more true if one considers the second Born
approximation [20, 25, 26] or the evaluation of less
differential cross sections through further quadra-
tures. The use of bound wave functions with a very
large number of terms (first group) can be prohib-
itive, even with modern computer facilities [23]. It
is then not surprising that only simple or interme-
diate trial wave functions have been employed so
far in all such collision calculations. Another reason
for this may be related to the practical fact that
simpler functions can be easily tabulated and
shared by a wider community. This, for example,
possibly explains the popularity of Hylleraas-type
wave functions, such as that of Kinoshita [16] or
simpler versions [17, 27], among the collision com-
munity.

Another important issue concerning trial wave
functions is their formal structure. In particular, the
behavior close to the singular points plays an es-
sential role, for example, in photo-double ionization
for which the cusp conditions have fundamental
importance at high energy regimes. Indeed, the use

of wave functions, which do not satisfy the cusp
conditions, leads to errors in the cross sections, see
e.g. [28] and references therein. In other processes,
like the double ionization of helium by electron
impact [29, 30], this issue has been recently under
scrutiny. It is now clear now that, in this case, the
cusp conditions are not at all determinant as dis-
cussed in, e.g.,[30]; however, this conclusion could
only be reached through the use of intermediate
quality wave functions, with relatively few param-
eters, and satisfying exactly the cusp conditions.
Trial wave functions usually satisfy the so-called
Kato cusp conditions [31] in an approximate way;
the functions of the first group usually contain so
many terms that the conditions are satisfied quite
accurately but not exactly. An alternative approach
is to build the trial wave functions with intrinsically
the correct behavior, for example, by choosing ap-
propriate basis functions. This is one of the issues
addressed in this report.

In the last 3 years, we have worked on the con-
struction of trial wave functions of intermediate
quality [32–35], in particular, for two-electron at-
oms. The idea is to provide to the atomic collision
community, explicit wave functions (including the
parameters and normalization constant), which can
be easily used in various cross sections calculations.
This article has two main objectives: (i) the exten-
sion of the angular correlated configuration inter-
action (ACCI) method introduced in [32, 33, 35], in
combination with the basis functions recently pro-
posed in [35], to more general atomic systems in-
cluding those with a finite nuclear mass and light
particles of different masses (electrons or muons);
and (ii) the construction, for this type of atomic
three-body systems, of highly correlated wave
functions which satisfy exactly the two-body cusp
conditions and are as accurate as the traditional
Hylleraas wave functions available in the literature
for two-electron systems with infinite nuclear mass.

For some collision calculations (for example the
calculation within the second Born approximation
of double ionization cross sections), a complete set
of wave functions is necessary. This article shall
deal with the ground state only, but the method can
be successfully used to generate excited states. An
orthogonal set of S ground and excited states was
presented in [36].

The method is based on a decomposition of the
three-body wave function in a sum of doubly cor-
related configurations. Each configuration, noted �,
is formed by the product of atomic functions mul-
tiplied by a distortion factor, noted �, which de-
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pends explicitly on the inter-electronic coordinate.
The functions � solve part of the three-body ham-
iltonian, diagonalizing the electron-nucleus Cou-
lomb interactions and partially the electron–elec-
tron interaction. The second ingredient on the
construction of the ACCI method consists in includ-
ing a factor � in the wave function that solves the
nondiagonal terms of the kinetic energy not solved
by the first factor �. In the original proposal [32, 33],
the distortion factor � did not fully diagonalize the
electron–electron interaction. On the other hand, in
connection with collisional studies, Gasaneo and
Ancarani [35] introduced a C3-like basis set for
two-electron atomic systems, which fully diagonal-
izes all the Coulomb interactions. A simplified ver-
sion of the ACCI method was then used by the
authors to define the double bound counterpart of
the approximated double continuum wave function
known as C3 (or BBK in the electron-atom collision
community)[37]. Applications of both approaches
to the helium isoelectronic sequence in the infinite
mass approximation were presented in Refs. [32, 33,
35].

The efficiency of our ACCI method will be illus-
trated by considering the following two-electron
and electron–muon three-body atomic systems:
negatively charged hydrogen-like systems (�H�,
T�, D�, 1H�, and Mu�); neutral helium-like sys-
tems (e�e� �He�2, e�e� 4He�2, e�e� 3He�2, e���

�He�2, e�� �4He�2, and e��� 3He�2), and posi-
tively charged lithium-like systems (e�e� �Li�3,
e�e� 7Li�3, e�e� 6Li�3, e��� �Li�3, e��� 7Li�3,
and e��� 6Li�3). The calculated energies, with only
a moderate number of linear parameters, are of
intermediate quality; they lie in between the highly
accurate ones presented for example by Frolov (see
e.g., [5]) and those obtained with simple wave func-
tions (see e.g., [15]). Our method generates wave
functions which (i) are sufficiently simple and ac-
curate to be used in practical atomic collision cal-
culation; and (ii) by construction, satisfy exactly
Kato cusp conditions [31]. Wave functions with
these characteristics, and in tabulated form, are
presently not available in the literature, in particu-
lar for the electron–muon systems considered.

Our work is organized as follows: in Section 2,
we redefine the ACCI method with the new basis
set and extend it to atomic systems with general
masses. In Section 3, we present our results for the
systems mentioned above: wave functions are
given explicitly, and the energies and mean values
of others radial physical quantities are compared to
“exact” reference values, when available. We also

study the stability and the threshold properties of
some of the systems. Finally, a summary and some
concluding remarks are given in Section 4.

Hartree atomic units (� � me � e � 1) are used
throughout this article.

2. Method

Consider atomic systems composed of three-par-
ticles with charges z1 � 0, z2 � 0, z3 � 0, and
respective masses m1, m2, m3; we shall note these
three-body systems by m1

z1m2
z2m3

z3, with the charges
zi as superscripts. Let �ij � mimj/mi � mj	i � j
 be
the reduced masses. We shall designate as particle 3
the heaviest particle, that is, the nucleus of mass m3
and charge z3 � Z, and the two lighter particles,
labeled 1 and 2, with masses m1, m2, and charges z1
� z2 � �1. The vectors r13 and r23 will denote the
two lighter particles positions with respect to the
nucleus, and r12 � r2 � r1 their relative position.

For S-states, the six-dimensional Schrödinger
equation reduces to the three-dimensional Hyller-
aas equation when Euler angles have been re-
moved. In terms of the interparticles coordinates
(r13, r23, r12), and keeping the general charges z1, z2,
and z3 � Z, it reads

H�	r13,r23,r12
 � E�	r13,r23,r12
, (1)

where the nonrelativistic Hamiltonian H is given by

H � D0 � D1. (2)

Here, D0 and D1 are the operators

D0 � � �
1

2�13
� �2

�r13
2 �

2
r13

�

�r13
� �

Zz1

r13
�

� � �
1

2�23
� �2

�r23
2 �

2
r23

�

�r23
� �

Zz2

r23
�

� � �
1

2�12
� �2

�r12
2 �

2
r12

�

�r12
� �

z1z2

r12
� , (3)

D1 � � � 1
m1

r13
2 � r23

2 � r12
2

2r13r12

�2

�r13�r12

�
1

m2

r23
2 � r13

2 � r12
2

2r23r12

�2

�r23�r12

�
1

m3

r13
2 � r12

2 � r23
2

2r13r23

�2

�r23�r13
� . (4)
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When the nucleus is (virtually) considered as infi-
nitely heavy (m33�), the last term in D1 is absent.

It is known that the wave function � of Eq. (1)
must satisfy Kato cusp conditions [31]

� ���

�r13
�

r1330

� z1Z�13�	0,r23,r12
, (5a)

� ���

�r23
�

r2330

� z2Z�23�	r13,0,r12
, (5b)

� ���

�r12
�

r1230

� z1z2�12�	r,r,0
 with r �
1
2�r13 � r23�,

(5c)

the notation �� meaning the average of � over a
very small sphere of radius r13 (respectively, r23 or
r12) keeping the other values fixed. Relations 5(a–c)
provide the linear behavior that � (r13, r23, r12) must
have close to the Coulomb singular points. Satisfy-
ing these two-body cusp conditions is not only a
mathematical requirement but also an important
property that any trial wave function should have.
This point has been underlined throughout the lit-
erature, and again recently in the context of double
photoionization (see, e.g., Ref. [28]).

In Ref. [35], we proposed a basis set that solves
exactly the D0 part of the three-body Schrödinger
Eq. (1). The basis functions read

�n1,n2,n3	r13,r23,r12
 � 	n1	r23
	n2	r13
�C3	n3,�12,r12


(6)

with 	ni	rjk
, for (i � 1, 2, and i � j, k), are normalized
hydrogenic functions with principal quantum num-
bers n1 and n2, and zero angular momenta (l1 � l2 �
0). The distortion factor �C3 	n3,�12,r12
 � 1F1


 � n3, 2, � 2z1z2�12/n3r12� is the confluent hyper-
geometric function [38] which reduces to Laguerre
polynomials; for a given value of n3, it is a param-
eter-free factor which results from the double ana-
lytic continuation [34, 35] of an approximated solu-
tion for the double continuum wave function
known as C3 [37] (also called 3C or BBK model). By
construction, the basis functions �n1,n2,n3 (r13, r23, r12)
satisfy the Kato cusp conditions.

Here, we combine this basis set with the ACCI
method introduced in [32, 33, 35]. To find approx-
imated solutions to the Eq. (1), we thus use linear
combinations of the following functions:

�n1,n2,n3	r13,r23,r12


� �n1,n2,n3	r13,r23,r12
�n1,n2,n3	r13,r23,r12
 (7)

According to [32, 33], we use the following defini-
tion for �n1,n2,n3

�n1,n2,n3

	Ni,Nj,Nk
	r13,r23,r12
 � �
i, j,k�1

cijk
n1n2n3r13

i r23
j r12

k (8)

where Ni, Nj, and Nk represent the number of coef-
ficients included for each of the coordinates. When
dealing with identical light particles, these numbers
are restricted by the symmetry properties satisfied
by the wave function under the exchange of the
coordinate r13 and r23. To have the functions of Eq.
(7)—noted now �n1,n2,n3

	Ni,Nj,Nk
 (r13, r23, r12)—satisfying
Kato cusp conditions, the coefficients cijk

n1n2n3 corre-
sponding to first powers in the coordinates should
not appear. The polynomials �n1,n2,n3

	Ni,Nj,Nk
 add to the
function �n1,n2,n3

	Ni,Nj,Nk
 extra correlation in addition to the
already included in the basis functions �n1,n2,n3.

The ACCI method suggests, as an approximated
solution of the Schrödinger Eq. (1), a linear combi-
nation of the functions (7),

�C3�M � N �
n1,n2,n3

�n1,n2,n3

	Ni,Nj,Nk
	r13,r23,r12
, (9)

where N is the overall normalization factor. The
subscript C3–M recalls the C3-like basis functions
originating from the C3 double continuum, and
indicates the total number M of linear coefficients.
Two main differences between the ACCI and the
traditional configuration interaction (CI) approach
(see e.g., [39]) should be underlined. The first one is
that the ACCI includes explicitly angular correla-
tion through the introduction of the r12 coordinate
in each configuration �n1,n2,n3. The second one is
associated to the presence of the multiplying func-
tions �n1,n2,n3

	Ni,Nj,Nk
 which add both radial and angular
correlation. The overall amount of correlation in-
cluded is dictated by the number M of linear coef-
ficients cijk

n1n2n3. The ACCI method thus ensures a
rather fast convergency rate for the energy and
other relevant physical quantities, as will be illus-
trated in the next section.

With the proposal (9) for the wave function, the
Schrödinger Eq. (1) can be transformed into a gen-
eralized eigenvalue problem [40]:

�
n1,n2,n3,i, j,k


Ĥ � EŜ�cijk
n1n2n3 � 0, (10)
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where the coefficients cijk
n1n2n3 are the eigenvectors and

Ei the eigenvalues. Our basis functions �n1,n2,n3

	Ni,Nj,Nk
, as
indeed any other containing products of power and
exponential functions [41], allow to express in
closed form all the elements of the overlap Ŝ and
Hamiltonian Ĥ matrices. Indeed, they are obtained
from one basic integral:

Ii, j,k	 A,B,C


� �
0

�

dr13�
0

�

dr23�
�r12�r13�

�r12�r13�

dr12r13
ir23

jr12
ke�Ar13�Br23�Cr12,

(11)

which can be expressed in closed form [42] as

Ii, j,k	 A,B,C
 �
2i!j!k!

	 A � B
j�1	B � C
k�1	 A � C
i�1

�� � i, � j, � k, j � 1,k � 1,i � 1, �
	 A � C


	 A � B

,

�
	 A � B


	B � C

, �

	B � C


	 A � C
� , (12)

where � [a1, a2, a3, b1, b2, b3, x, y, z] represents a three
variable hypergeometric function [43]

�
a1,a2,a3,b1,b2,b3, x,y,z�

� �
l�0

� �
m�0

� �
n�0

� 	a1
l	a2
m	a3
n	b1
l�m	b2
m�n	b3
n�l

l!m!n! xlymzn.

(13)

In our particular case, the exponential depending
on the r12 coordinate does not appear, and the
parameter C is zero.

Before presenting our results, we would like to
mention that in the papers [32, 33] a different basis
set (named GR) was used. It differs from the
present one by the use of another distortion factor,
�GR (r12). The latter depends on a nonlinear param-
eter 
, and is not the exact solution of a Coulomb-
like problem as it is the case with the �C3 factor in
(6). Although the efficiency of the GR basis used in
Refs. [32, 33] is good, it introduces the numerical
difficulty that the generalized eigenvalue problem
(10) has to be solved many times to optimize the
value of 
. Compared to the GR basis, the C3 basis
set functions (6) offer an additional advantage. For
a fixed number of terms of the function �n1,n2,n3

	Ni,Nj,Nk
 the

correlation factor �C3 (n3, �12, r12) allows for the
inclusion into the trial wave function �C3�M of dif-
ferent amounts of angular correlation; this is not
possible with the �GR (r12) of the GR basis set. For
example, the ground state energies of the �He atom
obtained with both basis and using the same pow-
ers in � are: E�GR5 � � 2.90286 and E�C3-10 �
� 2.90307 a.u. (the C3–10 result is obtained with n1
� n2 � 1 and n3 � 1, 2, thus M � 10). A similar
analysis performed with more accurate functions
like �GR9 and �C3�18 (see section III), for �He and
�H� , leads to the following mean energies �2.90327
a.u. [33] and �2.90344 a.u., and �0.526529 a.u. [33]
and �0.52734 a.u., respectively. The results ob-
tained with the �C3�M wave functions not only
show better accuracies but also require only one
diagonalization process, while the use of the GR
basis requires many to minimize the 
 parameter. A
similar conclusion can be reached by comparing
our method with other variational procedures. For
example, Harris and Smith [27] presented very ac-
curate ground state wave functions using a reduced
number (four) of configurations. Only 12 nonlinear
parameters were used but, as stated by the authors,
their optimization is a demanding numerical task.
Because our method involves only linear parame-
ters, more configurations are needed to reach sim-
ilar level of accuracy. However, two advantages
appear in our method: (i) the optimization of the
parameters is direct and straightforward; and (ii)
the same optimization also leads to a set of accurate
excited states.

3. Results

Let us now illustrate the ACCI method presented
above with negatively charged hydrogen-like ions
(Z � 1), neutral helium-like (Z � 2) atoms, and
positively charged lithium-like ions (Z � 3). As
only the ground states are considered here, the
principal quantum numbers n1 and n2 are both set
equal to one when building the wave functions (9).
Remains the choice of Ni, Nj, Nk, and n3. To keep the
approximated functions reasonably simple, and at
the same time sufficiently accurate, we decided to
perform all our calculations with n3 up to 2.

To show the dependency on the total number M
of linear parameters, we have considered several
approximated wave functions �C3�M, with M � 14,
18, 20, and 30. They are all subcases of the following
general formula:
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�C3�M � Ne�Z	�13r13��23r23
��C3	1,�12,r12

c000
111

� c200
111r13

2 � c020
111r23

2 � c220
111r13

2r23
2 � c300

111r13
3 � c030

111r23
3

� c002
111r12

2 � c320
111r13

3r23
2 � c230

111r13
2r23

3 � c202
111r13

2r12
2

� c022
111r23

2r12
2 � c302

111r13
3r12

2 � c032
111r23

3r12
2 � c402

111r13
4r12

2

� c042
111r23

4r12
2 � c222

111r13
2r23

2r12
2� � �C3	2,�12,r12

c000

112

� c200
112r13

2 � c020
112r23

2 � c220
112r113

2r23
2 � c300

112r13
3

� c030
112r23

3 � c002
112r12

2 � c320
112r13

3r23
2 � c230

112r13
2r23

3

� c202
112r13

2r12
2 � c022

112r23
2r12

2 � c302
112r13

3r12
2 � c032

112r23
3r12

2

� c402
112r13

4r12
2 � c042

112r13
4r12

2 � c222
112r13

2r23
2r12

2��, (14)

where �C3 (1, �12, r12) � 1 � r12/2 and �C3 (2, �12,
r12) � 1 � r12/2 � r12

2 /24. It should be noted that
when the two light particles are identical, the coef-
ficients must satisfy the following symmetry rela-
tion cijk

n1n2n3 � cjik
n1n2n3, so that the number of coeffi-

cients is reduced.
The mean energy is a very important quality test

of any trial wave function. However, the expecta-
tion values of other physical quantities allow one to
test the wave function with a particular emphasis
on a given portion of the configuration space. The
mean values of several radial quantities, strongly
dependent on the shape of the wave functions, are
involved in various calculations of physical quan-
tities such as dipole polarizabilities or magnetic
susceptibilities.

For all systems considered, we shall provide, in
tabular form, the linear coefficients cijk

n1n2n3 and the
normalization constant N of a few selected �C3�M

with a moderate M. We shall then give the calcu-
lated mean value of the ground state energy and
� rij

p 
 with (p � �1, 1, 2) (i, j � 1, 2, 3). When the
two light particles are identical, we shall give only
� ri3

p 
 with either i � 1 or 2.
To allow for a direct numerical comparison with

the reference energy values given by Frolov [5, 6],
we have taken the same masses values, which were
taken from Ref [44]. For hydrogen-like ions, they
read: the proton mass mp � 1836.152701 me, the
deuteron mass md � 3670.483014 me, the tritium
nuclear mass mt � 5496.92158 me, and the muonic
mass m� � 206.768262 me. As the He2� nucleus is
concerned, we have taken m3 � 7294.2996 me for
4He2� and m3 � 5495.8852 me for 3He2�. For the
Li3� nucleus, we have taken the same values as
Frolov [45], m3 � 10961.8968 me for 6Li�3 and m3 �
12786.3927 me for 7Li�3.

3.1. THE NEGATIVE IONS �H�, 1H�, D�,
T�, AND MU�

Let us start with the negatively charged hydro-
gen-like three-body systems made of two electrons
and a third heavier particle with charge Z � 1: the
ions �H�, 1H�, D�, T�, and the muonium ion
Mu�(e� e���). All these systems are similar to
each other in the main property of their spectra,
that is, they have only one bound (ground), singlet
state with L � 0. They differ only by the nuclear
mass. For these systems, we shall consider two
functions, �C3�14 and �C3�18 with, respectively,
M � 14 and 18 linear coefficients.

For these ions, we present, in Table I, the nor-
malization constant and the linear coefficients cor-
responding to the functions �C3�18. In Table II, the
ground state energies and the mean of radial quan-
tities obtained with �C3�14 and, �C3�18 are com-
pared with the numerically “exact” values of Ref
[5]. The mean energy obtained with �C3�18 for Mu�

has a relative accuracy of 7.8 � 10�4; similar accu-
racies are obtained for all the other systems consid-
ered in the table. This is a quite good result in view
of the relatively small number of terms used.

Wave functions for these ions have been pro-
posed by Flores-Rivero and Rivas-Silva [46]. They
compared their Eckart-Gaussian wave functions
with 4- and 10-term Hylleraas functions, denoted
�S4 and �S10. The �S10 trial wave function gives a
mean energy of �0.526701 a.u. for D� and
�0.526751 a.u. for T�. It should be mentioned that,
contrary to ours, these trial wave functions do not
satisfy Kato cusp conditions. Moreover, the authors
do not give the values of the nonlinear parameters
of the wave functions. In fact, to the best of our
knowledge, there are no reports in the literature
presenting the complete wave functions (including
the values of the parameters) for all these systems.
For the helium atom and its isoelectronic series
with infinite mass, on the other hand, details of the
wave functions are often provided. For example, in
case of the �H� ion, Harris and Smith [27] have
recently proposed a wave function yielding an en-
ergy of �0.5277131 a.u. and provide the twelve
nonlinear parameters involved.

As we already mentioned, systematic improve-
ment of our approximated wave functions, without
breaking the cusp conditions, can be achieved by
including (i) more configurations, through an in-
crease of n3 values, or (ii) more terms in the poly-
nomial �. A greater number of linear coefficients is
then needed, and tables of reasonable size difficult
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to present. For the �H� ion, for example, the mean
energy value obtained with �C3–14 and n3 up to 2 is
�0.526438 a.u.; if n3 is taken up to 3 (which implies
M � 27) the energy improves to �0.526666 a.u. On
the other hand, when increasing the number of
terms in �, for example going from 14 to 18 linear
coefficients, an important improvement of the en-
ergies is noticed in Table II.

3.2. NEUTRAL HELIUM-LIKE SYSTEMS

Let us now consider the following neutral helium-
like systems e�e��He�2, e�e�4He�2, e�e�3He�2,
e����He�2, e���4He�2, and e���3He�2.

For the e�e��He�2, e�e�4He�2, e�e�3He�2

three-body systems, the results obtained with the
�C3–14 and �C3–18 wave functions are practically the
same. We therefore give, in Table III, the details
only for the simplest function. The mean values of
the energy and radial quantities, are listed in Table
IV. Except for the energy and for the e�e��He�2

case, we could not find in the literature other mean
values to compare with. When compared to “exact”
reference value, the mean energy obtained with
�C3–14 for e�e��He�2 has a relative accuracy of
1.2 � 10�4; similar accuracies are obtained when
finite nuclear masses are considered.

For the nonsymmetric helium-like systems
e����He�2, e���4He�2, and e���3He�2 we have
used a �C3–20 wave function, the details of which are
given in Table V. To check the convergence with M,
the corresponding mean values, given in Table VI, are
also compared to the results of a �C3–30 wave function.

When compared to “exact” reference value, the
mean energy obtained with �C3–20 for e����He�2 has
a relative accuracy of 4.3 � 10�8, and similar accura-
cies are obtained when finite nuclear masses are
taken. Note that, in contrast to the previous three-
body systems, the means involving r13 and r23 are not
equal because particles 1 and 2 are now different.

Here, we should underline that the ground state
energies, which are essentially proportional to m2

� m�, are of about four hundred atomic units. The
apparently excellent agreement between the energy
values should thus be taken with care, as one
should look at the relative agreement.

3.3. POSITIVELY CHARGED LITHIUM IONS-
LIKE SYSTEMS

Let us now consider the following positively
charged lithium-like systems e�e��Li�3, e�e�7Li�3,
e�e�6Li�3, e����Li�3, e���7Li�3, and e���6Li�3.

TABLE I ______________________________________________________________________________________________
The linear coefficients cijk

n1n2n3 (rounded off to the seventh digit) and of the normalization constants N of the
�C3�18 approximated wave functions for the ground state of several negatively charged hydrogen-like
three-body systems.

Mu� 1H� D� T� �H�

N 0.0320917 0.0321394 0.0321421 0.0321429 0.0321448
c000

111 0.8547058 �0.8532817 0.8531894 0.8531581 0.8530970
c200

111 0.2217853 �0.2239379 0.2240780 0.2241255 0.2242180
c220

111 �0.0174139 0.0178301 �0.0178571 �0.0178661 �0.0178842
c300

111 �0.0818877 0.0826078 �0.0826544 �0.0826700 �0.0827008
c320

111 0.0007082 �0.0007308 0.0007323 0.0007328 0.0007338
c002

111 �0.0009480 0.0009515 �0.0009527 �0.0009531 �0.0009538
c202

111 �0.0039553 0.0039946 �0.0039971 �0.0039979 �0.0039996
c302

111 �0.0015092 0.0015263 �0.0015274 �0.0015277 �0.0015285
c402

111 0.0001816 �0.0001847 0.0001849 0.0001850 0.0001852
c000

112 �0.2826039 0.2799913 �0.2798171 �0.2797582 �0.2796431
c200

112 �0.1754047 0.1774231 �0.1775543 �0.1775988 �0.1776856
c220

112 0.0121321 �0.0124499 0.0124706 0.0124775 0.0124913
c300

112 0.0887226 �0.0895564 0.0896104 0.0896285 0.0896642
c320

112 �0.0005037 0.0005222 �0.0005234 �0.0005238 �0.0005246
c002

112 0.0003381 �0.0004983 0.0005094 0.0005131 0.0005205
c202

112 0.0053839 �0.0054488 0.0054529 0.0054543 0.0054571
c302

112 �0.0003756 0.0003837 �0.0003842 �0.0003844 �0.0003847
c402

112 �0.0000288 0.0000292 �0.0000292 �0.0000292 �0.0000292
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TABLE III ____________________________________
The linear coefficients cijk

n1n2n3 (rounded off to the
seventh digit) and of the nor- malization constants
N of the �C3�14 approximated wave functions for
the ground state of several neutral helium-like
atoms.

e�e��He�2 e�e�4He�2 e�e�3He�2

N 0.448367 0.448354 0.448349
c000

111 0.7019935 0.7020639 �0.7020870
c200

111 0.1521548 0.1520548 �0.1520221
c220

111 �0.1718711 �0.1717718 0.1717393
c300

111 0.0017437 0.0017295 �0.0017249
c002

111 0.0203784 0.0203525 �0.0203440
c202

111 0.0006772 0.0006741 �0.0006731
c222

111 �0.0043226 �0.0043191 0.0043179
c000

112 �0.6054576 �0.6055292 0.6055526
c200

112 �0.1361976 �0.1360928 0.1360585
c220

112 0.1647337 0.1646368 �0.1646051
c300

112 0.0007997 0.0008118 �0.0008157
c002

112 �0.0100536 �0.0100339 0.0100275
c202

112 0.0002263 0.0002271 �0.0002274
c222

112 0.0020219 0.0020201 �0.0020195

TABLE II _____________________________________________________________________________________________
The mean energy and the mean of several radial quantities for the ground state of several negatively charged
hydrogen-like three-body systems, obtained using the �C3�14 and �C3-18 approximated wave functions, are
compared with the numerically “exact” values of Ref. [5].

Mu� 1H� D� T� �H�

��E� �C3-14 0.52373 0.52613 0.52628 0.52633 0.52644
�C3-18 0.52464 0.52703 0.52719 0.52724 0.52734
Exact 0.52505 0.52744 0.52760 0.52765 0.52775

�ri3� �C3-14 2.56767 2.5552 2.55441 2.55415 2.55362
�C3-18 2.67316 2.65922 2.65833 2.65804 2.65744
Exact 2.72718 2.71209 2.71114 2.71082 2.71018

�ri3
2 � �C3-14 9.88098 9.7846 9.77849 9.77646 9.77238

�C3-18 11.1969 11.0769 11.0693 11.0668 11.0617
Exact 12.0742 11.9317 11.9227 11.9197 11.9137

� 1
ri3
	 �C3-14 0.68758 0.69073 0.69093 0.69099 0.69113

�C3-18 0.68110 0.68428 0.68448 0.68455 0.68468
Exact 0.67965 0.68285 0.68306 0.68312 0.68326

�r12� �C3-14 4.13923 4.12060 4.11942 4.11903 4.11824
�C3-18 4.33763 4.31619 4.31483 4.31437 4.31346
Exact 4.43928 4.41569 4.41419 4.41369 4.41269

�r12
2 � �C3-14 21.2139 21.0264 21.0145 21.0105 21.0026

�C3-18 23.8103 23.5761 23.5613 23.5564 23.5464
Exact 25.5145 25.2372 25.2196 25.2138 25.2020

� 1
r12
	 �C3-14 0.32140 0.32292 0.32302 0.32305 0.32312

�C3-18 0.31259 0.31417 0.31427 0.31430 0.31437
Exact 0.30920 0.31081 0.31092 0.31095 0.31102

TABLE IV ____________________________________
The mean energy and the mean of several radial
quantities for the ground state of several helium-like
three body systems e�e��He�2, e�e�4He�2, and
e�e�3He�2, obtained using the �C3�14 wave
function, are compared with the numerically
“exact”values of Ref. [9].

e�e��He�2 e�e�4He�2 e�e�3He�2

��E� �C3�14 2.90337 2.90295 2.90282
Exact 2.90372 2.90330 2.90317

�ri3� �C3�14 0.92947 0.92961 0.92965
Exact 0.92947

�ri3
2 � �C3�14 1.19281 1.19316 1.19327

Exact 1.19348

� 1
ri3
	 �C3�14 1.68730 1.68706 1.68698

Exact 1.68832
�r12� �C3�14 1.42163 1.42181 1.42187

Exact 1.42207
�r12

2 � �C3�14 2.51472 2.51534 2.51555
Exact 2.51644

� 1
r12
	 �C3�14 0.94632 0.94620 0.94616

Exact 0.94582

TWO-ELECTRON AND ELECTRON-MUON THREE-BODY ATOMIC SYSTEMS

VOL. 110, NO. 10 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1827



For the e�e��Li�3, e�e�7Li�3, e�e�6Li�3 three-
body systems, the results obtained with the �C3–14
and �C3–18 wave functions are practically the same.
We therefore give, in Table VII, only the values for
the simplest function. The mean values of the en-
ergy and radial quantities, are given in Table VIII.

When compared to “exact” reference values, the
mean energies obtained with �C3–14, have approxi-
mately a relative accuracy of 5.9 � 10�5 for all the
systems considered.

Finally, for the nonsymmetric lithium-like sys-
tems e����Li�3, e���7Li�3, and e���6Li�3, we
have used a �C3–20 wave function, whose details are
given in Table IX, and the corresponding mean
values in Table X.

When compared to the “exact” reference value,
the mean energy obtained with �C3–20 for
e���6Li�3 has a relative accuracy of 9.8 � 10�8, and
similar accuracies are obtained for finite nuclear
masses are considered. Note that, for these systems,
to allow for a direct numerical comparison with the
reference energy values given by Frolov [45], we
have taken the muon mass as 206.7682838 me.

For all systems, more accurate wave functions
can be easily constructed by increasing the number
of terms in �n1,n2,n3

	Ni,Nj,Nk
	r13,r23,r12
 and/or including
other configurations (n1n2n3) as done in Ref [35].
However, as mentioned in the Introduction, the aim
was to provide the details of the wave functions
and have therefore kept the number of coefficients
reasonably moderate.

Other systems with larger values of Z can be
equally considered. The relatively less important
role played by the electron–electron correlation
gives then even better energy agreement with “ex-
act” values (not shown).

3.4. MINIMUM VALUE OF THE CHARGE
REQUIRED TO BIND TWO ELECTRONS

To study the stability of these three-body sys-
tems [m1m2m3], one should compare its energy
E[m1m2m3] with that of the ground state of the
separate two-body sub-systems E[mimj] where i � j.
If m1 denotes the lightest particle, the stability con-
dition reads

E
m1m2m3� � �
1
2	 z2z3


2�23 � E
m2m3�. (15)

We have already mentioned that all the consid-
ered systems in section 3.1, with Z � 1 have only
one bound state, the ground state. It is also well
known that when the value of Z is decreased, there
appears a minimum value, the critical charge (Zth �
1), below which the double bound state does not
exist, as it becomes a continuum state [47]. In the
case of two electrons, the critical charge is the min-
imum nuclear charge value which allows to bind
two electrons. This threshold value is obtained as
the zero of the following function [48]:

f	Z
 
 E	Z
 �
�23

2 Z2

which results from the stability condition (15).
The calculated values of the threshold charge,

Zth, and the corresponding threshold energy Eth,
obtained with a �C3–18 wave function are listed in
Table XI for the negatively charged, infinitely
heavy, hydrogen ion e�e��z3 and its muonic coun-
terpart e�e��z3. The obtained threshold values Zth
lie between the lower Z(�) and upper Z(�) bounds
found in [49], and are closer to the upper bounds.
Note that, for the hydrogenic ion our Zth value is

TABLE V _____________________________________
The linear coefficients cijk

n1n2n3 (rounded off to the
seventh digit) and of the nor-malization constants N
of the �C3-20 approximated wave functions for the
ground state of several neutral helium-like atoms.

e����He�2 e���4He�2 e���3He�2

N 0.684302 0.60359 0.560566
c000

111 �0.2856291 0.2873294 �0.2842373
c200

111 0.5880162 �0.5890340 0.5906894
c020

111 �0.0049916 0.0032295 �0.0047919
c220

111 �0.0064209 0.0039822 �0.0037438
c300

111 0.10544208 �0.1255693 0.1371306
c030

111 �0.0000493 0.0000381 �0.0000868
c002

111 �0.1740855 0.1422221 �0.1226149
c202

111 0.0117025 �0.0152402 0.0174262
c022

111 �0.0048893 0.0101970 �0.0056564
c222

111 0.0025263 �0.0044554 0.0040943
c000

112 0.2445510 �0.2407512 0.2340879
c200

112 �0.6602520 0.6692177 �0.6754980
c020

112 �0.0032731 0.0048711 �0.0049847
c220

112 �0.0031702 0.0014265 �0.0037292
c300

112 �0.0428220 0.0611165 �0.0716672
c030

112 �0.0000397 0.0000337 �0.0000927
c002

112 0.1827232 �0.1565263 0.1405741
c202

112 �0.0026106 0.0029171 �0.0031578
c022

112 �0.0027534 0.0038721 �0.0046499
c222

112 �0.0010845 0.0022691 �0.0020406
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only 0.5% off the value Zth � 0.911029 found in [50]
with a 30 basis exponential functions but with 90
nonlinear parameters. In contrast, our result is ob-
tained with a wave function containing only 18
linear coefficients.

It is interesting to investigate also the three-body
systems, e����z3, and to find the minimal charge z3
to bind an electron and a muon. In this case, the
critical (or threshold) charge Zth corresponding to a
stable system is Zth � 1.11 (see Table XI). Accord-
ing to our calculations, an infinitely heavy nucleus
(and similarly for finite masses such as those of a
proton, a deuteron or a tritium) can not bind a
muon and an electron; these three-body systems
can not be found forming a stable bound state in

nature. This is an example of an unstable ion with a
unit nuclear charge. This explains why we were
able to present results for helium- (Z � 2) and
lithium-like (Z � 3) systems with a muon replacing
an electron, but not for hydrogen-like (Z � 1).

4. Summary and Concluding Remarks

In this article, we have generalized the C3-like
basis set [35] to three-body atomic systems with
general masses, and have used the basis functions
to extend the angular correlated configuration-in-
teraction method presented in [32, 33]. The C3-like
basis functions are defined as being exact solution

TABLE VI ____________________________________________________________________________________________
The mean energy and the mean of several radial quantities for the ground state of several neutral helium-like
systems e����He�2, e���4He�2 and e���3He�2, obtained using the �C3�20 and a �C3�30 wave function are
compared with the numerically “exact” values of Ref. [6].

e����He�2 e���4He�2 e���3He�2

��E� �C3�20 414.0365192 402.6372416 399.0423138
�C3�30 414.0365223 402.6372484 399.0423193
Exact 414.0365369 402.6372630 399.0423368

�r13� �C3�20 1.50053 1.49970 1.49945
�C3�30 1.49996 1.50016 1.50024
Exact 1.49996 1.50016 1.50022

�r13
2 � �C3�20 2.99713 2.99500 2.99443

�C3�30 2.99955 3.00032 3.00070
Exact 2.99986 3.00065 3.00090

� 1
r13
	 �C3�20 1.00028 1.00002 0.999919

�C3�30 1.00003 0.99990 0.999835
Exact 1.00004 0.99990 0.99986

�r23� �C3�20 0.00377 0.00376 0.00376
�C3�30 0.00363 0.00373 0.00376
Exact 0.00363 0.00373 0.00376

�r23
2 � �C3�20 0.000018898 0.00001890 0.00001889

�C3�30 0.000017542 0.00001855 0.00001889
Exact 0.000017543 0.00001855 0.00001889

� 1
r23
	 �C3�20 398.760 398.596 398.542

�C3�30 413.537 402.137 398.542
Exact 413.536 402.137 398.532

�r12� �C3�20 1.50054 1.49971 1.49945
�C3�30 1.49996 1.50017 1.50025
Exact 1.49997 1.50017 1.50023

�r12
2 � �C3�20 2.99715 2.99502 2.99444

�C3�30 2.99955 3.00033 3.00072
Exact 2.99987 3.00067 3.00009

� 1
r12
	 �C3�20 1.00026 0.99999 0.99989

�C3�30 1.00003 0.99988 0.99982
Exact 1.00002 0.99989 0.99985
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of a general three-body Coulomb problem where
the nondiagonal terms of the kinetic energy are
neglected; hence, the functions naturally satisfy the

cusp conditions at the two-body singularities. They
are defined as a product of two-body Coulomb
wave functions multiplied by a Coulomb distortion
factor, being in that way the counterpart of the C3
approach used for scattering problems. This distor-
tion factor, which depends on the inter-electronic
coordinates, already includes angular correlation in
the configuration basis functions [34, 35]. A config-
uration interaction scheme can then be constructed
with these correlated basis elements as done in Ref
[35]. However, the convergence rate of the energy
and wave functions obtained can be considerably
increased by multiplying the basis functions by an
additional correlation factor � which adds radial
and angular correlation to each configuration. Two
advantages of the C3-like basis set should be men-
tioned: all the parameters included in the wave
functions are linear, thus a single diagonalization
gives both energies and eigenvectors. Second, the
basis set diagonalizes all the Coulomb interactions
and part of the kinetic energy, leading to analytic
closed form expressions for the nondiagonalized
terms.

TABLE VII ____________________________________
The linear coefficients cijk

n1n2n3 (rounded off to the seventh
digit) and of the normalization constants N of the
�C3�14 approximated wave functions for the ground
state of several positively charged lithium-like ions.

e�e��Li�3 e�e�7Li�3 e�e�6Li�3

N 1.4842 1.48403 1.48400
c000

111 0.5226780 �0.5228122 �0.5228345
c200

111 0.1780267 �0.1779453 �0.1779318
c220

111 �0.4327624 0.4326755 0.4326611
c300

111 0.0079818 �0.0079668 �0.0079643
c002

111 0.0344479 �0.0344364 �0.0344345
c202

111 0.0023769 �0.0023721 �0.0023714
c222

111 �0.0182345 0.0182282 0.0182272
c000

112 �0.4863479 0.4864784 0.4865001
c200

112 �0.1690866 0.1690009 0.1689867
c220

112 0.4242703 �0.4241833 �0.4241689
c300

112 �0.0065276 0.0065139 0.0065117
c002

112 �0.0240043 0.0239935 0.0239917
c202

112 �0.0000742 0.0000719 0.0000715
c222

112 0.0104493 �0.0104453 �0.0104446

TABLE VIII ___________________________________
The mean energy and the mean of several radial
quantities for the ground state of several lithium-like
three body systems e�e��Li�3, e�e�7Li�3, and
e�e�6Li �3, obtained using the �C3�14 wave
function, are compared with the numerically
“exact”values of Ref. [9].

e�e��Li�3 e�e�7Li�3 e�e�6Li�3

��E� �C3�14 7.27948 7.27889 7.27879
Exact 7.27991 7.27989 7.27989

�r13� �C3�14 0.57285 0.57290 0.57291
Exact 0.57277

�r13
2 � �C3�14 0.44637 0.44644 0.44645

Exact 0.44628

� 1
r13
	 �C3�14 2.68651 2.68629 2.68626

Exact 2.68792
�r12� �C3�14 0.86224 0.86230 0.86231

Exact 0.86231
�r12

2 � �C3�14 0.92709 0.92721 0.92723
Exact 0.927065

� 1
r12
	 �C3�14 1.56829 1.56818 1.56816

Exact 1.56772

TABLE IX ____________________________________
The linear coefficients cijk

n1n2n3 (rounded off to the
seventh digit) and of the nor-malization constants N
of the �C3�20 approximated wave functions for the
ground state of several positively charged lithium-
like ions.

e����Li�3 e���7Li�3 e���6Li�3

N 0.61255 0.637727 0.641883
c000

111 0.3180814 0.3219735 0.3225994
c200

111 �0.3445659 �0.3480885 �0.3486838
c020

111 0.0003802 0.0006452 0.0006874
c220

111 0.0006659 0.0006931 0.0006972
c300

111 �0.4256829 �0.4235959 �0.4232422
c030

111 0.0000025 0.0000041 0.0000044
c002

111 �0.3263497 �0.3199306 �0.3188607
c202

111 �0.0602641 �0.0598046 �0.0597278
c022

111 0.0023915 0.0024939 0.0025094
c222

111 �0.0006798 �0.0007175 �0.0007234
c000

112 �0.2473109 �0.2539969 �0.2550630
c200

112 0.4651296 0.4678794 0.4683486
c020

112 0.0021780 0.0035065 0.0037179
c220

112 0.0020573 0.0008832 0.0021482
c300

112 0.3629819 0.3608580 0.3604966
c030

112 0.0000063 0.0000101 0.0000107
c002

112 0.2819142 0.2759202 0.2749235
c202

112 0.0009703 0.0008832 0.0008695
c022

112 0.0005285 0.0005499 0.0005531
c222

112 �0.0003238 �0.0003343 �0.0003358
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The efficiency of the method has been illustrated
by considering the ground state of hydrogen-, he-
lium-, and lithium-like three-body systems, in
which the nuclear mass can be finite and the two
light particles can be equal (two electrons) or dif-
ferent (one electron and one muon). Ground state
energies and other mean values for different rele-
vant physical magnitudes were compared to refer-

ence values, when available; good agreement is
found for all cases. Accurate wave functions, satis-
fying the two-body Kato cusp conditions, and with
a moderate number (maximum 20) of linear coeffi-
cients were used, and coefficients and normaliza-
tion constant tabulated. This has been done with
the purpose to provide, for example, to the colli-
sional community, wave functions as accurate as
the traditional Hylleraas wave function available in
the literature for two-electron systems with infinite
nuclear mass. To the best of our knowledge, for all
other three-body systems investigated here, no
functions (as accurate and simple as those pre-
sented here), have been explicitly given in the liter-
ature.

A study of the stability of some of these three-
body systems was also performed, by providing the
critical charge to bind two electrons, or an electron
and a muon.

The method presented here can be easily ex-
tended to excited states. An orthogonal set of S
ground and excited states was presented in [36].
The extension to L � 0 states is part of these inves-

TABLE X _____________________________________________________________________________________________
The mean energy and the mean of several radial quantities for the ground state of several lithium-like three
body systems e����Li�3, e���7Li�3 and e���6Li�3, obtained using the �C3�20 wave function, are compared
with the numerically “exact”values of Ref. [45].

e����Li�3 e���7Li�3 e���6Li�3

��E� �C3�20 932.45724 917.65013 915.23126
Exact — 917.65022 915.23135

�r13� �C3�20 0.750004 0.750064 0.750074
Exact — 0.750041 0.750050

�r13
2 � �C3�20 0.749979 0.750098 0.750118

Exact — 0.750085 0.750104

� 1
r13
	 �C3�20 2.00012 1.99996 1.99993

Exact — 1.99991 1.99989
�r23� �C3�20 0.00241817 0.00245727 0.00246378

Exact — 0.00245727 0.00246377
�r23

2 � �C3�20 0.0000078 0.0000080 0.0000081
Exact — 0.0000080 0.0000081

� 1
r23
	 �C3�20 620.305 610.434 608.821

Exact — 610.433 608.8209
�r12� �C3�20 0.75001 0.75007 0.75008

Exact — 0.75005 0.75006
�r12

2 � �C3�20 0.74999 0.75011 0.75012
Exact — 0.75009 0.75011

� 1
r12
	 �C3�20 2.00006 1.99989 1.99987

Exact — 1.99986 1.99984

TABLE XI ____________________________________
Critical charge Zth to bind two electrons, or an
electron and a muon. The energy values Eth

corresponding to the threshold charge Z � Zth, as
well as the lower and upper bounds Z(�) and Z(�)

found in Ref. [49], are also included.

e�e��z3 e�e��z3 e����z3

Zth 0.916 0.916 1.11
Eth �0.41971 �0.41757 �127.38069
Zth

(�) 0.8909a 0.8913a —
Zth

(�) 0.9171a 0.9174a —

a Rebane [49].
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tigations. It is also possible to extend the method-
ology to molecular systems; however, in this case,
molecular-like basis set have to be used to replace
the basis functions �n1,n2,n3 (r13, r23, r12). This is also
being studied by some of the authors.
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