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The properties of a helium atom confined inside an endohedral cavity, such as a fullerene, are studied. The
fullerene cavity is modeled by a potential well and the strength of this potential is varied in order to understand
the collapse of different atomic wave functions into the fullerene cage. Three theoretical calculation methods
have been developed: a relaxation method, a Sturmian basis method, and a variational method. The first two
methods are nonperturbative. The three methods allow inclusion of full correlations among the two electrons.
Results showing mirror collapse effects are presented for an S-wave model, in which all the angular quantum
numbers are set to zero.
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I. INTRODUCTION

One of the most fascinating features of the fullerene mol-
ecules �1� is that they are capable of enclosing atoms in their
hollow interior, forming endohedrally confined atoms �2–4�.
Experimental efforts have made it possible to trap atoms in-
side a fullerene in different ways �5–7�. The particular
mechanisms responsible for the insertion of the atom, vary
from a “brute force” implantation, to a “window” mecha-
nism, in which high temperatures and pressures can break
one of the carbon-carbon bonds in the cage. Small molecules
and atoms can pass through this temporary hole, forming a
stable endohedrally confined compound �8,9�. This confine-
ment could have some unique advantages in isolating the
atom from its environment, having applications as supercon-
ductors, drug-delivery agents, medical imaging compounds,
or molecular containers. The study of atoms confined inside
a hollow cage of carbon fullerene can also lead to important
applications in nanostructure science and technology. It can
be useful in a wide range of applications, from the study of
storage of fuel cells �10�, to a possible way to provide the
building blocks for the qubits of a quantum computer �11�.

Endohedrally confined helium �for example, He@C60�
has been produced in laboratories, by resistive heating or in
electric arcs �12�, by ion implantation �13�, and in ion beam
collision experiments �14�. The fact that it is extremely stable
over long periods of time, leads to the search of this
compound in different sediment and meteorite samples. En-
dohedrally confined helium molecules have been detected in
clay sediments associated with the 65 million-year-old
Cretaceous-Tertiary boundary �15�. In particular, the isotopic
ratio of the trapped atoms 3He / 3He, was found to be higher
than the maximum reported mantle values, and similar to
those found in some interplanetary dust particles. The impli-
cation is that the He within these fullerenes is of extraterres-
trial origin. The largest of the mass extinction events in the
Earth history, at the Permian-Triassic boundary �251 million
years ago�, wiped out 90% of ocean dwellers and 70% of
plants, animals, and even insects, on land �16�. In 2001

Becker et al. �17� investigated sediments from this boundary
section, looking for the presence of endohedrally trapped he-
lium in fullerenes. They claimed that the unusual isotopic
ratio of these helium atoms provides geochemical evidence
that it was an impact event—probably an asteroid or a
comet—that caused the extinction. Endohedrally confined
helium in fullerenes, has even been extracted from shock-
produced breccias associated with the 1.85 billion year old
Sudbury Impact Crater �in Canada� �18�. These compounds
may constitute the ultimate “time capsule.”

Concerning atomic physics, many studies have explored
the response of the enclosed atoms to electromagnetic radia-
tion. Photoionization of endohedral fullerenes is a subject of
increasing interest �see, for example, Refs. �19,20�, and ref-
erences therein�, rising to a number of interesting effects,
such as confinement resonances �21�, correlation confine-
ment resonances �22�, and interferences of resonances �23�.
Experiments on photoionization of endohedral Sc3N@C80

+

and Ce@C82
+ compounds by synchrotron radiation, are un-

derway �24�. Regarding the system discussed in the present
work, Amusia et al. �25� studied the two-electron photoion-
ization cross section of the He@C60 system at very high
photon energies, a regime where correlation details about the
structure of the wave functions can be neglected.

The detailed study of photoioinization processes in encap-
sulated atoms brings up the necessity to analyze the atomic
structure of these systems. The spectra of two-electron atoms
under different kind of confinements—the simplest case that
allows the study of changes in correlation effects—have been
studied by many authors �26–29�. The ground-state proper-
ties of a confined helium atom by a endohedrally model po-
tential with different potential parameters, have been studied
by Neek-Amal et al. �30� by using a diffusion Monte Carlo
method. It is expected that the atomic properties will be dra-
matically changed both quantitatively and qualitatively, from
those characteristic of the free atoms. Dolmatov et al. �31�
studied the impact of the confinement on various atomic fea-
tures, such as the wave functions, energy levels, the filling of
electronic shells, polarizability, photoabsorption and photo-
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ionization, etc. In particular, they studied the phenomenon of
“mirror collapse,” where an electron bound by the Coulom-
bic potential falls into the outer potential well, but, at the
same time, an excited level, having a bound orbital extended
over the outer shell, collapses into the inner Coulombic at-
traction corresponding to the first level. These processes
have been thoroughly studied for the endohedrally confined
hydrogen atom �32�.

We found, at first glance, that these effects were different
in helium than in hydrogen confined systems. We examined
stationary eigenvalues having two electrons in the outer
shell, but it seems that the electrons in these configurations
do not interact in any way with the inner electrons. We ana-
lyzed the evolution of the energy spectra as a function of the
depth of the confining potential, and it was found to exhibit
unusual level crossings. That contradicts the no-level cross-
ing theorem, which states that a pair of energy levels con-
nected by perturbation do not cross as the strength of the
perturbation is varied �33�. The new questionable level or-
dering connote another strange consequence: the change in
the number of nodes of the radial wave functions. It is easily
shown �34� that for any one-dimensional potential the num-
ber of nodes is an adiabatic invariant �i.e., as the potential is
being distorted continuously the number of nodes of any
eigenfunction remains unaltered�. That can not be true if the
energy levels cross each other, as was found in our prelimi-
nary analysis. Therefore, we decided, before presenting the
detailed spectroscopy of the system, that the study of the
dependence of the energy levels on the strength of the con-
fining potential, and effects such as the allowance or prohi-
bition of the crossings and the changes in the number of
nodes of the wave functions deserves particular consider-
ation.

To this end, we developed three different computational
methods in order to calculate accurate wave functions of the
endohedrally confined He atom. Two of the methods are
fully quantal nonperturbative, and account for the complete
electron-electron correlations. The other method is a varia-
tional procedure that allows a fast evaluation of the wave
functions. Significant simplifications allowing us to uncover
rich variety of effects which can occur in confined systems
rather than to make detailed precise predictions for a particu-
lar spectrum. Thus, we introduce a model potential to repre-
sent the fullerene cage. In order to understand the variations
of the spectra of the confined He atom as a function of the
confining potential, we focus first upon the S states. In par-
ticular, due to the fact that our goal at this stage is to obtain
a general qualitative understanding, we have simplified our
calculations and instead of dealing with the real helium
atom, we calculate the spectra of the spherically symmetric
model helium �35,36�, also known as Temkin-Poet or the
S-wave model for He.

Our work is organized as follows. In Sec. II we give a
complete description of our theoretical methods. In Sec. III,
we study the evolution of the energy spectrum as a function
of the depth of the confining cage. Some conclusions are
given in Sec. IV.

II. THEORY

Following the work of Connerade et al. �32�, we model
the endohedral environment by an attractive short-range

spherical shell with potential Vw�r�, given by

Vw�r� = �− U0 � 0, rc � r � rc + � ,

0, otherwise,
� �1�

where rc is the inner radius of the shell and � is the thickness
of the shell. We use the values deduced by Xu et al. �37�,
rc=5.75 a.u. and �=1.89 a.u., which are specific for a C60
fullerene molecule. The value of U0, on the other hand, is
changed from 0 to 10 a.u., in order to explore the general
physics of the system, relevant to other means of confining
the atom �for example, altering the number of carbon atoms
in the fullerene cage�.

The Hamiltonian for a nonrelativistic spherically symmet-
ric model helium, trapped inside a fullerene hollow cage may
be written �in atomic units� as

H�r1
� ,r2

� � = H�r1,r2�

= −
1

2

�2

�r1
2 −

1

2

�2

�r2
2 −

Z

r1
−

Z

r2
+ Vw�r1� + Vw�r2� +

1

r�

,

�2�

where r� denotes the larger of the two radii r1 and r2. This is
the simplest model for two electrons interacting with each
other and with a nucleus via long-range Coulomb forces. In

this model, both electrons r1
� and r2

� are restricted to spherical
states, and all angular correlations are eliminated. Therefore,
the full six-dimensional problem is reduced to a two-radial
dimensional problem and no further distinction between the
total wave functions and the radial wave functions will be
made unless explicitly stated. However, this model retains
most of the other features �and computational difficulties�
associated with the full He calculation. Moreover, the
S-wave model is quite a good approximation to the real he-
lium for the bound 1sns configurations.

A. The relaxation method

In the work presented by Mitnik �38–40�, a complete non-
perturbative solution of the helium atom-in-a-box problem
was presented by developing two numerical techniques. The
first consists of the direct solution by diagonalization of the
Hamiltonian, and the second is based on a constrained relax-
ation of the wave functions. In this work, the same procedure
has been followed, though modifying the calculations to in-
clude the fullerene potential given by Eq. �1�. In this method,
the energies and wave functions are calculated by relaxation
of an initial wave function � in a fictitious imaginary time
�= it. That means a transformation of the time-dependent
Schrödinger equation into a diffusion equation

���r1,r2,��
��

= − H��r1,r2,�� . �3�

The solution of this equation is given by

��r1,r2,�� = e−H���r1,r2,0� . �4�

Expanding the solution in terms of the time-independent
energy-eigenvector basis
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��r1,r2,�� = �
q=1

�

aq	q�r1,r2�e−Eq�

= e−E1��a1	1�r1,r2� + �
q=2

�

aq	q�r1,r2�e−�Eq−E1��	 ,

�5�

where 	1 is the lowest energy eigenvector having the same
symmetry as �, and E1 is its energy. Since �Eq−E1��0, the
net result from this imaginary time propagation is the en-
hancement of those components of the solution with smaller
eigenvalues of H relative to those with larger eigenvalues. At
the limit �→�, �→	1. Thus, after many iterations �renor-
malizing continuously the wave function�, only the lowest
level eigenvalue �i.e., the ground state, or the first metastable
level, according to the parity of the initial function �� sur-
vives from the relaxation. Higher eigenvectors are calculated
by imposing constraints at the iteration of the relaxation
which requires the state to be orthogonal, thus preventing its
collapse to lower levels.

The computer codes which implement this method are
also adapted to run on parallel computers. In this case the
wave functions are partitioned over the many processors in
such a way that the communications between the processors
are minimized and performed at every time step only for the
partitioned domain borders. This parallelization scheme is a
standard procedure for many of the time-dependent close
coupling �TDCC� different works �for example, Refs.
�41,42��.

B. The variational method

Our variational approach is based on the angular corre-
lated configuration interaction method implemented for he-
lium and He-like ions presented in previous work �43,44�.
We first generate the variational one-electron ground state
wave function which are the approximate solution for the
short-range attractive potential representing the endohedral
environment, given in Eq. �1�,


w = e−a�U0��r − r0�2
, �6�

where r0=rc+ �
2 is the position of the center of the potential

well. The parameter a�U0� is obtained by minimizing the
energy of this level, invoking the variational principle. We
calculate the value of these parameters as a function of dif-
ferent potential depths, obtaining a smooth and simple ana-
lytical function. The “well solution” function 
w is combined
with the atomic wave functions forming the following basis
functions:

�1�r1,r2,r12� = �1s�r1��1s�r2��1 +
r12

2
	 , �7�

�2�r1,r2,r12� = ��1s�r1�
w�r2� + 
w�r1��1s�r2���1 +
r12

2
	 ,

�8�

�3�r1,r2,r12� = ��1s�r1�
w�r2� − 
w�r1��1s�r2���1 +
r12

2
	 ,

�9�

�4�r1,r2,r12� = 
w�r1�
w�r2��1 +
r12

2
	 , �10�

where �1s�r� is the solution of the ground state of the hydro-
genic ion with charge Z=2. The basis functions itself are
combined

	n�r1,r2,r12� = �
k

4

ck
n�k�r1,r2,r12� �11�

and, in this way, we can obtain the four lowest-energy solu-
tion of the system. As is well known, the variational coeffi-
cients ck

n from Eq. �11� are obtained, together with the energy
levels En, by solving the generalized eigenvalue problem
�45�

�
i

�Ĥ − EnŜ�ck
n = 0, �12�

where Ĥ is the Hamiltonian matrix

Hij = 
�i�Ĥ�� j� , �13�

and Ŝ is the overlap matrix

Sij = 
�i�� j� . �14�

Here we have used a small number of basis functions
�only four� to study the problem. However, we can a larger
number of basis functions, increasing significantly the accu-
racy of the results �44�. It is important to remark that in the
work performed by Neek-Amal et al. �30�, similar wave
functions have been proposed for the variational calculation.
However, they did not take into account functions such as
our �4 in which both electrons can be trapped inside the
fullerene cage. Therefore, a full family of curves was over-
looked in they discussion of the ground state spectra as a
function of the confining potential strength.

C. The Sturmian method

The main aspects of the Sturmian method employed here
has been published in a previous work �46�. We will give
here just a short introduction to the theoretical procedure
utilized in the present work. We have generated a one-
electron Sturmian basis set Sn which are the solutions of the
equation

−
1

2

d2

dr
+ V0�r� − ��Sn�r� = − nV�r�Sn�r� , �15�

together with the physical boundary conditions

�Sn�r� → 0 r → 0,

Sn�r� � � r → � .
� �16�

In this case, the one-electron energy � is considered as a
fixed parameter and the effective charges n are the eigen-
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values to be determined. This is in contradistinction with the
normal approach to solve the Schrödinger equation where
the charge is fixed, and the energy values are required. The
potential V0�r� is an adequate model potential representing
the central potential wherein the bounded electron moves,
and V�r� is any short range central potential. In our case we
have chosen

V0�r� = −
Z

2r
+ Vw�r� �17�

and

V�r� = −
e−�r

r
, �18�

where Vw�r� is the well potential given in Eq. �1�, represent-
ing the fullerene cage, and � is a free parameter. If the po-
tential V�r� vanishes at distances r�a, the whole set of wave
solutions of Eq. �15� represent an electron of energy � mov-
ing in the outer region of the potential V0. To solve the radial
equations �15�, two approaches were studied. In the first ap-
proach �46�, the functions Sn are expanded in a complete
L2-basis set formed by Laguerre-type functions. This allows
us to write many of the integrals needed to solve the equa-
tions in a simple analytical form. In the second approach
�47�, we solve the radial equations by using a numerical
five-point finite differences method.

The one-electron Sturmian basis set Sn are used, in turns,
to construct a two-electron basis set for the study of two-
electron atomic systems

��
S�r1,r2� = AS

Sn1
�r1�

r1

Sn2
�r2�

r2
, �19�

where the operator AS

ASF�r1,r2� =
1
�2

�F�r1,r2� + �− 1�SF�r2,r1�� �20�

is introduced in order to satisfy the Pauli exclusion principle
according to the spin state being considered.

The basis set elements �� are combined in the form

	S�r1,r2� = �
�

a�
LS��

S�r1,r2� �21�

and the solution of the two-electron Schrödinger equation

H�r1,r2���
S�r1,r2� = E��

S�r1,r2� �22�

is translated into a generalized eigenvalue problem

�V12 − V1 − V2�a = ẼS · a , �23�

where the matrix elements of the different operators are

V�,
12 = 
��

S �
1

r�

��
S� , �24�

V�,
i = 
��

S �ni
V�ri���

S� , �25�

S�, = 
��
S ��

S� , �26�

and the total energy of the level E= Ẽ+�1+�2. Note the ab-
sence of the kinetic and long-range potential parts in Eq.
�23�. This is a consequence of the use of the Sturmian basis,
which cancels these terms analytically �see Refs. �46,47� for
details�.

III. RESULTS

A. Comparison between the different methods

The calculated spectra as a function of the confining po-
tential depth is shown in Fig. 1. The curves correspond to the
first ten levels obtained by using the relaxation method of
calculation. Since the curves corresponding to triplet states
are indistinguishable with the corresponding singlet curves,
we only plotted, in the present figure, the singlet states. In
the inset, a detailed portion of the spectra is shown, and in
this case, the results have been obtained by using the Stur-
mian basis set calculation method.

In principle, the methods outlined in the previous section
are very accurate, and we can obtain, in both nonperturbative
methods, solutions with arbitrary precision. However, our in-
tention in the present work has not been to obtain the best
energies and wave functions. Instead, we are interested in
presenting a complete solution to the problem which could
be used to understand the nature and physical significance of
many-body interactions in confined atomic systems.

Although we are not making a fair comparison among the
three calculation methods, we will outline briefly the compu-
tational sizes and the results given by each of them. The
variational method is very fast and simple and obtains the
most important physical features of the wave functions. In
this particular work, using only four functions for construct-
ing the basis set described in Eq. �11�, an energy value for
the Temkin-Poet helium ground state of E1s2 =−2.804 a.u.
was obtained. A complete discussion of the convergence of
the energy values with different basis set size is given in
Refs. �43,44�, where we show that very good energy values
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FIG. 1. �Color online� Energy levels for the endohedrally con-
fined S-wave helium, for different confining potential depths. Inset:
Energies for the first singlet levels. Label points for further detailed
analysis.
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can be obtained with a few tens of functions in the basis.
For the relaxation method, we have computed first the

ground state of the S-wave model He with different numeri-
cal grids in order to check the sensitivity and convergence of
the calculations. The energy of the 1s2 level, obtained with a
numerical grid having a mesh spacing �r=0.2 is E1s2

=−2.759 a.u., compared with the best value available on the
literature of −2.8790288 a.u. �with other 14 digits that are
not relevant in our comparisons� obtained by Goldman �48�.
It is important to notice that for this numerical lattice, the
one-electron energy of the He+ 1s level is �1s=−1.926 a.u.,
compared to the exact value of −2.000 a.u. For the results
shown in Fig. 1 we have performed a better calculation, with
a mesh size of �r=0.15 a.u., where �1s=−1.9569 a.u., ob-
taining a ground-state energy of E1s2 =−2.809 a.u. Better en-
ergies can be generated by decreasing the mesh step size and
increasing the number of points. Convergence is demon-
strated by using a grid with �r=0.075 a.u., where �1s
=−1.9889 a.u. and E1s2 =−2.861 a.u., and with �r=0.01, in
which �1s=−1.9998 a.u. and E1s2 =−2.8787 a.u.

For the Sturmian method, the different wavefunctions
have been generated by using 65 one-electron Sturmian
functions Sn�r�, which leads to 2145 basis functions
���r1 ,r2� per symmetry S. These basis functions extend until
a range of 80 a.u. Using this function set, we obtained an
energy value of E1s2 =−2.8790294, in excellent agreement
with Goldman’s value. The convergence of the method is
discussed in Ref. �47�, and in this particular case, we can
reach accuracies of �10−8 by using 105 one-electron Stur-
mian functions. Due to the high precision reached with rela-
tively low computational cost, the Sturmian method will be
the calculation method used in the rest of the paper.

B. Avoided crossings and mirror collapses

Roughly speaking, the horizontal lines shown in the pre-
vious figure represent unperturbed binding in the inner
�atomic� well, while the diagonal lines represent binding in
the outer well. The main feature noticeable in the spectra is
that there are only two kinds of asymptotic behavior, and
both are linear. The different slopes of this linear dependence
correspond to one or two electrons confined in the spherical
well of the confining potential �this is also confirmed by the
fact that one slope is exactly twice as steep as the other�. As
the confining potential increases not only do the energy lev-
els change, but the shape of the wave functions are also
drastically modified. That means that any physical process
involving the functions, either in the initial or final state of
the process, will be altered even more dramatically than the
energy level structure.

In the following, we will analyze the behavior of the low-
est level. This level is 1s2 for small values of U0, and its
energy remains E1s=−2.879 a.u., the bounding energy of the
free S-wave He. This is because the extent of the 1s2 radial
wave function is such that it is essentially zero at the inner
radius of the confining potential well. Therefore, for small
U0 it does not “feel” the effects of the outer confining well.
The 1s2s state, on the other hand, has a significant portion of
its amplitude in the region of the confining well and, thus,

one of the electrons very quickly gets bound in this outer
well. The wave function then becomes 1s
1, where 
1 de-
notes the wave functions representing one electron in the
ground state of the square well potential. The energy of this
state decreases as the outer well deepens. With further deep-
ening of the outer well, the 1s
1 state has energy comparable
with the 1s2 state. At this point of degeneracy, a strong in-
teraction between the two states leads to avoided crossing,
clearly seen at a potential well amplitude of U0=1.15 a.u.
The wave functions corresponding to the first three energy
levels are displayed in Fig. 2, together with the curves cor-
responding to the 1s2 1S, 1s
1

1S, and 1s
1
3S energy levels.

As expected, the figure shows that in the 1s2 both electrons
are trapped in the inner �Coulombic� potential, while in the
levels 1s
1 one electron is trapped in the inner potential,
whereas the other is trapped in the outer-fullerene cage.
Among all the crossings studied in the present work, this is
the only one in which the repulsion between the different
configurations, and hence, the avoidance of the crossing, is
clearly noticeable. The figure shows that at a value of the
confining potential U0=1.15 a.u., the lowest level 1s2 begins
to suffer the influence of the outer potential. This is detect-
able as the two protuberances at the tail of the wave function,
having a maximum at a radius that corresponds to the center
of the fullerene potential well. On the other hand, at the same
potential, the wave function corresponding to 1s
1

1S
�higher energy level�, is also perturbed by the lowest energy
level wave function, showing a deep noticeable feature
around the origin. At U0=1.185 the interaction between these
two levels reaches the maximum closeness between them.
The energy of the 1s
1

1S is −2.884 a.u., whereas the energy
of the 1s2 1S is −2.876 a.u. At a slightly deeper potential
U0=1.21 a.u., the characteristic shapes of the wave functions
are inverted. The higher energy level becomes a 1s2 function,
since the amplitude at the origin is much higher than the
amplitude at the outer potential cage. On the other hand, the
probability at the origin for the lowest energy level decreases
drastically, in favor of giving a high probability at the cage
position. The variational calculation allow us to clearly see
what we have described. The coefficients c1

1 and c2
1 in Eq.
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FIG. 2. �Color online� First three wave functions 1s2 1S,
1s
1

1S, and 1s
1
3S for different potential depths, around the first

avoided crossing at U0�1.185 a.u.
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�11�—corresponding to the �1 �two electrons in the �1s� and
�2 �a �1s
1 function� components of the lower level—are
approximately 1 and 0, respectively, for very small values of
U0. They exchange their values being close to 0 and 1, re-
spectively, for U0�1.21 a.u. �the coefficients for the other
functions �3 and �4 are negligible�. The same phenomena,
but in the opposite way, is observed in the values of the
coefficients c1

2 and c2
2, for the first excited level. The diamond

points in the figure represent the energy of the 1s
1
3S level

at the different potential strengths. We only plotted the wave
function for one of the points, since its shape does not
change along the points. The reason for that is the different
symmetry, that forbids the interaction with the singlets.

As a second example, we show in Fig. 3 the avoided
crossing labeled as 2 in Fig. 1, in which the 1s2 level be-
comes degenerate with the 
1

2 1S level. The former level is a
state in which both electrons are trapped at the outer poten-
tial well. As seen in the figure, both energy levels reach the
closest approach at U0=1.748255 a.u., interchanging
smoothly the probabilities of both electrons simultaneously.
This means that below the potential of closest approximation
�U0�1.748250 a.u.�, the higher energy level has both elec-
trons in the outer potential well, whereas the lower has both

electrons around the nucleus. At U0=1.748255 a.u the wave
functions become bimodal, as a result of being shared be-
tween two wells. Hybrid behavior results from dilating the
inner atomic orbitals from their normal positions into a more
external well. Notice that this incomplete orbital collapse is
not a combination of one electron in the inner Coulombic
well and the other in the outer fullerene cage, but the com-
bination of two different states where in each one of them,
both electrons share the same place. The probabilities inter-
change smoothly, and beyond the point shown in the figure
�U0�1.748260 a.u.�, the higher energy level corresponds to
the configuration with two electrons in the nucleus whereas
the lower has the two electrons in the outer part. It is remark-
able the high-energy precision needed in order to show the
avoided characteristic of this crossing. In this case, only by
calculating the energy levels with a resolution better than
10−5 a.u. can we conclude with certainty that the levels do
not cross each other, but form an avoided crossing.

The wave functions for other levels at values of U0
around the avoided crossings labeled as 3 and 4 in Fig. 1 are
shown in the following Figs. 4–7. Figures 4 displays the
avoided crossing number 3, which corresponds to the inter-
section of the 
1

2 1S and 1s3s 1S wave functions. The 1s3s
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depths, around the avoided crossing at U0�1.30765 a.u.
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wave function extends over the potential well, and the
strength of the potential already allows an excited state
bounded inside the well �for the particular well chosen in our
model, having a spatial width of �=1.89 a.u., the successive
bound states appear at a potential depths of U0n= �n
−1�2 / �8�2�2�, for n=1,2 ,3 ,4 , . . ., i.e., at U0
�0,0.35,1.38,3.11,5.53 a.u., respectively�. Therefore, this
is not a pure Coulombic function, but a mixture of the 1s3s
with a 
2. We arrived at this conclusion comparing this wave
function with the pure 1s3s wave function �i.e., for U0=0�.
We found that the pure Coulombic function has a smooth and
moderate transition from the second to the third antinode.
However, the wave function at U0�1.25 produces an abrupt
jump at the position of the external well, suggesting the pres-
ence of an excited bound function. Another reason for specu-
lating that it is not a pure Coulombic state is the fact that the
energy of this level continues to decrease as the potential
depth increases, and that does not happens with higher ex-
cited levels �unless a new bound state is allowed inside the
well�. As shown in the figure, this function intersects
smoothly with the 
1

2, interchanging the positions of two
electrons, from the Coulomb attraction to the external well,
and vice versa. The same 
1

2 interacts with higher 1sns 1S
states, as seen, for example, in Fig. 5, where the avoided
crossing number 4 is illustrated, showing the intersection
with the 1s4s 1S wave function. Again, the same feature ap-
pears here, where the two electrons inside the external well
exchange positions with the electrons at the 1s4s function. In
order to see this transition as an avoided crossing, it is nec-
essary to calculate the energy levels with a resolution better
than 10−4 a.u.

A more interesting avoided crossings are shown at Figs. 6
and 7. In the first case, the 1s
1

1S wave function �which, at
this potential well strength becomes the first excited level�,
interacts with the 
1
2

1S state, in which two electrons are in
the outer potential well, one in the lower energy state, but the
other in the first excited state of the well. In this physical
process the probabilities of different wave functions are once
more exchanged, as in the previous cases, but now the state
created inside the fullerene cage is an excited state. There-
fore, the protuberance appearing at the center of the region

plotted has both positive and negative antinodes. The

1
2

3S wave function, on the other hand, does not interact
with any of the functions plotted here �since it has a different
symmetry�, but it does with the 1s
1

3S wave function, and
therefore, they also change their shape along the curves. The
energies of the 1s
1

3S are very similar to the energies of the
1s
1

1S, since the repulsion of both electrons �confined in
different spacial regions� is roughly the same. However,
there are differences between the singlet and triplet levels,
for the 
1
2 wave functions. For this case, the energy of the
triplet levels are smaller than the singlet energies, due to the
larger mean values of the electronic distances for antisym-
metric spatial wave functions. That is illustrated in Fig. 7,
where crossing number 5 is shown for the triplet states. The
energy of the avoided crossing is very similar to the one in
the singlet case, but it occurs at a slightly lower well poten-
tial �and at higher energies of the involved levels�.

After analyzing the shape of the wave functions and the
characteristics of the avoided crossings, we investigated
whether the reordering of the energy levels changed the
number of nodes of the wave functions. If one follows the
same kind of wave function along the energy vs potential
cage strength curves �for example, looking at the 1s2-like
function�, their energy order changes at every avoided cross-
ing. That should produce a change in the node number, keep-
ing the required orthogonality of the solutions. On the other
hand, following the same energy curve �instead of the same
kind of function�, implies an adiabatic change of an external
parameter, therefore, the number of nodes should be invari-
ant. In order to produce a quantitative analysis of these
changes, we need first to define a way to count the number of
nodes. The radial wave functions are two-dimensional func-
tions, so it is necessary to count nodal surfaces, rather than
node numbers. This is illustrated in the contour plots of Fig.
8, where the 1s2 wave function is plotted for different poten-
tial depths. First the wave function is plotted before the first
avoided crossing �U0=1.16 a.u.�. At this potential strength,
1s2 is the ground level, therefore this is a nodeless wave
function �only one nodal surface�. The middle plot shows the
1s2 wave function at a potential just above the first avoided
crossing �U0=1.21 a.u.�, where, as is shown in Fig. 2, the 1s2

function becomes the first excited level, having energy val-
ues higher than the new ground level 1s
1. A nodal curve
appears, dividing the wave into two nodal surfaces. The last
plot shows the 1s2 wave function at a potential just above the
second avoided crossing �U0=1.74826 a.u.�. At this poten-
tial, the 
1

2 function is the first excited state �see Fig. 3�,
therefore, we expect some changes in the number of nodes of
the 1s2 function, which becomes the second excited level.
Indeed, as shown in Fig. 8, the 1s2 wave function now has
three nodal surfaces, separated by the two nodal curves. Very
tiny negative antinodes develop at each of the two new nodal
surfaces. Thus, we have found a valid method for identify the
level order, consisting of counting the different nodal sur-
faces. That will give a signature to identify the energy order
of any stationary eigenfunction.

C. Information entropies

The avoided crossing phenomena is a mechanism for the
state energy reordering, manifested by the energy level re-
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pulsion: neighboring energy levels with the same symmetry
do not cross each other, but rather come close and repel each
other in an avoided crossing. An additional indicator of the
external effects resides in the informational character. The
states involved in the avoided crossings exchange their infor-
mational character. Therefore, it should be possible to esti-
mate in a precise quantitative way the character exchange.

The Shannon information entropy of one-normalized elec-
tron density ��r�� in the coordinate space �49� is defined as

S� = −� ��r��ln ��r��dr� . �27�

This quantity is an information measure of the spatial delo-
calization of the electronic cloud. So, it gives the uncertainty
of the localization of the electron. The lower this quantity,
the more concentrated the wave function of the state, the
smaller the uncertainty, and the higher the accuracy in pre-
dicting the localization of the electron. The variation of the
Shannon entropy of states with an external potential strength
may lead to gaining a deeper physical insight into the dy-
namics of the system through the avoided crossing region
�50�.

The existence of avoided crossings between states in the
presence of the fullerene potential is manifest in the Shan-
non’s entropy, as shown in Fig. 9�a�. This figure displays the
value of S� along the different values of the external potential
well, around the first avoided crossing, between the 1s2 and
the 1s
1 wave functions. At the critical value of the confine-
ment potential �U0=1.1073 a.u.�, a sudden change in both
states occurs, provoking a drastic confinement of the electron
cloud in one function, and the opposite in the other. An in-
formational exchange between the states, which includes the
exchange of the spatial localization or information-theoretic
properties of the electron in going through this region, mani-
fest in the abrupt changes in Shannon’s entropies. The levels
practically exchange their localization properties, as seen in
the S� values at any extreme of the curves.

A quantity related to the Shannon entropy, that also char-
acterized the spreading of the wave function is the Shannon
entropy power

J� =
1

2�e
e�2/3�S�. �28�

The changes in this quantity are shown in Fig. 9�b�, having a
behavior very similar to the Shannon entropy. However, the
changes in J� for these wave functions are of the order of 4,
much higher than the changes in S�. Therefore, it provides a
more sensitive tool to characterize the information exchange.

The atomic avoided crossings can also be identified and
characterized by means of another type of entropy informa-
tion, the Fisher’s information �51�. This provides another
way to quantify the concentration of the probability density
distribution of an electronic state ��r��

I� =� ����r���2

��r��
dr� = 4� ���1/2�r���2dr� . �29�

This information measures the spatial distribution of the
quantum-mechanical probability cloud of a state in a manner
qualitatively different but complementary to Shannon’s en-

(b)(a) (c)

FIG. 8. Nodal surfaces for the 1s2 wave function, for different potential depths, around the successive avoided crossing at U0=1.16,
U0=1.21, and U0=1.7482 a.u.
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around the first avoided crossing at U0=1.15 a.u. �a� Shannon in-
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tropy. Both quantities characterize the information-theoretic
content of the probability density describing a given physical
state. Moreover, both can measure the disorder of the system
at that state, i.e., the degree of smoothness of the probability
density. However, the analytical properties of the two infor-
mation quantities are quite different. The Shannon entropy is
a logarithmic functional of the density, so that it is a global
measure of disorder. The Fisher information is a gradient
functional of the density, so it has a property of locality
because it is sensitive to local rearrangements. Changes of I�

along the avoided crossing 1 are shown in Fig. 9�c�. In this
case, the higher �lower� energy level increases �decreases�
the entropy as it passes across the avoided crossing. The
Fisher information is also an information-theoretic measure
of the spatial concentration of the electronic cloud. The
higher this quantity, the more localized the state wave func-
tion, the smaller the uncertainty and the higher the accuracy
in predicting the localization of the electron. Therefore, we
can say that Shannon’s entropy measures the spreading of the
cloud and Fisher’s entropy measures its concentration. The
Shannon logarithmic functional best takes into account the
tails of the probability distribution, while the Fisher gradient
functional is more sensitive to local variations of the position
of the electron.

An additional quantity, the Fisher-Shannon information
product, defined as

P� =
1

3
J�I� �30�

was used as a tool for analyzing the electron correlation in an
atomic system �52�. The changes in these entropy values
along the first avoided crossing is shown in Fig. 9�d�. At first
sight it seems the same kind of behavior as the other entro-
pies, but in this case the changes of P� values are of the order
of six. We found the information product the most sensitive
tool to characterize the crossings, in all the cases studied in
this work.

IV. CONCLUSIONS

The general behavior of an He atom confined in a variable
fullerene cage has been analyzed. We have developed three
different computational methods in order to solve the
Schrödinger equation for an endohedrally confined He atom.
Two of these methods are nonperturbative and provide very
reliable solutions. The other is a very fast and simple varia-
tional approach, which gives the main physical features of
the system. We used a potential model to account for the
variation in the cage �for example, the number of carbon
atoms in the fullerene�, which allows one to understand the
main physical effects of the external confinement in the
atom. Avoided crossings are one of the most distinctive
atomic spectroscopic features in the presence of an external
parameter that is adiabatically changed. This is a conse-
quence of the Von Neumann-Wigner noncrossing rule �53�.
The influence of the external parameter variation �in our case
the change in the potential strength of the external confine-
ment cavity� is primarily reflected in the repulsion of the
states. In this work we showed how the confinement poten-
tial strength affects in different amounts the atomic levels of
the confined atom. Around the regions denoted as crossings,
it seems that the variation in the potential produces degen-
eracies in energy, indicating that the levels can cross each to
the other. A detailed analysis that requires a very high degree
of precision shows that the energy levels do not cross each
other, but rather come close and repel each other yielding to
an avoided crossing. We analyzed the behavior of the
avoided crossing levels by using different information entro-
pies, providing an efficient tool to estimate in a physically
transparent manner the atomic transitions caused by a slowly
varying perturbation.
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