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Abstract
The double ionization of helium by high energy electron impact is studied. The corresponding
four-body Schrödinger equation is transformed into a set of driven equations containing
successive orders in the projectile–target interaction. The first order driven equation is solved
with a generalized Sturmian functions approach. The transition amplitude, extracted from the
asymptotic limit of the first order solution, is equivalent to the familiar first Born approximation.
Fivefold differential cross sections are calculated for (e, 3e) processes within the high incident
energy and small momentum transfer regimes. The results are compared with other numerical
methods, and with the only absolute experimental data available. Our cross sections agree in
shape and magnitude with those of the convergent close coupling method for the (10+10) eV and
(4+4) eV emission energies. To date this had not been achieved by any two different numerical
schemes when solving the three–body continuum problem for the fast projectile (e, 3e) process.
Though agreement with the experimental data, in particular with respect to the magnitude, is not
achieved, our findings partly clarify a long standing puzzle.

Keywords: helium, double ionization, first born, fully differential cross section

(Some figures may appear in colour only in the online journal)

1. Introduction

The understanding of the quantum dynamics of few-body
problems is a matter of considerable importance. On one side,
from its fundamental point of view, and, on the other, from
the point of view of the applications it may have (see, e.g., [1–
3]). It has been said in the literature that the three-body
quantum mechanical scattering problem has been numerically
solved, proofs being given by the study of the hydrogen
ionization by electron impact [4, 5] and the double photo–
ionization of helium [6–8]. Time-independent methods such

as the exterior complex scaling, the convergent close coupling
(CCC) and the J-matrix have been able to successfully
describe the aforementioned processes (see the review paper
[9]). A serious challenge to this affirmation comes from the
analysis of the double ionization of Helium by high energy
electron impact. For high projectile energies, this four-body
scattering process can be reduced to a three-body one [10]. In
[11] it was shown that the first Born approximation for the
transition amplitude is equivalent to solving a driven equation
satisfied by the scattering part of the wave function, the latter
describing the dynamics of the ionization process. As
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discussed in [12] (and in the introduction of [11] with updated
references), the J-Matrix [13–15], CCC [16] and wavepacket
evolution [17] methods have been applied to the description
of the (e, 3e) (electron impact double ionization) process on
helium, and no agreement is found between them. On top of
that, none of them globally agrees with the absolute experi-
mental data [16, 18]. The fact that three ab initio methods do
not agree is quite remarkable, since they are solving essen-
tially the same mathematical problem. We wonder why this
occurs and that encourages us to study this problem carefully.

In this contribution, we continue with the studies initiated
in [11] and [19] by obtaining and analyzing the full solution
to the three-body scattering problem that results from the high
energy (e, 3e) process on helium. The generalized Sturmian
functions (GSF) approach [20] is used to numerically evaluate
the solution. From it, fully differential cross sections are
extracted, and compared with those obtained experimentally
and by other theoretical methods, in particular the CCC and J-
Matrix.

In a previous publication [11] we transformed the four-
body Schrödinger equation into a system of coupled non-
homogeneous equations where the left-hand-side includes a
simplified Hamiltonian including the three-body helium
interactions plus a free particle (projectile) kinetic term. All
the interactions (coupling) between the projectile and the
helium target were included in the driven term of each of the
system equations. In [11] we formulated the general problem,
but we provided GSF results only for a S-wave model. In
[21], we presented preliminary results for scattering solutions
with non-zero angular momenta, demonstrating the numerical
convergence of the GSF approach; only single differential
cross sections were shown. In this contribution we continue
with these investigations. We present GSF calculations for the
full three-body solution describing the (e, 3e) process on
helium by impact of high energy electrons. Details on the
wave function construction are provided. In addition, and
with the aim of testing the procedure, we deliberately extract
the ionization amplitude—and thus the cross sections—from
the scattering wave function itself. This is possible because,
as we will show, the solution of the driven equation builds the
correct hyperspherical wave front not only for the S-wave, as
shown in previous publications, but also for all other partial
waves.

The paper is organized as follows. In section 2 we pre-
sent the theory on which our fast-projectile formulation of the
problem is based upon. Formulae and details of how the
resulting equation is solved, and how the collision informa-
tion is extracted, are provided in section 3. Section 4 presents
the results obtained with the GSF method for both kinematic
conditions considered in the Orsay experiment of 1999
[16, 18], namely, (10+10) eV and (4+4) eV emission ener-
gies; for several geometries qualitative and quantitative
comparison is made with the J-Matrix and CCC results.

Atomic units ( = = = e m 1e ) are assumed throughout,
unless stated otherwise.

2. General theory

The Hamiltonian for three electrons and an infinite mass
helium nucleus of charge Z = 2 is given by

  = − − −

− − − + + +

H

Z

r

Z

r

Z

r r r r
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where particle 1 labels the electron projectile, while particles
2 and 3 are the target electrons. We also define the operators
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where hHe is the three-body helium Hamiltonian (subsystem
(2, 3)), while hp is the free-particle kinetic term associated to
the projectile (subsystem 1). With these definitions, we
decompose the four-body Hamiltonian as follows:

= +H H W̄ . (3)0

where

= +H h h a, (4 )p0 He

= − + +W
Z

r r r
b¯ 1 1

. (4 )
1 12 13

The Hamiltonian H0 includes all the interactions of the sub-
system (2, 3) through hHe. The two subsystems are coupled
through the interaction W̄ .

For a four-body problem as the (e, 3e) process we need to
find a scattering solution, with outgoing (+) type-behavior, of
the four-body Schödinger equation

Ψ+ − =+H W E r r r¯ ( , , ) 0, (5)0 1 2 3⎡⎣ ⎤⎦
where E is the total energy. As shown in [11], the Schödinger
equation (5) can be transformed into a system of coupled
differential equations if the solution is proposed as:

∑Ψ Ψ=+ +r r r r r r( , , ) ( , , ), (6)
n

n
1 2 3

( )
1 2 3

where each order contains n interactions W̄ between the
projectile and the target. In particular, the equations corre-
sponding to the zero and first order read:

Ψ− =+[ ]H E ar r r( , , ) 0, (7 )0
(0)

1 2 3

Ψ Ψ− = −+ +[ ]H E W br r r r r r( , , ) ¯ ( , , ), (7 )0
(1)

1 2 3
(0)

1 2 3

Clearly, the solution corresponding to the zeroth-order
equation (7a), Ψ + r r r( , , )(0)

1 2 3 , is separable in the two particle
subsystems (2, 3) and 1 (see equation (4a)) and reads

Ψ
π

Φ=+ r r r r r( , , )
1

(2 )
e ( , ). (8)i

k r(0)
1 2 3 3 2

i ·
2 3

i 1

Here Φ r r( , )i 2 3 represents the ground state of the helium

2

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 055204 M J Ambrosio et al



atom; the incident projectile is represented by a plane wave of
momentum ki.

The first order solution, which satisfies equation (7b), can
be written as [11]:

∫Ψ
π

Φ=+ + ( )r r r k k r r( , , )
1

(2 )
d e , , , (9)sc

k r(1)
1 2 3 3 2

i ·
2 3

1

where the label sc stands for scattering. Let Ea be the energy
of two electrons in interaction with the nucleus in the final
state, and k2/2 the energy associated to the projectile: the total
energy of the system is then = +E k E2 a

2 . Replacing the
proposal (9) in equation (7b), and taking into account that

=h ke ( 2)ep
k r k ri · 2 i ·1 1, we have

∫
π

Φ

π
Φ

−

= −

+[ ] ( )h E

W

k k r r

r r

1
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1

where the integration limits are restricted by energy con-
servation. Projecting by the left with a plane wave

π
e k r1

(2 )
i ·f

3 2
1

with momentum k f , i.e., selecting =k k f as the momentum
of the scattered projectile in the final channel, we find

Φ
π

π
Φ

−

= − − + +

+
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[ ]h E
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where = −q k ki f is the momentum transfer vector. As we
can see from this equation, the four-body problem was
reduced to a pure three-body one describing the dynamics of
the two ejected electrons in the presence of the heavy nucleus.
The driven equation (11) has been presented only in [11, 19].

We showed in [11] that the formal solution

∫Φ

Φ

= ′ ′ ′ ′
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( ) ( )
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of equation (11) leads to the first Born approximation for the
transition amplitude. We use here

= − + +π
π ( )W Zr r( , ) e efi q

q r q r
2 3

4 1

(2 )
i · i ·

2 3
2 3 and take the three-

body Coulomb Green function ′ ′+ ( )G r r r r, , ,a 2 3 2 3 whose
behaviour in the Ω0 region reads

π κ
ρ

Ψ
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where ρ = +r r( )2
2

3
2 1 2 is the hyperradius, κ = E(2 )1 2, σ0 is a

Coulomb phase, and λ0 is a Sommerfeld parameter [22];
= κ

ρ
k r˜

j j (j = 2, 3) are the coordinate-dependent momenta

defined originally in [23] and more explicitly in [22]. The
function Ψ − r r( , )k k˜ , ˜ 2 32 3

is an asymptotic continuum solution
accounting for the interactions of the target electrons with
their parent helium nucleus. In equation (13) we modified the
definition given by Kadyrov and co-workers to be in accor-
dance with the normalization we used for the plane wave

incident-scattered electron. Replacing now (13) into (12) we
obtain the following asymptotic behaviour

Φ π κ
ρ

⟶
ρ

κρ λ κρ σ
+
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e
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The transition amplitude Tk k˜ , ˜2 3 can also be written as:

π
π
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An important observation is to be made regarding the T-
matrix. While the analysis of its magnitude with varying
ejection momenta k k,2 3, presented in [10, 18, 24] is per-
formed directly through the matrix expression (15), in our
work the same information is extracted directly from the wave
function, i.e., from equation (14): the same operator
− + +( )Z e eq r q ri · i ·2 3 appearing in equation (15) participates
on the right-hand-side (RHS) of equation (11). Consequently,
a particular emission geometry is directly stimulated or sup-
pressed in our wave function via the RHS, and the kinema-
tical analysis of [10, 18, 24] applies similarly in our
formulation too.

3. The driven equation and the GSF methodology

The driven term of equation (11) regulates the behavior of the
three-body scattering wave function Φ+ q r r( , , )sc 2 3 mainly at
short distances because of the limited range of the bound state
Φ r r( , )i 2 3 . We use the generalized Sturmian functions (GSF)
methodology (see review [20]) to calculate both functions
appearing in (11). Non-correlated, three-body basis sets are
constructed as products of two-body GSF. These ones satisfy
the following homogeneous second-order differential
equation:


β

− + + + −

= −
r

l l

r
r E S r

r S r

1

2

d

d

( 1)

2
( ) ( )

( ) ( ), (16)

s nl

nl nl

2

2 2

⎡
⎣⎢

⎤
⎦⎥

where the basis energy Es is an externally fixed parameter and
βnl the eigenvalues for a given angular momentum l. The r-
dependent functions  r( ) and  r( ) are respectively called
auxiliary and generating potentials. The former has the pur-
pose of incorporating the physics of the specific problem into
the basis set. The latter,  r( ), shapes the basis set localizing
its oscillations in any region of interest, and is usually of short
range to ensure all elements possess the same asymptotic
behaviour dictated by  r( ) and Es. With a positive energy Es

one obtains GSF sets suitable for describing systems
encompassing the continuum, while a negative choice of Es

generates a basis with decaying exponential behaviour, suited
for bound systems. For both, the Φ+ q r r( , , )sc 2 3 and Φ r r( , )i 2 3
calculations, we choose auxiliary potentials equal to the
helium two-body Coulomb interaction − Z

r
, in order to remove

two terms in the four-body Hamiltonian. On the other hand,
GSF asymptotic conditions and generating potentials are
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chosen differenty for Φ+ q r r( , , )sc 2 3 and Φ r r( , )i 2 3 , as will be
clear in the next paragraphs. For details on the numerical
basis generation we refer the reader to [20, 25] and references
therein.

We describe the helium ground state appearing in the
RHS of equation (11) through an expansion in terms of bound
type GSF:

∑ ∑Φ ϕ Θ= ν νr r r r( , ) ( , ), (17)i

l l n n

b b b b
2 3

, ,

( , ) ( , )
2 3

2 3 2 3

where the three–body basis elements Θν r r( , )b b( , )
2 3 are con-

structed as follows:

Θ =ν ( )
S r

r

S r

r
r r r r( , ) ^ , ^

( ) ( )
. (18)b b

l l
LM n l

b
n l

b
( , )

2 3 2 3

( )
2

2

( )
3

3
2 3

2 2 3 3

For compactness, we use the ν index to denote the whole set
of indices L M l l n n{ , , , , , }2 3 2 3 . Note that the helium ground
state corresponds to the case = =L M 0. Label (b) denotes
the bound character of the basis, and labels 2 and 3 refer to
the two target electrons. In this work the generating potential
for the S r( )n l

b( )
22 2

and S r( )n l
b( )

33 3
sets is taken as a Yukawa type,

in the same spirit as in previous bound states studies [20]. We
include partial waves up to l2 = l3 = 2 and l2 = l3 = 4, giving
energies of −2.90277 a.u. and −2.903343 a.u.; we deemed this
to be sufficient as we have noticed that the addition of two
partial waves did not affect importantly the calculated ioni-
zation cross sections. As will be presented in section 4, sur-
prising results appear when using a much simplified
description of the target bound state: only for this specific
purpose we have also considered a GSF construction of a
Temkin–Poet model of helium with a binding energy of
−2.8790 a.u.

For the scattering solution, also proposed as an expansion
in GSF set, the outgoing type behavior at large values of the
coordinates r2 and r3 is enforced via the basis:

∑ ∑ ∑Φ ϕ Θ= ν ν
+

′ ′ ′ ′ ′ ′
′ ′q r r r r( , , ) ( , ), (19)sc

L M l l n n

c c c c
2 3

, , ,

( , ) ( , )
2 3

2 3 2 3

with

Θ =ν′ ′ ′
′ ′ ′ ′( )

S r

r

S r

r
r r r r( , ) ^ , ^
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. (20)c c

l l
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c
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c
( , )
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2
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3
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The index ν′ denotes ′ ′ ′ ′ ′ ′L M l l n n{ , , , , , }2 3 2 3 , and the (c) label
denotes the continuum. The ′ ′S r( )n l

c( )
22 2

and ′ ′S r( )n l
c( )

33 3
are two–

body GSF with outgoing behavior at large distances obtained
from equation (16) using a square well type generating
potential  r( )c( ) , and their energy Es

c( ) is fixed to match the
total available for the two emitted electrons, Ea (see [19]).

A projection onto every basis element (20) transforms
differential equation (11) into algebraic linear systems for the
coefficients ϕν

c c( , ) , which are neatly put together as the ele-

ments of a vector ϕ c c( , ):

ϕ φ− − =( )E EH S2 . (21)a s
c c c( ) ( , )⎡⎣ ⎤⎦

Vector φ consists of the projection of the RHS of (11) onto
each continuum basis element (see equation (20)). Its

components, φν″ , are given by:

∫φ Θ π

Φ

=

− −

ν ν″ ″

( )
q

Z

r r r r

r r

d d ( , )
4

e e ( , ), (22)

c c

i
q r q·r

2 3
( , )

2 3 2

i · i
2 3

2 3

while the matrix elements for H and S read:





∫ Θ β

β Θ
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− +

ν ν ν

ν
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′

r

r
r

a

H r r r r

r r
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1
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c

n l
c c c

, 2 3
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2 3
( )

2

( )
3

23

( , )
2 3

2 2

3 3

⎡⎣
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⎦⎥

∫ Θ Θ=ν ν ν ν″ ′ ″ ′ bS r r r r r rd d ( , ) ( , ). (23 )c c c c
, 2 3

( , )
2 3

( , )
2 3

Problem (11) is separable in eigenstates of the total angular
momentum of electrons 2 and 3, and thus equation (21) is
solved separately for each set of numbers ′ ′{ }L M, .

Using the GSF tools we have solved equation (11) for
energies corresponding to the Orsay experiment: the projectile
has an incident energy of 5599 (5587) eV and each ejected
electron has 10 (4) eV. The ionized electrons are detected in
the plane determined by the incident and final momenta of the
projectile, configuration known as in-plane. Projectiles scat-
tered at a small angle are measured in that experiment:
θ = °0.45s . This leads to a small momentum transfer of
0.24 a.u. in the (10+10) eV case and 0.22 a.u. in the (4+4) eV
case, angled respectively at 319◦ and 315◦ from the incident
direction.

In figure 1 we show the real part of the scattering func-
tion for two partial waves in the (10+10) eV case. One clearly
observes hyperspherical wave fronts (i.e., in the hyperradius

ρ = +r r2
2

3
2 ) as those described in equation (127) of [26].

Since the hyperspherical behaviour is not explicitly contained
in the three-body GSF basis elements (equation (20)), the
presence of those fronts proves that the electron–electron
correlation is being correctly included in our calculations
through the combination (19). Because of the presence of the
helium bound state, the RHS of equation (11) is already
numerically negligible for r2 and r3 values larger than 15 a.u.
This means that, outside this small domain, all the effort done
by the GSF basis is concentrated in expanding the electron–
electron correlation and building the three-body Coulomb
wave function corresponding to partial waves indexed by
quantum numbers ′ ′ ′ ′{ }L M l l, , ,2 3 .

In section 2 we showed that the transition amplitude (15)
for the ionization process can be extracted from the asymp-
totic behavior of the wave function. We worked with a partial
wave expansion, and within such scheme, the hyperspherical
wave fronts with Peterkop asymptotic conditions should be
present on each partial wave, as studied by Kadyrov and
collaborators [26]. In that reference, a quite intrincate
expression for each asymptotic component is derived. Our
solution numerically builds the correct behavior to be
expected for the partial wave terms as illustrated in figure 1.
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In the following section, we will present and analyze our
resulting fivefold differential cross sections (FDCS):

σ
Ω Ω Ω

π=
E E

k k k

k
T a

d

d d d d d
(2 ) (24 )

f

f

i
k k

5

2 3 2 3

4 2 3
˜ , ˜

2
2 3

π
κ

ρ Φ=
ρ→∞

+k k k

k
bq r r(2 ) lim ( , , ) , (24 )

f

i
sc

3 2 3

3
5

2 3
2

where the second equality derives from equation (14). What
we actually do is to evaluate the scattering wave function at a
finite, but sufficiently large, hyperradius ρ. It is important to
stress that the wavefunction contains the information of all the
energetically viable fragmentation channels. Throughout this
work we study equal energy sharing, and therefore extract the
transition matrix from α π= 4.

4. Results

Our calculated FDCS are now presented for both kinematical
sets ((10+10) eV and (4+4) eV) and compared with the Orsay
absolute experimental data [16]. When possible, comparison
is also made with two other ab initio calculations: the CCC
([16, 27]) and J-Matrix ([28], based on the same methods as
[13, 14]). For all FDCS plots, the ejection angles are mea-
sured in degrees with respect to the projectile incident
direction.

An important part of the numerical implementation is the
convergence of the results with respect to the partial waves L′

for the continuum solution. Knyr et al [14] found that it was
sufficient to include up to ′ =L 2. We performed a test that
confirmed their assertion: it consisted in comparing the
magnitudes of the expansion coefficients ϕν′

c c( , ) resulting from
calculations with ′ =L 0, 1, 2, 3 and 4. After L′ = 2 there is a
drop off of two orders of magnitude in both the average and
largest ϕν′

c c( , ) for the given partial wave. Therefore, it can be
considered as safe to work with total angular momentum up
to 2, at least for the small momentum transfer regime under
scrutiny.

We have performed calculations on different spatial
domains ranging from 30 × 30 a.u. to 70 × 70 a.u. and always
observed hyperspherical fronts as those shown in figure 1.
The FDCS presented in this section were extracted from the
scattering wavefunction at ρ = 65 a.u. (70 × 70 a.u. calcu-
lation) with a 10% relative confidence band for the extracted
cross sections. The incidence of the ρ value has been dis-
cussed in [29], where we report no important difference
between an extraction at ρ = 48 a.u. and ρ = 68 a.u.

4.1. (10+10) eV kinematics

We first provide, in figure 2, our GSF results generated with
the Temkin–Poet model of the helium target. A good agree-
ment in shape and magnitude with the experimental FDCS is
observed, in particular in frames (b), (c) and (e). We stress
that no renormalization whatsoever is needed here. A similar
agreement (in both shape and magnitude) was reported in [30]
by using simplified bound and continuum three-body wave
functions. Under the light of further investigation [31, 32] this
was shown to be fortuituous. Theoretical results arising from
simplified models (with, for example, good asymptotic
behaviour) may work, but a quantitative agreement with
experiments is likely to be due to plain luck.

We now turn (and for the rest of the presentation) to the
more advanced helium ground state expansion, including
additional partial waves resulting in a bound energy of
−2.90277 a.u. and -2.90334 a.u. In figures 3–7 we display the
FDCS plots corresponding to the experimental geometries
presented in [16]. Comparison is established with the J-Matrix
theory for all cases, and with the CCC when available. The-
oretical results are upscaled by multiplicative factors as
indicated in the captions. The introduction of more inter-
electronic correlation in the target bound state, makes our
FDCS depart, in magnitude, from its agreement with the
experimental counterpart, but reach a good proximity with
that of the CCC theory. No critical variation was observed in
the FDCS upon the addition of two helium target partial
waves (i.e., from = ⩽l l 22 3 to = ⩽l l 42 3 ). This indicates
that at least for the present energy and momentum transfer
regimes, the helium ground state does not require higher

Figure 1. Sample partial waves (real part) of our calculations of the (e, 3e) process on helium with the GSF method in the (10+10) eV
kinematics reported in [16], as functions or r r,2 3. (a) Partial wave corresponding to ′ =L 1, ′ =l 02 , ′ =l 13 . (b) Partial wave corresponding to

′ =L 1, ′ =l 12 , ′ =l 23 .
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precision. Thus, a better agreement with the experiments is
not to be expected by further improving the description of the
target. For first Born order calculations, there is a symmetry to
be expected in the FDCS when one of the electrons is emitted
parallel or antiparallel to q: this is indeed the case as seen,
respectively, in figures 5(i) and 7(s).

A further comparison is made with the CCC method in
contour plots of the FDCS as a function of the ejection angles
of both electrons, θ2 and θ3 (figure 8). It is worth mentioning
that both methods present a similar minima structure, which is
inherited from the small q regime. The peaks (recoil and
binary) are slightly wider in the GSF case, but the magnitude
is essentially the same, as is the physics contained in the
results. It also can be asserted that the electron ejection
velocities are predominantly orthogonal to each other. This
seems to describe a classical collision between equal mass

particles, one of them having initially a much smaller velo-
city. Any first order treatment considers a single collision of
the projectile with strictly one particle of the target. Subse-
quently, the three interacting bodies redistribute the energy
and momentum; this is modelled to all orders in our ab initio
calculation. With that informaton we can establish which of
the collision processes listed in the review by Berakdar et al
[10] play a major role in this regime. The three processes
pictorially represented in figure 9 imply a single collision
between the two Helium electrons, right after one of them
took the momentum transferred from the projectile. The
subsequent impact renders both target electrons with nearly
orthogonal velocities. Process (a) is commonly named Two–
Step–1. Processes (b) and (c) correspond to one additional
order in the multiple scattering scheme of [10] due to an extra

Figure 2. FDCS under the (10+10) eV kinematics as a function of ejection angle θ3, with fixed angle at θ2: (a) θ = °272 , (b) θ = °692 , (c)
θ = °1112 , (d) θ = °1392 , (e) θ = °2912 , (f) θ = °3192 . The circles correspond to experimental data with error bars from [16]. Solid line: our
GSF result, without renormalization, obtained with a Temkin–Poet helium ground state.
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Figure 3. FDCS for the (10+10) eV kinematic condition plotted for ejection angle θ3, with fixed θ2 at: (a) θ = °272 , (b) θ = °412 , (c)
θ = °55 ,2 (d) θ = °692 . GSF upscaled by a factor 2.2 (helium ground state up to = =l l 22 3 : orange line with triangles ; helium ground state
up to = =l l 42 3 : black continuous line); CCC [8] upscaled also by 2.2 (where available, red dashed line); J-Matrix ([28], based on the
methods presented in [14]) upscaled by 1.2 (green continuous line with squares). Experimental data is from [16] (blue dots with error bars).

Figure 4. Same as figure 3, but for fixed ejection angles θ2: (e) θ = °832 , (f) θ = °972 , (g) θ = °1112 , (h) θ = °1252 .
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impact. Their contribution is expected to be somewhat
smaller, yet naturally contained in our First Born calculation.

In figure 10 we present a zoomed-in version of figure 8
where the scale has been set to reach its maximum at 0.0003
a.u., with the purpose of observing phenomena that would be

shadowed by comparison with the main structures, namely
the recoil (R) and binary (B) peaks. The red circles denote the
condition where there is a minimum momentum transfer to
the ion, approaching the Bethe sphere behaviour [18, 24].
Figure 11 supplements this argument, showing the magnitude

Figure 5. Same as figure 3, but for fixed ejection angles θ2: (i) θ = °1392 , (j) θ = °1532 , (k) θ = °2072 , (l) θ = °2212 .

Figure 6. Same as figure 3, but for fixed ejection angles θ2: (m) θ = °2352 , (n) θ = °2492 , (o) θ = °2632 , (p) θ = °2772 .
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of the momentum transferred to the resulting He++ ion for
different θ2 and θ3. The Bethe sphere is reached when the
ejected electrons emerge in roughly back-to-back configura-
tion. This, in turn, is strongly suppressed under the dipolar
regime, and the two phenomena compete with each other, the
result being the little humps observed in figures 5(i) and 7(s).

Figure 10 also shows the minimal FDCS lines which
would correspond to strict zeros in the photoionization limit
(i.e., →q 0) of this problem. The (red) squares denote the
minima to be expected due to both electrons being emitted
with momenta verifying = =k q k q· 0 ·2 3 . Within the in-
plane geometry those minima are coincident with the minima
due to back–to–back emission ( = −k k2 3), colinear emission
( =k k2 3) and with + =( )k k q· 02 3 , configurations ana-
lyzed in detail by Lahmam–Bennani et al in [18].

4.2. (4+4) eV kinematics

The agreement between the GSF and the CCC theories is
even more remarkable under this kinematic condition. We
show in figure 12 the comparison between these theories, both
rescaled up by a factor of 14 to match the experimental data.
We present in figure 12 FDCS for two key θ2 configurations,
namely, at right angles with q (θ = °452 and θ = °2252 ). The
parallel and antiparallel configurations have already been
shown to present agreement with the CCC in [29]. Both
panels in figure 12 show a slight difference in the height of
the peaks is observed between GSF and CCC calculations.
The GSF results seem to be more physically plausible: the
recoil and binary structures need not be of equal height, since
the parallel and antiparallel directions are not physically
equivalent [33].

In figures 13 and 14 the interest is shifted towards the
comparison of both theoretical ab initio schemes: the GSF
and the CCC show remarkable agreement between them, both
in shape and magnitude. We present in those figures FDCS—
without renormalizing either theory—for several other θ2

configurations.
Finally, contour plots for the FDCS for the (4+4) eV

kinematics are presented in figure 15 where the agreement
between the CCC and GSF results is clearly observable, and
is even more pronounced than that presented in figure 8 for
the (10+10) eV case.

5. Concluding remarks

Motivated by the still standing controversy on the fast elec-
tron impact double ionization of Helium, we applied the GSF
method to study this process employing the kinematical
conditions of the Orsay (e, 3e) coplanar experiment. Those
data sets possess a useful, rarely available feature: to be on an
absolute scale. This in principle should be useful to dis-
criminate between theories predicting similar qualitative
FDCS shapes, but different magnitudes.

A simplified set of calculations, using a Temkin–Poet
helium target, yielded surprising agreement with the experi-
mental data without the need for a renormalization. Usage of
simpler models can sometimes lead to fortuitously good
agreement with the experiments, as was the case in [30].

When other partial waves were added to the helium
target, the agreement in magnitude with the experimental
set vanished, but a fairly good agreement with the CCC

Figure 7. Same as figure 3, but for fixed ejection angles θ2: (q) θ = °2912 , (r) θ = °3052 , (s) θ = °3192 , (t) θ = °3332 .
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theory emerged. Even more impressive than the one found
for the (10+10) eV set was the agreement obtained for the
(4+4) eV kinematics. We observed no appreciable change
in the FDCS with further addition of helium target partial
waves.

The agreement with the CCC theory under both kine-
matic conditions is better than any previously reported [12].
Having two different theories agreeing in the FDCS, not just
in shape but also in magnitude, leads us to believe that the
problem is correctly solved at least in the fast projectile and
quasi–photon regimes. Consequently, two main lines of rea-
soning emerge. The first one is that the experiments could
have had some kind of systematic error leading to an

Figure 8. Contour plots for FDCS as a function of the ejection angles θ2 and θ3 under the (10+10) eV kinematics: GSF (a) vs CCC (b). The
interest is shifted towards a theoretical result comparison, and thus no rescaling is applied to either set.

Figure 9. Dominant processes evidenced by the FDCS presented in figure 8.

Figure 10. FDCS obtained with the GSF method. The scale has been
chosen to have a saturation value of 0.0003, in order to perceive
details that would be hidden with a scale commesurate with the
recoil and binary peaks. The minima structure due to interelectronic
repulsion is plotted in dash–dot line. In dashed lines with positive
slope: the minima for back-to-back emission. The dashed lines with
negative slope correspond to the case + =( )k k q· 02 3 . With the
red squares we point to configurations which imply =k q· 02 and

=k q· 03 simultaneously. The red cirles denote configurations
where there is a maximal momentum transfer to the electrons.

Figure 11.Magnitude of the momentum tranferred to the He++ ion as
a function of the emission angles of the electrons in the (10+10) eV
case. The marked vertical lines indicate the θ = °1392 and θ = °3192

cuts, through which the FDCS is plotted in figures 5(i) and 7(s). The
squares correspond to the circles marked in figure 10, which are
minima of the momentum transferred to the nucleus.
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Figure 12. FDCS for the (4+4) eV kinematic condition plotted for ejection angle θ3, with fixed θ2 at: (a) θ = °452 , (b) θ = °2252 , GSF (black
continuous line), CCC [16] (red dashed line), experimental results (blue dots with error bars) from [16]. All calculations renormalized to
compare with the experiments, up by the same factor 14.

Figure 13. FDCS for the (4+4) eV kinematic condition plotted for ejection angle θ3, with fixed θ2 at: (a) θ = °302 , (b) θ = °602 , (c) θ = °902 ,
(d) θ = °1202 , (e) θ = °1502 , (f) θ = °1802 . GSF (black continuous line) and CCC ([34] with the same methods as in [16]) (red dashed line),
not rescaled.
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Figure 14. Same as figure 13 but with θ2 fixed at: (g) θ = °2102 , (h) θ = °2402 , (i) θ = °2702 , (j) θ = °3002 , (k) θ = °3302 , (l) θ = °3602 .

Figure 15. Contour plots for FDCS as a function of the ejection angles θ2 and θ3 under the (4+4) eV kinematics: GSF (a) vs CCC (b). No
rescaling is applied to either set.
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overestimation of the FDCS, particularly severe for the (4+4)
eV case. More so, the experimental data does not conform
with the expected minima for all emission geometries under
the small momentum transfer regime. However, since
experiments in principle hold a stronger footing than theore-
tical calculations, one is led to the second line of reasoning.
Could it be possible then, for the theoretical First Born model,
which by now we know is correctly solved, to be leaving out
some essential interaction mechanism? For instance, it was
already stated that the fast projectile model considers only a
single deflection of the projectile. This consideration has
worked fine for the ionization of the hydrogen atom by fast
electrons. However, since the helium target contains an
additional electron, could processes involving two deflections
of the projectile be playing a not-so-negligible role? Kheifets’
work [35] can be considered a prospective lookout on the
second Born order. In that work the author concludes that the
second order corrections only change the FDCS very weakly
at ≈5.6 keV incident energy. This is also backed by other
approaches involving asymptotically correct (yet approx-
imate) functions for the initial and final states of the system
[36, 37]. Pointing in the opposite direction are the results
presented by Berakdar [38], which suggest that interference
between different terms of the Green operator expansion
generates a more rapidly varying structure for the FDCS not
present in FBA calculations [13–16]. However, this argument
cannot be claimed to be conclusive, since Berakdar’s calcu-
lations were performed with approximate, asymptotically
correct, solutions. To completely close the discussions on this
topic, more in-depth theoretical studies are necessary on the
second Born approximation, as well as more experimental
sets with absolute scale.
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