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Skin effect in neutron transport theory
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We identify a neutron-flux “skin effect” in the context of neutron transport theory. The skin effect, which
emerges as a boundary layer at material interfaces, plays a critical role in a correct description of transport phe-
nomena. A correct accounting of the boundary-layer structure helps bypass computational difficulties reported in
the literature over the last several decades, and should lead to efficient numerical methods for neutron transport
in two and three dimensions.
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The physical character of the neutron fluxes within and
around heterogeneous materials, for given sources, has been
the subject of significant literature over the last 70 years [1–7].
Much of this literature has been devoted to unraveling the
complex interactions that result from the combined effect of
neutron collision and transport phenomena [2–5]. This Let-
ter describes and analyzes a physical observable, namely, a
neutron-flux “skin effect” near physical boundaries, wherein
sizable neutron fluxes exist for incoming directions nearly
parallel to the boundary even in cases in which the exterior
region is a source-free vacuum. The skin effect impacts in
a significant way the simulation of nuclear reactors, and, as
it concerns neutron fluxes that are nearly tangential to the
boundary (which can eventually cross curved boundaries),
it provides a useful system state indicator affecting reactor
shielding and control as well as design and optimization [8,9].

The boundary skin effect under consideration arises as
neutrons may travel for relatively long distances near the
material-vacuum boundary along paths approximately parallel
to the boundary, and can thus create significant neutron fluxes
for incoming directions at material points arbitrarily close to
the boundary—even when, for the vacuum-enclosed systems
considered, the incoming fluxes at the material boundary van-
ish exactly. The geometrical context can be easily visualized
in Fig. 1 for the flat-boundary case considered in this Letter,
but such long neutron paths exist near curved boundaries as
well.

Mathematically, the skin effect is encapsulated in sharp
“boundary-layer” structures of the type described in Chap.
9 in Ref. [10] and detailed below. Albeit present in, e.g.,
eigenfunction solutions for neutron transport problems in
one-dimensional (see Chap. 4 in Ref. [2]) or separable config-
urations [6], these boundary-layer transitions, which lead to
unbounded gradients arbitrarily close to the interface bound-
aries, need to be correctly accounted for and fully recognized.
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A mathematical reformulation of the neutron transport prob-
lem via a combination of changes of variables for the spatial
and angular variables is presented in this Letter, which fa-
cilitates the skin-effect analysis. In particular, this approach
enables the accurate modeling of neutron fluxes at arbitrarily
small distances from the domain boundary, and, therefore,
everywhere in the combined angular-spatial domain.

The equation for time-independent neutron transport in
a one-dimensional plane-parallel geometry (Fig. 1), with
isotropic scattering and vacuum boundary conditions, is given
by [9,11]

ξ
∂

∂x
u(x, ξ ) + μt (x)u(x, ξ )

= μs(x)

2

∫ 1

−1
u(x, ξ ′)dξ ′ + q(x, ξ ),

u(x = 0, ξ ) = 0 ∀ξ > 0,

u(x = 1, ξ ) = 0 ∀ξ < 0. (1)

Here, letting ξ = cos(θ ) (Fig. 1), and calling μs(x), μa(x),
and μt (x) = μa(x) + μs(x) the macroscopic scattering, ab-
sorption, and total transport coefficients, respectively, u(x, ξ )
denotes the neutron flux at point x in the direction θ . The in-
tegral term accounts for the angular redistribution of neutrons
due to scattering, q(x, ξ ) is a neutron source, and the vacuum
boundary conditions model the absence of particles entering
the spatial domain through its boundary. It is worthwhile
noting that Eq. (1) also governs the transport of photons and
other neutral particles, and it therefore impacts upon a wide
range of important disciplines [2,3,6,12–23].

Noting that the coefficient ξ of the highest-order derivative
in (1) tends to zero as θ → π/2, the existence of unbounded
spatial gradients at points (x, ξ ) near (0,0) and (1,0) in the
solution u(x, ξ ) may be expected (see Chap. 9 in Ref. [10]).
Such “boundary-layer” structures, which are caused by the
existence of a spatial boundary condition in conjunction with a
vanishingly small coefficient for the highest-order differential
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FIG. 1. One-dimensional finite “slab” geometry: ξ = cos(θ )

operator, only take place for the incoming directions ξ > 0
(ξ < 0) for points close to x = 0 (x = 1)—since it is for such
directions that boundary conditions are imposed in Eq. (1).

Following Ref. [10] (see Chap. 9 therein), in order to
characterize the boundary-layer structure around, e.g., x =
0, we consider the function U (X, ξ ) = u(ξX, ξ ) and, more
precisely, its lowest-order asymptotics U0(X, ξ ) as ξ → 0+
in a small neighborhood of the boundary (the boundary
layer around x = 1 can be treated analogously). The function
U0(X, ξ ) (the inner solution in the nomenclature of Ref. [10],
Chap. 9) satisfies the constant coefficient equation

∂U0(X, ξ )

∂X
+ μt (0)U0(X, ξ )

= μs(0)

2

∫ 1

−1
U0

(
ξX

ξ ′ , ξ ′
)

dξ ′ + q(0, ξ ), (2)

and boundary conditions induced by (1). Equation (2) tells
us that the derivative ∂U0(X,ξ )

∂X remains bounded as ξ →
0+, and, therefore, that the function U0(X, ξ ) characterizes
the boundary-layer structure in the solution u(x, ξ ) via the
relation

u(x, ξ ) ∼ u0(x, ξ ) = U0(x/ξ, ξ ) as (x, ξ ) → (0+, 0+).
(3)

Utilizing an integrating factor in (2) and letting

I (x, ξ ) =
∫ x

0
e

μt (0)y
ξ

[
μs(0)

2

∫ 1

−1
u0(y, ξ ′)dξ ′ + q(0, ξ )

]
dy,

the lowest-order boundary-layer approximation

u(x, ξ ) ∼ u0(x, ξ ) = e−μt (0)x/ξ

ξ
I (x, ξ ) (4)

is obtained. This equation explicitly exhibits the exponential
boundary-layer character of the solution. The argument can
be extended to two- and three-dimensional (2D and 3D) prob-
lems, and to include time-dependence and curved boundaries.
In such cases, a boundary layer occurs, with unbounded nor-
mal derivatives near the boundary, for incoming directions
nearly parallel to the domain interface.

The boundary-layer structure can be visualized by con-
sidering the exact solution of Eq. (1) that is obtained for
the scattering-free case [μs(x) = 0] with constant coefficients.
The resulting solution,

u(x, ξ ) =
{ q

μa
[1 − e−μax/ξ ] ∀ξ > 0,

q
μa

[1 − e−μa (x−1)/ξ ] ∀ξ < 0,
(5)

FIG. 2. Scattering-free solution [Eq. (5)]. The boundary layers
in the ξ and x directions are clearly emphasized by the superimposed
blue (along the ξ direction) and red (along the x direction) coordinate
curves.

presented in Fig. 2, clearly displays a boundary-layer structure
as (x, ξ ) → (0+, 0+).

The skin effect significantly impacts the mathematical
modeling of neutron transport processes. The foremost two
numerical methods used in the area, namely, the spherical
harmonics method (see Ref. [2] and Chap. 8 therein) and the
discrete ordinates method (see Ref. [3] and Chaps. 3 and 4
therein), do not properly resolve the conflicting manifesta-
tions of the skin effect in the angular and spatial variables
(see pp. 65 and 66 in Ref. [5]), leading to significant degra-
dations in accuracy [24–26] (see p. 51 in Ref. [27]). Most
conspicuously, Ref. [4] (see p. 40 therein) shows that differ-
ent numerical differentiation schemes may lead to different
numerical solutions. It has been demonstrated that, for sep-
arable geometries, a degree of accuracy can be obtained for
certain spatial “region averages” of the “angular average” of
the neutron flux [6,7,12]; naturally, however, general domains
are not separable, and, in addition, the full neutron flux (not
just such multiply averaged quantities) is generally required
for detector response calculations (see p. 60, problem 1–13 in
Ref. [3] and Sec. 6.4.3 in Ref. [28]).

A combination of spatial and angular changes of variables
can be used to eliminate the difficulties posed by the dual
spatial/angular boundary layers. To introduce the angular
change of variables we rely on the Gauss-Legendre method as
an underlying quadrature rule, but other quadrature methods
could alternatively be used. In view of the expression on p.
77 in Ref. [29], the �-point Gauss-Legendre quadrature er-
ror decreases as 32V/15π j(2� + 1 − j) j provided the j � 2�

derivative of the integrated function is bounded by the con-
stant V > 0. Introducing the change of variables ξ ′ = rp in
the integral in (1) we thus seek a bound V on the jth deriva-
tive of the resulting integrand. Using an integrated version
of (1), similar to (4), combining two exponential terms, and
using the fact that for each non-negative integer k the integral∫ ∞

0 t ke−t dt is finite, we find that

∣∣∣∣ ∂ j

∂r j
[u(x, rp)rp−1]

∣∣∣∣ � W rp− j−1 (6)
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FIG. 3. Error of numerical against analytic integral, E (M ) =
max0�x�1|

∑M
i=1 wiu(x, ξi ) − Ian(x)|, for u given by Eq. (5). The er-

rors are presented for the quadrature rule (7) (circles and diamonds)
and the plain Gauss-Legendre (GL) quadrature (triangles).

for some constant W [even as (x, r) → (0+, 0+)]; setting
V = W rp− j−1 yields the desired bound, which, importantly,
is uniform for all relevant values of x and r (as long as
p � j + 1).

Splitting the integral on the right-hand side of Eq. (1) at the
boundary-layer point ξ = 0 and using the proposed change of
variables yields

∫ 1

0
u(x, ξ )dξ ∼

M/2∑
i=1

wiu(x, ξi ), (7)

with a similar expression for the integral between −1 and 0.
Here, letting ri and wGL

i denote the Gauss-Legendre quadra-
ture abscissas and weights in the interval [0,1], we have set
ξi = rp

i and wi = p × rp−1
i × wGL

i /2. A suitable power p =
3.2 was used, which provides excellent convergence (Fig. 3)
for the integral in the ξ variable while limiting the sharpness
of the numerical boundary layer in the x variable.

The logarithmic spatial change of variables v = log( x
1−x ),

in turn, is used to resolve the spatial boundary layer, which
gives rise to points x extremely close to the boundary [without
detriment to the integration process, in view of the uniformr-
derivative bounds (6)], leading to high-order precision in both
the ξ and x variables. If the change of variables ξ ′ = rp were
not introduced, then finer and finer angular discretizations,
without a bound on the number of angular discretization
points used, would be necessary to yield a fixed prescribed
accuracy as the spatial point x approaches a boundary point.
Similarly, the logarithmic change of variables allows for the
resolution of the rapid changes in the angular flux arising from
the spatial boundary layer near the boundaries.

The transport equation is solved in a computational spa-
tial domain [vmin, vmax], with [x′

min, x′
max] = [ evmin

evmin +1 , evmax

evmax +1 ],
and with boundary conditions at x′

min and x′
max obtained by

enforcing the asymptotic relation (4) with u0(y, ξ ′) replaced
by u0(x′

min, ξ
′) and u0(x′

max, ξ
′), respectively. Using the new

variables the time-dependent transport problem,

∂

∂t
u(v, ξ , t ) + ξ [2 + 2 cosh(v)]

∂

∂v
u(v, ξ , t )

+ μt u(v, ξ , t ) = μs

2

∫ 1

−1
u(v, ξ ′, t )dξ ′ + q,

u(v, ξ , tmin) = 0,

u(vmin, ξ , t ) = u0(x′
min, ξ , t ) ∀ξ > 0,

u(vmax, ξ , t ) = u0(x′
max, ξ , t ) ∀ξ < 0

(8)

results. The time propagation is performed implicitly by
means of a third-order backward differentiation formula
(BDF). The collisional term is obtained by means of the third-
order polynomial extrapolation ũn+1

j = ∑2
κ=0(−1)κ

( 3
κ+1

)
un−κ

j
[see Eq. (12) in Ref. [30]], to avoid the inversion of large
matrices at each time step. Using the identity operator 1̂ and
the Fourier continuation (FC) spectral differentiation operator
D̂ [31–33], the resulting discrete version of Eq. (8), which
amounts to an implicit version of the FC discrete ordinates
(FC-DOM) method [33], thus reads

[1̂ + β	tξ j (2 + 2 cosh(v))D̂ + β	tμt 1̂]un+1
j

=
2∑

k=0

αkun−k
j + β	t

μs

2

M∑
i=1

wiũ
n+1
i + β	tqn+1, (9)

where un+1
j ∼ u(v, ξ j, t n+1), t n+1 = n	t , and where αk and β

are the coefficients for the third-order BDF formula. (The FC
method enables representation of general smooth nonperiodic
functions by a Fourier series while avoiding the well-known
Gibbs ringing phenomenon, with applicability to the solution
of partial differential equations in general multidimensional
spatial domains with high accuracy and negligible numerical
dispersion [31–33].) Figure 4 demonstrates the excellent con-
vergence properties of the algorithm, for μs = μa = q = 1.
The error was computed via comparison with the solution ob-
tained on a finer grid. This high order of convergence clearly
suggests that the changes of variables used in the x and ξ

variables lead to an adequate simultaneous grid resolution of
the two boundary layers involved.

In what follows, the numerical algorithm is utilized to
explore and demonstrate the skin effect. For definiteness, in
the rest of this Letter we restrict attention to time-independent
solutions, obtained by means of the time-dependent solver,
relaxed for long times (as described in Ref. [33]). The re-
sulting steady-state solutions are depicted in various forms
in Figs. 5–7; similar boundary-layer structures are of course
present for all times in the time-dependent solutions. Figure 5
displays the skin-effect boundary-layer structures in the x
and ξ variables with μs = μa = q = 1 (numerical parame-
ter values N = 250 and M = 40 were used in these figures,
with −vmin = vmax = 25). As can be seen in Fig. 5, as ξ

decreases towards zero, steeper and steeper boundary layers
result, over shrinking spatial regions, as expected from the
proposed boundary-layer analysis—thus giving rise to large
nearly boundary-parallel incoming neutron fluxes in close
proximity to the boundaries.

Figure 6 demonstrates the persistence of the boundary
layer in the presence of high scattering coefficients (with
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FIG. 4. Convergence properties of the proposed algorithm for
(a) the time discretization, (b) the spatial discretization, and
(c) the number of discrete ordinates employed. In circles, the error
E (	v, M,	t ) = maxx,ξ |u(x, ξ ) − uc(x, ξ )| is displayed for various
grids, where uc(x, ξ ) denotes the converged solution.

μa = q = 1 fixed). The case ξ = ξmin � 10−6 is considered
in the figure, with parameter values N = 200, M = 20, and
−vmin = vmax = 20. Clearly, even though diffusive problems
(large μs) tend to be more regular over the ξ variable—owing

FIG. 5. Boundary layers near x = 0, obtained by solving Eq. (8)
with μa = μs = q = 1 for various values of ξ and x, with
0.84 > ξi > ξi+1 > 10−7 and 10−2 > xi > xi+1 > 10−6. (a) shows
the boundary layer along the x variable for various values of ξ , and
(b) shows the boundary layers along the ξ variable for various values
of x. The neutron flux u(x, ξ ) does not vanish on the boundary for the
outgoing directions −1 � ξ < 0, and, therefore, no boundary layer
exists at x = 0 for such directions (not shown).

to the strong averaging and smoothing induced by the large
scattering coefficient—the boundary layers that arise in the
spatial variable with increasing μs lead to even larger slopes
as x → 0+.

There have been many attempts to understand unphysical
oscillations associated with the widely used diamond differ-
ence scheme (DD) for the transport equation [4,34,35]. A
recent paper [24] avoids this problem by using only directions
ξ away from ξ = 0. References [4,34] attribute these types
of oscillations to anisotropic boundary conditions, nondif-
fusive boundary layers, and/or high absorption; the present
Letter, which demonstrates the existence of boundary layers

FIG. 6. Boundary layers obtained by solving Eq. (8), with μa =
q = 1 and different values of μs. Solutions for the direction ξ =
ξmin � 10−6 are shown. Note the large μt -dependent slopes of the
transport solution as x → 0+ [cf. Eq. (4), where μt = μs + μa].
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FIG. 7. DD and FC-DOM approximations of u(x, ξ15) for μt =
μs = 1000, q = 0.1, and ξ15 � 10−3. The boundary-layer oscilla-
tions resulting from the DD scheme are clearly visible. N = 400
and N = 10 000 discrete points were used in the spatial variable for
the FC and DD methods, respectively. Note the high near-boundary
resolution that results, in view of the exponential spatial change of
variables used, from the N = 400 FC-DOM discretization.

even in the isotropic case and for all values of the scatter-
ing and absorption coefficients, presents a starkly contrasting
interpretation: Exponential boundary layers are triggered by
the boundary condition and vanishing ξ values. For exam-
ple, Ref. [34] treats a diffusive transport problem (problem
1 in that reference) which, under rescaling, can be reformu-
lated as in Eq. (1) with μs = μt = 1000, and q = 0.1. This
is an extremely diffusive problem with isotropic boundary

conditions for which Ref. [34] (see p. 317 therein) states
“...since the leading order term in the asymptotic expansion of
the analytic transport equation is itself isotropic, this term in
these problems does not contain a boundary layer.” In contrast,
Fig. 7 shows that boundary layers are present in this problem.
The FC-DOM solution displayed in this figure was obtained
by means of M = 40 discrete directions and N = 400 points
in the spatial variable. In contrast, N = 10 000 were used in
the DD-scheme solution presented in Fig. 7—which clearly
displays the spurious oscillations produced by the DD scheme
in this context.

The skin-effect boundary-layer structure described in this
Letter constitutes a physical effect which was overlooked for
nearly 70 years (see p. 360 in Ref. [1] and p. 317 in Ref. [34]),
and which, as demonstrated in Fig. 7 and throughout this
Letter, has a significant impact on the physics and the nu-
merical simulation of transport phenomena. In particular, this
work provides a sound theoretical basis for the development
of accurate and efficient methods for the numerical solution
of neutron transport and other neutral particle-transport prob-
lems, in general 2D and 3D domains, and it leads to valuable
state indicators concerning reactor dynamics.
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