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Abstract

The study of structure and collision processes of three- and four-body problems has seen 
an extraordinary progress in the last decades. This progress has been in part associated 
to the incredible fast growth of the computer capabilities. However, the tools used to 
solve structure problems are different from those corresponding to the treatment of 
collision processes. In this review, we provide the theoretical framework and a selection 
of results for both structure as well as collision problems using only one technique that 
we have developed in the last few years, based on the use of Generalized Sturmian 
functions. We present results obtained in structure studies of isolated and confined 
two-electron atoms, and exotic and molecular systems. The same technique is applied 
to the study of various benchmark problems for the single ionization of hydrogen and 
the double ionization of helium by electron impact. In this way, we demonstrate that 
the Generalized Sturmian method can be successfully applied to the treatment of both 
types of problems.

1. INTRODUCTION

A wide variety of phenomena in atomic, molecular physics, or chem-
istry depend on the understanding of the three-body problem.1 Many 
atomic and molecular processes in an extended range of energies present 
simultaneous excitation and ionization, double or multiple ionization of 
some of the electrons in the system. These processes cannot be treated 
with the standard ab initio methods designed to study structure, since emit-
ted electrons are spread all over space. It is also difficult to deal with them 
using the methods designed specifically for atomic collision, since there, in 
general, the bound electrons are treated in approximate ways. Moreover, 
there are not many methods allowing the accurate and precise description 
of outgoing electrons and at the same time, providing on equal footing the 
correct initial bound state of a collision.

The study of atomic and molecular systems as presented in the literature 
can be separated into two branches, one devoted to the study of bound 
states and another focused on collision processes. For the bound state 
treatment of atomic and molecular systems, the use of spectral methods is 
a standard tool. The very well-established configuration interaction (C I ) 
method rests on the use of the sum of basis functions to represent the wave 
function of the system.1 The “configurations” are generally defined as the 
sum of products of basis functions associated with the description of the 
dynamics of two-particle interactions. For example, each of these functions 
is the solution of the electron–nucleus problem in the case of atoms, while 
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Three-Body Coulomb Problems with Generalized Sturmian Functions 155

the nucleus–nucleus interactions are considered for molecules. Approaches 
like VASP2 or Gaussian3 use basis functions very localized in configuration 
space to properly represent the dynamics of the electrons and the nuclei. 
These methods have proven to be very useful and robust, however, this 
does not necessarily result in efficiency. On the other hand, a well-known 
disadvantage of these methods is that they are unable to deal at all with the 
dynamics of a process involving the fragmentation of the system.

Quite recently, the idea of optimizing these existing methods for atomic 
and molecular structure calculations has taken a different line based on the 
replacement of Gaussian or Slater basis functions by Coulomb Sturmian 
functions (CSF),4–6 with a focus on bound-type states only. A fantastic 
advantage has been observed when CSF were applied, e.g., to the struc-
ture calculation of many-electron atoms. It was found that all the basis 
functions scale with a length parameter. This property allows reduction of 
the calculations of all the matrix elements to basically two types of inte-
grals that can be evaluated only once for all the electrons of the system.5 
From the collisional point of view, other difficulties arise.7 First, the wave 
function of an ejected particle is completely delocalized. Second, outgo-
ing particles should have the correct asymptotic behavior, which implies 
considering large values of the emitted particle coordinates and, therefore, 
the whole problem has to be solved over very large numerical domains.8 
Various techniques have been implemented to enforce those conditions or 
to circumvent them. Methods like the J-matrix9–11 and the convergent-
close-coupling (CCC),12 among others, impose the asymptotic conditions 
at high values of one coordinate but they do not necessarily represent the 
correct behavior in the region where all the emitted particles are far from 
each other; such domain is the most important, for example, when studying 
double ionization processes. A different methodology is implemented in 
the exterior complex scaling (ECS) approach.13 As often pointed out in the 
literature, this method avoids imposing the asymptotic condition because it 
sets an outgoing flux on the coordinates associated with the emitted (ion-
ized) particles. Even if it is not yet totally clear how this happens,14 it has 
been confirmed with many numerical results that the correct three-body 
outgoing behavior is conferred on the wave function when this methodol-
ogy is applied. All these approaches work very efficiently on the treatment 
of collision processes involving just a very few particles, leading to accurate 
solutions to, for example, the ionization of hydrogen by electron impact.15 
The remarkable growth of computational capabilities has made possible 
the implementation of those recipes. However, computational limitations 

Author’s personal copy



G. Gasaneo et al.156

do not allow, for the moment, their extension for more than two interact-
ing electrons. For example, full time-independent calculations of a simple 
four-body problem, such as the double ionization of Helium by electron 
impact, are not yet available. The main limitation is, of course, the size of 
the equation systems to be solved.

It is important to point out that the CCC approach, for example, does 
not consider all the electrons on the same footing (one of the emitted elec-
trons is treated differently from the others) bringing in some problems in 
the approach.16 On the other hand, the ECS treats the emitted electrons in 
the same way, rotating the coordinates to the complex plane for each elec-
tron and ending up in the continuum part of the spectra. The description 
of those electrons is done using spectral methods but with basis functions 
which, in most of the implementations, are purely numerical with no, or 
little, trace of the physics of the considered problem.

The synthesis of the aforementioned issues together with the aim of 
numerical basis optimization directed us to the Generalized Sturmian 
Functions (GSF) approach. Following the leading ideas of Avery17–19 and 
Aquilanti,20–23 on one side, and Rawitscher24–28 and Macek,29–34 on the 
other, starting nearly a decade ago35 the present authors developed the 
approach thereafter.36–43 The GSF approach makes use of a combination 
of the best features of the precedent methods. On one hand, it treats the 
dynamics of the system’s electrons on equal footing as each of them is 
represented by GSF . On the other hand, the asymptotic behavior of each 
particle is taken into account by the basis allowing matching of the expan-
sion region to the reaction region, where all the dynamics takes place. For 
electrons, for example, some may be in the continuum while others occupy 
bound states: within the GSF method, they will be represented by basis 
functions that have proper outgoing or bound-type behavior, respectively. It 
has been already numerically demonstrated that the use of GSF basis with 
outgoing components allows the enforcement of three-body type outgo-
ing behavior in a similar way as the ECS method does. Generally speaking, 
a distinctive feature of the GSF method is that it employs basis functions 
possessing physical properties similar to those corresponding to the system 
under study. Moreover, the use of GSF greatly increases the convergence 
rate of various physical quantities when dealing with bound states and 
reduces the computational resources required for describing scattering pro-
cesses. It is the purpose of this work to review some of the aspects of the 
Generalized Sturmian function method that we developed.
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This paper is organized as follows: In Section 2 all the relevant information 
referred to the GSF for two-body problems is presented, as well as the theory 
corresponding to their application to bound and scattering problems involving 
only two-particles. Several relevant aspects of the method are introduced there, 
starting with the Sturm–Liouville equation for a general radial interaction, 
the boundary conditions, and the definition of the auxiliary and generating 
potentials of the GSF basis. A comparison with CSF is also presented. The 
remaining sections are devoted to the three-body problem. In Section 3, the 
use of GSF to study three body Coulomb problems for particles of arbitrary 
masses is presented, focusing on the calculation of atomic and molecular struc-
ture. Calculations for a wide variety of systems are discussed, ranging from the 
negative Hydrogen ion and the largely studied Helium atom to more exotic 
muonic systems. Ground and excited states including the double excited states 
of Helium are considered. Also, very accurate energy values are presented for a 
Helium atom confined inside a model cage representing a fullerene molecule, 
or in an impenetrable box. In Section 4, the GSF theory for three-body con-
tinuum states is described, both in spherical and in hyperspherical coordinates. 
The three-body asymptotic behavior for scattering problems is discussed, and 
the driven equations for two typical ionization processes are presented, illustrat-
ing the possible benefits of both systems of coordinates. In Section 5, several 
examples of simple collision systems are developed, centering the attention on 
the properties of the wave function, the convergence of the method, and the 
extraction of cross-sections from the asymptotic flux. Finally, in Section 6 the 
important features of the GSF method are summarized and some perspectives 
are outlined.

Atomic units are used through this paper, unless otherwise noted.

2. GENERALIZED STURMIAN FUNCTIONS
2.1 Definitions

The Generalized Sturmian functions to be studied and applied are all asso-
ciated with the two-body problems described by the time-independent 
Schrödinger equation

We are assuming here that U(r) and V(r) are spherically symmetric potentials. 
Equation (1) has three main parameters in addition to the reduced mass 

(1)
[
− 1

2µ
∇2 + U(r) − E

]
S(r) = −β V(r)S(r).
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µ, they are: the energy E, the magnitude of U(r), and the magnitude β of 
the potential V(r). The idea behind the Generalized Sturmian functions 
is to consider the energy E and the magnitude of U(r) as externally fixed 
parameters and β the eigenvalue of the problem. Given the fact that we 
will be dealing with spherically symmetric potentials, we can propose the 
separation on radial and angular variables S(r) = Snl(r) Ylm(θ , φ)/r. With 
this definition, the radial part of Eq. (1) transforms into

We name U(r) the auxiliary potential (e.g., Coulomb), and V(r) the generating 
potential defined in general to be of short-range i.e. vanishing in an outer 
region r > RS. To transform the Schrödinger equation (2) into a Sturm–
Liouville problem two boundary conditions are required. Throughout this 
paper, we seek solutions having a regular boundary condition at the origin

If the auxiliary potential U(r) is a Coulomb potential, then, the Kato cusp 
condition can also be imposed through an appropriate choice of the poten-
tials U and V, as discussed in. Ref. 42

In the outer region, where the second boundary condition is imposed, 
the generating potential vanishes. The radial Sturmian equation (2) reduces to

the solutions of which represent a particle of energy E moving under the 
influence of a potential U(r), and will have a unique asymptotic behavior, 
that is, independent of the eigenvalue βnl.

Equation (2) together with the boundary conditions (3) and (4) define a 
Sturm–Liouville problem. Therefore, their solutions form a complete basis 
set with closure

and obey a potential-weighted orthogonality relation:

(2)

[

− 1

2µ

d
2

dr
2

+ l(l + 1)

2µr
2

+ U(r) − E

]

Snl(r) = −βnl V(r) Snl(r).

(3)Snl(r = 0) = 0.

(4)

[

− 1

2µ

d
2

dr
2

+ l(l + 1)

2µr
2

+ U(r) − E

]

Snl(r) = 0 for r > RS ,

(5)
∑

n

Snl(r
′
) V(r) Snl(r) = δ(r − r

′
),
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Two important issues related to this orthogonality relation are worth of 
notice. First, due to the fact that the generating potential V(r) is of short-
range, the integration (6) can be performed numerically in a finite spatial 
region for any value of the energy E, without any additional requirement 
over the Snl(r) functions. The second point to note is that the integral 
is defined without taking the complex conjugate of the function Sn

′
l
(r). 

With this particular choice of the scalar product, the overlaps between the 
functions:

converge for any energy and potential (this was discussed in detail in 
Ref. 44). It is interesting to note that since the generating potential is of 
short-range, the boundary condition at large values of r can be imposed 
at any r value greater than RS. This allows numerical construction of the 
functions in an efficient way. All the functions differ asymptotically from 
one another by a normalization factor.

Let us now illustrate that the Snl(r) functions have the same asymptotic 
behavior with different examples, beginning with the case of negative 
energies E < 0. For a short-range auxiliary potential U(r) (i.e., U(r) also 
vanishing in the outer region) the asymptotic solutions of (4) behave like

where κ = √−2µE. Since E is a fixed parameter, all the basis functions 
have the same asymptotic behavior.

In the case of a Coulombic auxiliary potential U(r) = z1z2/r with z1 
positive and z2 negative, the solutions of (2) have an asymptotic behavior 
consisting of an exponentially decaying factor exp (−κr) modified by a 
logarithmic factor

which is, again, the same for all basis elements.

(6)
∫ ∞

0

S
n
′
l
(r) V(r) Snl(r) dr = 0 for n

′ �= n.

(7)O
n
′
n

=
∫ ∞

0

S
n
′
l
(r)Snl(r) dr

(8)lim
r→∞

Snl ∝ e
−κr

,

(9)lim
r→∞

Snl ∝ e
−κr− z1z2µ

κ ln (2κr)
,
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When dealing with positive energies the expressions given by Eqs. (8) 
and (9) transform into

and

respectively. These are the asymptotic solutions of Eq. (4) corresponding, 
respectively, to a short-range and a Coulomb-type auxiliary potential. 
Similar expressions for incoming waves can be also used.

At this point we would like to emphasize the difference between our 
Generalized Sturmian functions with the Coulombic auxiliary potential, 
and the widely used Coulomb Sturmian functions. The CSF are solutions of

i.e., the same Eq. (2) with U(r) = 0 and V(r) = −1/r. The discretized 
character of the solutions imposes βnl = nκ. In this case, the asymptotic 
behavior of the CSF is

which changes from one CSF element to another, due to the presence of 
the power n. For positive energies, the asymptotic condition reads

where Zn = βn = in
√

2µE. All the functions oscillate with the same wave-
number k (determined externally by the fixed energy) but each of them has 
a different logarithmic phase, depending on the eigenvalue.

2.2 Bound states
In this section, we briefly review the methodology for two-body bound 
states. For a given interaction potential V (r), the aim is to solve the 
Schrödinger equation

(10)lim
r→∞

Snl ∝ e
ikr

,

(11)lim
r→∞

Snl ∝ e
ikr−i

z1z2µ

k ln (2kr)
,

(12)

[

− 1

2µ

d
2

dr
2

+ l(l + 1)

2µr
2

− E

]

S
C
nl (r) = βnl

1

r
S

C
nl (r),

(13)lim
r→∞

S
C
nl ∝ e

−κr+n ln (2κr) = (2κr)
n

e
−κr

,

(14)lim
r→∞

S
C
nl ∝ e

ikr+Znµ

k
ln (2kr)

,
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where, for bound states, the energy E is negative. The solution �B(r) may 
be expanded as

Upon replacement in (15), and using (2) with energy Es, we have

We may choose the auxiliary potential U(r) to be the interaction V (r), so 
that the first two terms in Eq. (17) cancel each other. Projecting with basis 
functions Sn

′
l
(r) from the left, integrating over the coordinate, using the 

orthogonality relation (6) and the overlap matrix (7), we get

which can be easily solved by standard matrix methods.40

2.2.1 Numerical implementation
Details of the numerical aspects involved in the generation of the Sturmian 
basis set are published in Ref. 43 and will not be repeated here. We will 
just mention that we use primarily a finite-differences scheme to solve Eq. 
(2). The boundary condition is imposed within this scheme, treating in a 
special way the last elements of the Hamiltonian matrix. The eigenvalues 
are initially calculated by using a complex-orthogonal transformation 
based on the theory explained by Luk and Qiao.45 In previous work,38,39 
we performed a further relaxation of a random vector multiplied by the 
Hamiltonian matrix, until it converges to the desired eigenvalue. In that 
procedure, the corresponding eigenvectors were also obtained. We also 
developed another very fast iterative algorithm that allows us to obtain very 
accurate eigenvalues. For any eigenvalue, the corresponding eigenvector is 
computed by using a predictor–corrector method. The procedure includes 
a numerical (outwards) integration from the origin to a particular matching 
point and another integration (inwards) from the asymptotic region to the 

(15)
[

− 1

2µ

d
2

dr
2

+ l(l + 1)

2µr
2

+ V (r) − E

]

�(r) = 0,

(16)�B(r) =
∑

n

anSnl(r).

(17)
∑

n

an [V (r) − U(r) − βnlV(r) − E + Es] Snl(r) = 0.

(18)
∑

n

[
−βnlVn

′
n
δ

n
′
n
− (E − Es)On

′
n

]
an = 0,
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matching point. At this particular matching point the logarithmic deriva-
tives are calculated for both solutions, and iterations are performed until the 
difference between both values becomes negligible.

For completeness, we should mention that we have also developed 
other implementations for GSF basis set generation. For example, in Ref. 
41 we used a square integrable (L2) basis set expansion with Laguerre-type 
basis functions46 and B-spline functions.47

2.2.2 Example
As an illustration, consider the case in which E = −2.0 a.u. and l = 0. 

Figure 7.1 displays (in the upper curves) the first 10 GSF corresponding to 
the case of a Coulomb auxiliary potential

where Z = 0, and a Yukawa generating potential

with as = 0.375. For comparison the Coulomb Sturmian functions for the 
same energy are plotted in the lower part of the figure. Clearly, the CSF are 

(19)U(r) = −Z

r
,

(20)V(r) = − e
−asr

r
,

0 5 10 15
-2

-1

0

1

2

0 5 10 15
r (a.u.)

-2

-1

0

1

2S
nl

(r
)

Figure 7.1 Up: First Generalized Sturmian functions Sn0 for an auxiliary potential 
U(r) = 0, a generating potential V(r) = e

−0.375r
/r, and an energy E = −2.0 a.u. Down: 

Coulomb Sturmian functions, for the same energy. For color version of this figure, the 
reader is referred to the online version of this chapter.
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spread over a wide range, whereas the generating potential allows to con-
centrate the GSF basis set close to the origin while maintaining a realistic 
fall off behavior. It is usually in the inner region that the interacting part is 
important and needs a good numerical resolution. Thus, one may use the 
generating potential to tune the basis according to the particular physical 
problem under study.

2.3 Scattering states
For scattering solutions, one may set the full solution as7

where �0(r) is an asymptotic solution which solves a simplified, homoge-
neous, equation

the scattering part �sc(r) solves the inhomogeneous differential equation

Expanding �sc(r) and 
[

V (r) − V0(r)
]

�0(r) in Sturmian functions with 
externally fixed energy Es = E > 0

and using Eq. (2), the radial Schrödinger equation is converted into

Choosing again U(r) = V (r), only the generating potential remains on 
the LHS. Projecting to the left by Sn

′
l
(r), we end up again with a matrix 

problem

(21)�(r) = �0(r) + �sc(r),

(22)

[

− 1

2µ

d
2

dr
2

+ l(l + 1)

2µr
2

+ V0(r) − E

]

�0(r) = 0;

(23)

[

− 1

2µ

d
2

dr
2

+ l(l + 1)

2µr
2

+ V (r) − E

]

�sc(r) = −
[

V (r) − V0(r)
]

�0(r).

(24)�sc(r) =
∑

n

anSnl(r),

(25)
[
V (r) − V0(r)

]
�0(r) =

∑

n

bnV(r)Snl(r),

(26)

∑

n

an [V (r) − U(r) − βnlV(r)] Snl(r) = −
∑

n

bnV(r)Snl(r).

(27)β
n
′a

n
′ = b

n
′ .
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The Sturmian basis functions transform the operator [H − E] into a 
diagonal matrix whose elements are simply the Sturmian eigenvalues. This 
can be seen in an alternative form. Equation (23) can be rewritten as:

in terms of Green’s function G
±
l  which is responsible for providing the 

correct asymptotic behavior (outgoing (+) or incoming (−)) to �
±
sc (r). 

Now, Green’s function satisfies the equation

and can be expanded in terms of Sturmians functions as follows:

Replacing this expansion into (29), using Eq. (2), and taking U(r) = V (r),  
we find

Comparing this expression with the closure relation (5) we see that 
gnl = −1/βnl. This means that Green’s function is diagonal in the Generalized 
Sturmian representation. Besides, the representation is optimized since the 
asymptotic region is associated with the range of the generating potential 
V (r); the asymptotic form of Gl

± is directly given by the correct asymptotic 
behavior of the Sturmian functions. Indeed, since (2) can be written as

the Sturmian functions are eigenfunctions of the operator G
±
l V(r) with 

eigenvalues −1/βnl.
25–27

It is clear that for scattering problems, the Schrödinger equation to be 
solved is considerably simplified when using GSF.

2.3.1 Numerical implementation
As pointed out above, a detailed description of the numerical procedures has 
been presented in Ref. 43. In order to calculate the Sturmian functions suit-
able for scattering calculations, we set the boundary conditions by choosing 

(28)�
±
sc (r) = G

±
l [V (r) − V0(r)]�0(r)

(29)

[

− 1

2µ

d
2

dr
2

+ l(l + 1)

2µr
2

+ V (r) − E

]

G
±
l

(

E, r , r
′) = δ

(

r − r
′)

,

(30)G
±
l

(
E, r , r

′) =
∑

n

gnlS
±
nl (r

′
)S

±
nl (r).

(31)−
∑

n

gnlβnlS
±
nl (r

′
)S

±
nl (r)V (r) = δ

(
r − r

′)
.

(32)− 1

βnl

S
±
nl (r) = G

±
l V(r)S

±
nl (r),
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appropriately the auxiliary potential. For Coulombic outgoing/incoming 
boundary conditions, we calculate the regular F(r) and irregular G(r) radial 
Coulomb functions, and their derivatives, corresponding to a Sommerfeld 
parameter η. The asymptotic solution is then written as:

where δ is the phase shift, calculated by assuming arbitrarily that at the point 
RA the function satisfies Snl(RA) = 1, i.e.,

In the same way as for the bound levels, the degree of mismatch of 
the solutions at the matching point allows estimation of the change �βn 
needed for the next iteration step, until convergence is achieved in the 
slopes of the outward and inward functions.

As an example, consider the case in which E = 2.0 a.u. and l = 0, with 
the same auxiliary and generating potentials used in the previous bound 
state illustration. Figure 7.2 displays the first 10 GSF and, for comparison, 
the first 10 CSF corresponding to the same energy, and with outgoing 

(33)P(r ≥ RA) = cos δ F(r) + sin δ G(r).

(34)
cos δ = F(RA) + iG(RA)

F(RA)
2 + G(RA)

2
,

sin δ = G(RA) − iF(RA)

F(RA)
2 + G(RA)

2
.

0 5 10 15
–1

–0.5

0

0.5

1

0 5 10 15
r (a.u.)

–1

–0.5

0

0.5

1S nl
(r

)

Figure 7.2 Up: First Generalized Sturmian functions Sn0 for an auxiliary potential 
U(r) = 0, a generating potential V(r) = e

−0.375r
/r, and an energy E = 2.0 a.u. Down: 

Coulomb Sturmian functions, for the same energy. For color version of this figure, the 
reader is referred to the online version of this chapter.
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boundary conditions. For GSF, the role played by the two potentials is now 
clear: the generating potential V(r) is used to compress the basis inside the 
range of the interaction, while the auxiliary potential U(r) dictates the 
asymptotic behavior which, for the GSF, is unique for all basis elements.

This is in contrast with CSF which possess different asymptotic behav-
iors. It has to be noted also that the CSF with outgoing flux behavior are 
divergent unless the energy is appropriately chosen to be complex.

2.3.2 Example
An application of the GSF method is given by the following example in 
which we define a distorted wave approach to the Coulomb wave equa-
tion, with a Sommerfeld parameter η = z1z2µ/k. Consider the asymptotic 
function �0(r) of Eq. (21) as given by

where g(r) can be any function growing faster than r at the origin and tend-
ing to one at large distances as, e.g., g(r) = 1 − e

−ac r
2

 (ac is a positive real 
constant). The function �0 (r) solves, asymptotically, the Schrödinger equation:

By using �0(r) instead of the free-particle function rj0(r)—the spherical Bessel 
function—we are introducing a distorted-wave approach.14  With these defi-
nitions the decomposition (21) is in agreement with standard scattering theory. 
Indeed, the driven Schrödinger equation to solve is

According to Eq. (36), the RHS of (37) goes as 1/r
2 at large distances, so 

that one may require �sc (r) to have outgoing behavior Ale
i[kr−η ln(2kr)−π

2 l], 
as scattering theory establishes. One may then extract the correspond-
ing transition amplitude since, at large distances, we have

(35)
�0(r) = sin

[
kr −

(
η ln(2kr) + π

2
l
)

g(r)
]

→
r→∞

1

2i

(
−e

−i[kr−η ln(2kr)−π
2 l] + e

i[kr−η ln(2kr)−π
2 l]

)
,

(36)

[

− 1

2µ

d
2

dr
2

+ l(l + 1)

2µr
2

+ z1z2

r
− E

]

�0 (r) = O

(

1

r
2

)

.

(37)

[

− 1
2µ

d
2

dr
2 + l(l+1)

2µr
2 + z1z2

r − E

]

�sc (r)

=
[

E −
(

− 1
2µ

d
2

dr
2 + l(l+1)

2µr
2

)

− z1z2
r

]

�0 (r) .

(38)
�

+
(r) → 1

2i

(
−e

−i
[
kr−η ln(2kr)−π

2 l
]
+ e

i
[
kr−η ln(2kr)−π

2 l
])

+Al e
i
[
kr−η ln(2kr)−π

2 l
]
,
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where the transition matrix Al = e
iδl sin(δl) will result from solving  

Eq. (37) for �sc (r).
To illustrate the proposal, the distorted-wave driven Eq. (37) was solved 

numerically using GSF with outgoing asymptotic behavior.14 In the top 
and middle panels of Figure 7.3, we plot the functions �0(r) and �sc (r). 
In the bottom panel the sum of these functions, �(r), as defined in Eq. 
(21) is shown and compared with the exact Coulomb wave function F(r) 
(solid dots) with unit asymptotic norm. The facts that �0(r) possesses the 
appropriated Coulomb distortion and that the sum (21) leads to the correct 
result, show that the driven Eq. (37) is well formulated and is in accordance 
with scattering theory.

3. THREE-BODY PROBLEMS: BOUND STATES

The configuration interaction method has been widely used to 
perform ab initio calculations of N-electron atomic and molecular sys-
tems.5,17–19,48,49 The differences between various implementations reside 
in the type of radial basis set used to expand the solutions. The great 

0 25 75 100
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–0.5
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1
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0 25 75 100
–0.5
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0.5

50

0 25 50 75 100
r (a.u.)

–1
–0.5
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1

Figure 7.3 The functions �0(r) (top panel), �sc(r) (middle panel), and �(r) (bot-
tom panel) of, respectively, Eqs. (35), (37), and (21) are plotted as a function of the 
radial coordinate r; we have taken l = 0, k = 1, µ = 1, and z1z2 = −1, and ac = 0.5 in  
Eq. (35). In the bottom panel, the Coulomb wave function F(r) is included (solid dots) 
for comparison. For color version of this figure, the reader is referred to the online ver-
sion of this chapter.
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advantage of the CI method is it simplicity and flexibility. It allows ab initio  
calculations of three or more particle systems in a relatively easy way. 
However, the convergence rate is strongly dependent on the quality of the 
chosen basis functions.

Among the many basis sets in spherical coordinates, a very efficient 
scheme for atomic systems is based on the use of Laguerre-type orbitals48 
which essentially define the Coulomb Sturmian functions. The parameters of 
the CSF basis for two-electron systems are numerically optimized to obtain 
the best values for the energies.49 This Sturmian methodology was shown 
to be efficient in obtaining atomic bound states for two- and three-electron 
atoms, as well as for molecular systems.

Here we present an alternative CI methodology based on two-body GSF 
selecting parameters to construct optimized basis functions for bound state 
problems.

3.1 Systems with general masses
Let us consider three particles with masses (m1, m2, m2) and charges 
(z1, z2, z3), where m3 is the heaviest particle. Separating the center of mass 
motion, and denoting by r1 and r2 the relative coordinates of particles m1 
and m2 with respect to m3, the Hamiltonian describing the relative motion 
of the two lighter particles is written as:

where µij = (mimj)/(mi + mj) is the reduced mass of particle i with respect 
to particle j, r12 = |r1 − r2| and the operator − 1

m3
∇r1

· ∇r2
 is the mass polar-

ization term. The wave function �(r1, r2) satisfies the Schrödinger equation

where E is the energy of the three-particle system.
We may define the CI expansion of the wave function using two-body 

GSF for each coordinate r1 and r2. For a given total angular momentum L 
and projection M , it is written as:

where al1l2LM
n1n2

 are the expansion coefficients and A = (1 + ǫP12)/
√

2 is the 
symmetrization operator that accounts for the exchange of the particles. 

H = − 1

2µ13

∇2
r1

− 1

2µ23

∇2
r2

− 1

m3

∇r1
· ∇r2

+ z1z3

r1
+ z2z3

r2
+ z1z2

r12

,

(39)

(40)H�(r1, r2) = E�(r1, r2),

(41)�(r1, r2) =
∑

l1l2

N1∑

n1=1

N2∑

n2=1

a
l1l2LM
n1n2

A
Sn1l1

(r1)

r1

Sn2l2
(r2)

r2
Y

LM
l1l2

(̂r1, r̂2),
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The permutation operator P12 exchanges coordinates r1 ↔ r2, and ǫ = 1 
for singlet states or ǫ = −1 for triplet states.

The angular part is expressed in terms of the coupled spherical harmonics1

where Ylm are spherical harmonics and �l1m2l2m2| l1l2LM � are Clebsch–
Gordan coefficients. The individual angular momenta l1 and l2 must satisfy the 
triangular rule and parity conservation (−1)

L = (−1)
l1+l2. To avoid redun-

dancies in expansion (41), the angular momenta are restricted to l1 ≤ l2. Also, 
if l1 = l2, then n1 ≤ n2. These restrictions ensure numerical stability in the 
calculation, avoiding repeated sets of equations given by symmetry.

Replacing expansion (41) into the Schrödinger Eq. (40) and projecting 
onto the Sturmian basis set, we obtain a generalized eigenvalue problem of 
the form

where for a given state ν, the vector aLM
ν  contains the expansion coefficients 

a
l1l2LM
n1n2

 for fixed (L, M ). The energy eigenvalues are E = Eν, while the 
Hamiltonian and overlapping matrices H and S have elements

The matrices H and S can be computed as:

(42)Y
LM
l1l2

(̂r1, r̂2) =
∑

m1m2

�l1m2l2m2| l1l2LM � Yl1m1
(̂r1)Yl2m2

(̂r2),

(43)
H a

LM
ν = Eν Sa

LM
ν ,

(44)[H]LMl
′
1l

′
2l1l2

n
′
1n

′
2n1n2

=
〈
Y

LM

l
′
1l

′
2

S
n
′
1l

′
1

r1

S
n
′
2l

′
2

r2

∣∣∣∣H
∣∣∣∣A

Sn1l1

r1

Sn2l2

r2
Y

LM
l1l2

〉
,

(45)[S]LMl
′
1l

′
2l1l2

n
′
1n

′
2n1n2

=
〈
Y

LM

l
′
1l

′
2

S
n
′
1l

′
1

r1

S
n
′
2l

′
2

r2

∣∣∣∣ A
Sn1l1

r1

Sn2l2

r2
Y

LM
l1l2

〉
.

(46)

[H]LMl
′
1l

′
2l1l2

n
′
1n

′
2n1n2

=
[

(E1 + E2) O
l
′
1l1

n
′
1n1

O
l
′
2l2

n
′
2n2

− βn1l1
[V1]

l
′
1l1

n
′
1n1

O
l
′
2l2

n
′
2n2

−βn2l2
[V2]

l
′
2l2

n
′
2n2

O
l
′
1l1

n
′
1n1

]

δ
l
′
1l1

δ
l
′
2l2

+[T12]
LMl

′
1l

′
2l1l2

n
′
1n

′
2n1n2

+
∞
∑

l=0

4π

2l + 1
R

l
′
1l

′
2l1l2l

n
′
1n

′
2n1n2

l
∑

m=−l

A
LM

l
′
1l

′
2l1l2l

+ǫP(n1 → n2, l1 → l2),

(47)[S]
LMl

′
1l

′
2l1l2

n
′
1n

′
2n1n2

= O
l
′
1l1

n
′
1n1

O
l
′
2l2

n
′
2n2

δ
l
′
1l1

δ
l
′
2l2

+ ǫP(n1 → n2, l1 → l2).

Author’s personal copy



G. Gasaneo et al.170

For the sake of compactness, we do not provide here explicit expressions 
for the mass polarization matrix T12. Nine different terms are necessary 
to calculate it with no evaluation difficulties. For the electron–electron 
interaction term use is made of the standard spherical harmonics expansion

with r< = min(r1, r2) and r> = max(r1, r2). In the matrix expres-
sions (46) and (47) we explicitly noted the action of the operator 
P12 = P(n1 → n2, l1 → l2) onto the index of the basis set, and defined the 
following integrals:

3.2 Two-electron atoms
We first look at the case where the two light particles are electrons 
(m1 = m2 = 1, z1 = z2 = −1) bound to a heavy nucleus of infinite mass 
(m3 → ∞), so the mass polarization term can be omitted

We test our method computing the ground state of He (z3 = 2) and  
H

− (z3 = 1), and then extend our study to singly and doubly excited states of He.
The GSF for each electron can be defined for different sets of basis 

parameters (U(r), V(r), E, N ). Our basis can represent either symmetric 
states where the electrons are equivalent (such as the ground state) or 

(48)
1

r12

=
∞∑

l=0

l∑

m=−l

4π

2l + 1

r
l
<

r
l+1
>

Y
∗
lm(θ1, φ1)Ylm(θ2, φ2),

(49a)O
l
′
l

n
′
n

=
∫ ∞

0

drS
n
′
l
′(r)Snl(r),

(49b)[Vi]
l
′
l

n
′
n

=
∫ ∞

0

drS
n
′
l
′(r)Vi(r)Snl(r),

(49c)R
l
′
1l

′
2l1l2l

n
′
1n

′
2n1n2

=
∫ ∞

0

dr1

∫ ∞

0

dr2S
n
′
1l

′
1
(r1)Sn

′
2l

′
2
(r2)

r
l
<

r
l+1
>

Sn1l1
(r1)Sn2l2

(r2),

(49d)A
LM

l
′
1l

′
2l1l2l

=
∫

d̂r1

∫

d̂r2Y
LM∗
l
′
1l

′
2

(̂r1, r̂2)Y
∗
lm(̂r1)Ylm (̂r2)Y

LM
l1l2

(̂r1, r̂2).

(50)Ha = − 1

2µ13

∇2
r1

− 1

2µ23

∇2
r2

+ z1z3

r1
+ z2z3

r2
+ z1z2

r12

.
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asymmetric excited states, where one electron has a lower energy than 
the other. Different basis parameters may be convenient to deal with con-
tinuum (for example, auto-ionizing) states. In all cases, we will use the 
notation Ei and Ni for i = 1, 2 to distinguish the electrons.

So far, we have considered the energy of the basis set as a real, negative param-
eter, so the GSF have an exponentially decaying asymptotic behavior. However, 
if the energy is chosen to be positive, outgoing wave asymptotic behavior can 
be imposed to the basis set, which is adequate for doubly excited, auto-ionizing 
states. The matrix obtained with this boundary condition is now complex sym-
metric and non-Hermitian, and the eigenvalues will be complex, too.

3.2.1 Partial-wave analysis of the ground state of He and H–

In Table 7.1, we show the ground-state energy of He as a function of the 
angular configurations (l1, l2) considered for each electron. These results are, 
as far as we know, the best obtained with uncorrelated basis.38,42  They were 
obtained with 20 GSF per angular momentum quantum number li, with 
a generating Yukawa potential with as = 0.375 and Ei = −1.48385 a.u. 
(i = 1, 2). The calculation was performed up to l1 = l2 = 12, for which the 
maximum basis size was Ntot = 2520. We compare our results with those of 
Foumouo and collaborators9 (obtained with 40 radial CSF functions per li 
for each electron) and with those of Bromley and Mitroy49 (obtained with 
20 radial functions per li for each electron). In these studies, a symmetric 
basis was used, composed of products of Laguerre-type orbitals with special 
choices of the scaling parameter λ. In the work of Foumouo, that param-
eter is fixed to a particular value, while in the work of Bromley it is varied 

Table 7.1 Partial-wave analysis of the He ground state. li (i = 1, 2) is the maximum 
angular configuration (l1, l2) considered. The second and third columns show calcula-
tions with 20 GSF and CSF per li, respectively, while the fourth column uses 40 CSF

He ground-state energy

Ii GSF38 CSF49 CSF9

0 −2.879 028 654 −2.879 028 507 (λ = 4.8) −2.879 027 97
1 −2.900 515 957 −2.900 515 873 (λ = 7.8) −2.900 513 86
12 −2.903 710 272 −2.903 711 927 (λ = 25.5) −

Exact50 −2.903 724 377
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independently for each li (almost 12 variational parameters for the best 
value obtained with 20 single-electron orbitals per li for li = 12). In both 
cases the use of Laguerre basis functions implies that the asymptotic behavior 
of the basis is not the one associated to the state that they are expanding, 
since the Coulombic logarithmic phase associated to CSF changes from 
one basis element to the other. This is not the case of GSF basis set where 
all the elements have the same asymptotic behavior, both exponential factor 
and power law. The asymptotic region does not need to be expanded with 
our basis, since it is already included exactly in all basis elements.

Note that optimizing only one parameter for the case li = 0, GSF 
give better results than those of Bromley and Mitroy for li = 0. Our 
result obtained with li up to 12 is compared with those of Foumouo and 
co-workers. The energy values presented in the table show that we have 
obtained more accurate results using half of the coefficients required by 
Foumouo. To obtain better values for li up to 12 we have to perform an 
optimization over as. We found that this optimization was not sufficient 
to reproduce Bromley’s accuracy: we thus also varied the energy of the 
GSF basis. We found that by setting as = 0.795 and E = 1.05 a.u. for the 
12 angular momenta, the resulting energy −2.903712009 a.u. is in better 
agreement with the exact value than any other calculations. Note also that 
this last calculation was performed adjusting both the asymptotic behavior 
of the basis set as well as the region where the He ground state is defined. 
The optimization of these two physical basis parameters is enough to avoid 
the complete optimization procedure (involving 13 parameters λ) imple-
mented by Bromley and Mitroy.

Within the GSF method, the above calculation is relatively straight-
forward. However, the basis functions can be optimized even further to 
include more physics of the problem,42 improving both their short distance 
and their asymptotic behavior. It is known that when one of the electrons 
is far from the nucleus, it is screened by the other, inner, electron. This can 
be associated to an effective charge “seen” by the outer electron. For that 
purpose we define the auxiliary potential as:

In many-electron wave function expansions, Zin could be, for example, 
optimally chosen to be the electron–nucleus interaction weight, and Zas 

(51)U(r) = −Zas

r
+

(
−Zin + Zas

)
e
−atr r

r
.
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the asymptotic averaged charge of the electron in its outer region: i.e., 
Zas = Zin − (N − 1), where N  is the number of electrons.

Since the GSF equation includes both the generating and auxiliary 
potential, the Coulomb properties associated to U(r) should not be lost 
by the choice of V(r) either at r → 0 or r → ∞. An adequate selection is

with λ > 0, δ > 0, and γ > 0. In this way, there are no further Coulomb 
singularities at r → 0 nor logarithmic distortion at r → ∞ apart from those 
associated to U(r). This fulfills the electron–nucleus Kato cusp conditions 
(see Ref. 42, for a more detailed description). With such basis functions 
we first performed a variational calculation for li = 0. This allowed us to 
obtain values for all the parameters of the potential V(r) and the param-
eter atr of the potential U(r). Then, we further improved the calculations 
with li up to 12 by adjusting Ei and λ. The values of the parameters are 
Ei = −1.05, Zin = −2, Zas = −2, atr = 0, λ = 0.93, δ = 0.3, and γ = 4. 
With these values we obtained a ground-state energy of −2.903712820 a.u. 
for li = 12 and with 455 basis functions.

A similar calculation has been performed for H−,41 with 40 GSF for 
each electron per li, up to li = 5, obtaining a ground-state energy equal 
to E0 = −0.52772866 a.u., in excellent agreement with the very precise 
variational result E0 = −0.52775101635 a.u., given by Freund et al.51

3.2.2 Singly-and doubly excited states of He
We extend our study to calculate energies of asymmetrical (excited) 
states.52 The improvement in accuracy and convergence reached in com-
parison with previous calculations is shown in Table 7.2 for the singlet 
and triplet states of He for L = 3. The size of the Sturmian basis for each 
electron is much smaller compared to that of the ground state, and few 
angular momenta configurations are needed to achieve convergence. The 
basis parameters are now different for each electron with E1 = −1.95 a.u.,  
E2 = −0.1 a.u., as1 = 0.1, as2 = 0.3 and the one-electron basis sizes are 
N1 = 2 and N2 = 12. The same parameters were used for singlet and triplet 
cases.

In Table 7.3, we show the results for singly excited states of He with 
different values of angular momentum L and levels n. The energy values 
obtained were optimized first for the lowest n level. Although the basis 
parameters are those which give the best lower energy, they provide a good 

(52)V(r) = − e
−λr

r

[
r
δ
e
−γ r

2

+ (1 − e
−γ r

2

)

]
,
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representation of the excited energy states as well. Of course this can be 
improved by changing the basis set values of the energy or the range of the 
Yukawa potential. However, we want to emphasize that the discretization 
provided by the finite spectral representation gives a good approximation 
for the lowest excited states without increasing the size or changing the 
basis set for each state under scrutiny.

Finally, we would like to point out that the precision of our values 
increases for higher total angular momenta. As mentioned before, the ener-
gies of the asymmetrical states are expected to give better accuracy than 
those of the ground states for the same number of basis elements. This is 
confirmed by our calculations.

Up to this point, we have shown that our method is able to deal with 
the ground and asymmetrical states for two-electron systems, for which 
exponential decay is the suitable asymptotic behavior. Our method can also 
be applied to calculate the doubly excited states of a two-electron atom. 
To this end, we choose a positive energy for the Sturmian basis, and the 
asymptotic behavior as outgoing wave, to meet the requirements of the 
doubly excited states where one of the electrons can escape and move far 

Table 7.3 Energy of the first three excited states for singlet states of He for different L 
with a total of 168 basis functions

n L Present work Ref. 57

3 2 −2.0556110426 −2.0556207328522456
4 3 −2.03125512987 −2.0312551443817490
5 4 −2.020000709670 −2.0200007108985847
6 5 −2.0138890317669 −2.0138890347542797

Table 7.2 Convergence of the 41F and 43
F He state energy as a function of the  

electron pair of angular momenta

I1, I2 Size 41F 43F

(0,3) 24 −2.031249 −2.031250
(1,2) 48 −2.031252256 −2.031252292
(2,3) 96 −2.03125509730 −2.03125511983
(3,4) 144 −2.03125512818 −2.03125514924

Ref. 57 −2.03125514438175 −2.03125516840324
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from the nucleus. The He eigenvalues Ei obtained with the diagonalization 
are then complex: the real part is the energies of each atomic state, while 
the imaginary one gives the width of the state lines. The choice of the basis 
parameters is made in a similar fashion as for the ground state, but the basis 
size must be increased for good accuracy.

In Table 7.4, we present the results for the real and imaginary part of the 
energy for some of the singlet S states of He. We use the (N , k)n nomen-
clature for the Rydberg series: the index N  denotes the principal quantum 
number of the remaining ion once the outer electron is ionized. The index 
n denotes the principal quantum number of the outer electron while the 
index k determines the parabolic quantum number of the Stark-type state 
in which the inner electron resides.

The basis set parameters were chosen to give the best value of the 
first doubly excited state but note that good results for other states can be 
achieved. The size of the basis set can be increased not only to obtain more 
accurate results but also to find more eigenvalues that correspond to the 
Rydberg series.

Remarkable calculations have been performed by Piraux and collaborators 
using uncorrelated basis.53–56 Using CSF, they obtained singly and doubly 
excited states comparable with the results provided by Drake with correlated 
basis functions. The advantage observed in their method is that the calcula-
tions required only one diagonalization and very few non-linear parameters. 
States with no natural parity were also studied with great success.54,55

3.3 Finite mass exotic and molecular systems
We shall now show that the CI approach with GSF is quite versatile, as it 
can be applied to any set of three particles, atomic or molecular. For bound 
states, we shall briefly consider several situations: two light particles of equal 
( [µ−

, µ
−

,
3
He

+2] ) or unequal masses (muonic helium: [e−, µ
−

, He
+2] ), 

Table 7.4 Energies for the Rydberg series of the singlet S states of He, using 30 GSF 
per electron

(N, k)n GSF Ref. 58

ℜ(E) ℑ(E) ℜ(E) ℑ(E)

(2, 1)2 −0.777876955 −0.002060106 −0.777867636 −0.002270653

(2, −1)2 −0.621817695 −0.000106535 −0.621927254 −0.000107818
(3, 2)3 −0.351827523 −0.001406250 −0.353538536 −0.001504906
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three light particles (the Ps
− system), and two heavy particles with a light 

one (H+
2 ).

3.3.1 Ground state of the [µ−, µ−,3He+2] system
Consider a three charged particle atom with z1 = z2 = −1 and 
z3 = 2, m3 = 5495.8852 a.u. and m1 = m2 = mµ, where mµ is the muon 
mass equal to 206.768262 a.u. Since the muons are heavy particles, they 
will remain much closer to the atomic nucleus than in the case of two 
electrons. In the calculations presented here we describe the muon–nucleus 
pairs with GSF which are defined on a radial domain of 0.050 a.u. and 
with basis energy E = −300 a.u. Table 7.5 shows our Sturmian expansion 
partial-wave results compared with the value given by Rodriguez et al.59,60 
obtained with a modest number of correlated basis functions.

3.3.2 Ground states of the [µ−, e−, AHe+2] systems
Now we consider a He-like system where only one electron is replaced by 
a muon. This is a very asymmetrical system due to the difference between 
each particle’s mass. Moreover, we consider two different nuclear masses of 
A

He
+2: A = ∞ and A = 3. As already mentioned, the muon–nuclei sub-

system maintains a very short separation compared to the electron–nucleus 
pair. This produces a screening of the nuclear charge seen by the electron. We 
employed different GSF basis to describe the dynamics of the µ− − He

+2 
and e− − He

+2 pairs, defined over radial regions equal to 0.025 and 15 a.u.

, respectively. The results were not so sensitive to the variation of the rest of 
the parameters appearing in the Sturmian equation. For these three–body 

Table 7.5 Ground-state energy of the [µ−, µ−, 3 He+2] system. We 
used 20 radial functions per coordinate and for each partial-wave li

[µ− ,µ− ,3 He+2] Ground-state energy

Ii EIi 

0 −576.874 110 
4 −577.555 143 
… …
20 −577.593 497 

Refs. 59,60 −576.934 471
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systems the partial wave convergence is very fast; we present in Table 7.6 
only the li = 2 calculations and compare with the results of Refs. 59,60.

3.3.3 Ground state of the Ps− system
We consider now the Ps

− three-body system, which corresponds to 
z1 = z2 = −1 and z3 = 1, and to reduced masses µ13 = µ23 = 0.5.  
Since now m3 = 1 is finite, the mass polarization term will play 
an important role in the Hamiltonian (39), unlike in the previous 
two atomic systems. We have used the same generating and auxil-
iary potentials of Eqs. (51) and (52) with the following parameters: 
Es = −0.06371, Zin = Zas = −1, α = 1, λ = 0.1, δ = 0.3, and γ = 4.  
As in the previous systems, this calculation is not fully variational. By 

Table 7.7 Partial-wave convergence of the ground-state energy of 
Ps− system. We used 35 radial functions per coordinate and for each 
partial-wave li

Ps-- Ground-state energy

Ii EIi

0 −0.257 240 143
1 −0.260 105 390
2 −0.261 496 276
… …
12 −0.262 002 458

Exact61 −0.262 005 070 

Table 7.6 Ground state energy of the [µ− , e− ,A He
+2] systems. We 

used 20 radial functions per coordinate and for each partial-wave li

[µ− , e− ,A He
+2] Ground-state energy

li A = ∞ A = 3

2 −414.036 397 −399.041 527

Refs. 59,60 −414.036 395 −399.042 262

Author’s personal copy



G. Gasaneo et al.178

adjusting λ and the basis energy, including partial–waves up to li = 6 is 
enough to reach energy values below −0.262 a.u. Our best energy value 
(see Table 7.7), obtained considering up to li = 12, is in excellent agreement 
with the very accurate results of Drake et al.61

3.3.4 Ground state of  H+

2

Finally, we consider the molecular three-body system H
+
2 . As we now 

have two heavy particles, there is no natural assignment for particle 3. By 
taking it to be one of the protons, we have z1 = z3 = 1 and z2 = −1, 
and the reduced masses µ13 = mp/2 and µ23 ≃ 1. Since m3 = mp is finite, 
the product of gradient operators will play an important role in Eq. (39). 
Alternatively, exploiting the symmetry, we may take the electron as par-
ticle 3; in this case, z1 = z2 = 1 and z3 = −1, and µ13 = µ23 ≃ 1. With 
this latter choice, the Schrödinger equation (39) does not differ too much 
from that of H-, except by the mass polarization term, the center of coor-
dinates being different. We emphasize that we do not consider the Born–
Oppenheimer approximation in either case, as we treat the three particles 
in a fully quantum framework. Results are shown in Table 7.8.

3.4 Confined atoms
Scientists have paid much attention to the study of atoms and molecules 
under different compression regimes. This is due to the existence of 
diverse situations in physics and chemistry such as atoms trapped in cavi-
ties, in zeolite channels, or encapsulated in hollow cages of carbon-based 

Table 7.8 Partial-wave convergence of the ground-state energy of H+
2  mol-

ecule. We used 35 radial functions per coordinate and for each partial-wave 
li, except for li = 0 for which we used 44 functions per coordinate

H
+
2  Ground-state energy

Ii Eli

0 −0.513 721 047
−0.560 413 338
…
−0.596 299 557

−0.597 139 063 

2
…
20

Exact62
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nano-materials such as endohedral fullerenes. Models of confined atomic 
and molecular systems have also found applications in the analysis of the 
so-called artificial atoms or quantum dots due to their relevance in techno-
logical applications. The spherically enclosed atoms represent a model that 
has been applied in the analysis of several confined systems with different 
methodologies where compression is simulated through hard or soft walls.

As an example of the versatility and precision of our GSF method we 
present two calculations of an He atom confined by external potentials. 
In the first case, the He atom is confined inside a penetrable cage, like a 
fullerene molecule. In the second case, we study the He confined by an 
infinite potential well.

3.4.1 He confined in endohedral fullerene
Fullerene molecules are capable of enclosing atoms in their hollow interior, 
forming endohedrally confined atoms. Since these systems can lead to 
important applications, we devoted a paper63 analyzing the dependence of 
the He energy levels on the strength of the confining potential. It is 
expected that the atomic properties of the confined atom (such as the wave 
functions, energy levels, the filling of electronic shells, polarizability, photo-
absorption, and ionization, etc.) will be dramatically changed both quanti-
tatively and qualitatively, from those characteristic of the free atoms, and 
change the physical processes where these species are involved (see, for 
example, Ref. 64). As the goal was to obtain a general qualitative under-
standing of these effects, instead of dealing with the real helium atom, the 
authors calculated the spectra of the Helium atom within the spherically 
symmetric model (Temkin–Poet model). A further simplification was made 
by modeling the endohedral environment by an attractive short-range 
spherical shell with a potential

where rc is the inner radius and � its thickness. The values deduced by 
Xu et al.65, rc = 5.75 a.u. and � = 1.89 a.u., which are specific for a C60 
fullerene molecule were considered. The value of U0, on the other hand, 
was varied from 0 to 10 a.u., in order to explore the general physics of 
the system, relevant to find other means of confining the atom (e.g., alter-
ing the number of carbon atoms in the fullerene cage). By varying the 

(53)U(r) =







−U0 < 0 rc ≤ r ≤ rc + �

0 otherwise
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external confinement potential of an endohedrally confined hydrogen 
atom, Connerade et al.66 studied the phenomenon of “mirror collapse”. 
This effect occurs when an electron bound by the Coulombic potential 
falls into the outer potential well, but, at the same time, an excited level, 
having a bound orbital extended over the outer shell, collapses into the 
inner Coulombic attraction corresponding to the first level.

The investigation of a similar effect for endohedrally confined He was 
found to be extremely difficult, because the mirror collapse positions in 
terms of the confining potential are amazingly evasive. In order to catch the 
exact point at which the collapse occurs one needs a very fine tuning of 
the potential strength. As an example, we can see, in Figure 7.4, the way in 
which two different electron configurations interact. In this case, one wave 
function (ψ

1s
2) represents the two He electrons in the ground state (since 

it is an S-wave model, its energy is −2.879 a.u.). The other wave function 
corresponds to the two electrons confined inside the fullerene cage (φ2). The 
energy is strongly dependent on the confinement potential and, at some 
particular value, a crossing between ψ

1s
2 and φ2 must occur, and the cor-

responding mirror collapse of the wave functions may be observed.
In order to capture the precise point at which the mirror collapse occurs, 

many calculations of the He spectra are needed, one for each confinement 

1.7482551.74825

U0  (a.u.)

–2.87901

–2.879005

–2.879

–2.878995

–2.87899

E
ne
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y 
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.u

.)

1.74826

Figure 7.4 ψ1s2 (He ground state) and φ2
1 (two electrons in the fullerene cage) wave 

functions for different potential depths U0.
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potential strength. It is necessary, therefore, to use a computational method 
capable of very fast calculations. Moreover, as Figure 7.4 shows, the collapse 
is extremely sensitive to the potential value. In this particular case, the effect 
occurs in a potential range between U0 = 1.74825 and U0 = 1.74826 a.u.. 
Thus, the computational method must also be very precise. Our GSF 
method is able to fulfill with both requirements.

3.4.2 He confined in an impenetrable spherical cage
Another example is the calculation of the atomic structure of an He atom 
inside an infinite potential well located at a given radius R. Many theoreti-
cal studies have been devoted to the effect of the confinement on atomic 
spectra. In particular, it has been observed that the degeneracy and rela-
tive ordering of the energy levels are both influenced significantly by the 
effect of confining potentials. Recently, considerable theoretical efforts have 
been made in performing more accurate computations on simple model 
systems, involving the hydrogen and helium atom, which could also serve 
as a benchmark for approximate methods. Within our GSF method, such 
calculations are straightforward. We only need to impose the confinement 
condition on the basis set, which automatically imposes the same condition 
on the total wave functions.

The spectrum of the He atom confined in a spherical cage of radius 
R is shown in Figure 7.5. In Table 7.9, the ground-state energies are 
shown as a function of the confinement radius R, and compared with 

2 4 6 8 10
R (a.u.)
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–1
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E
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u.
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Avoided Crossings

Figure 7.5 Confined He energies as a function of the cage radius R. For color version of 
this figure, the reader is referred to the online version of this chapter.
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other calculations. Those of Banerjee et al.67 have been obtained using a 
basis with two variational parameters. The calculations of Aquino et al.68 
used generalized Hylleras functions, and Joslin and Goldman71 performed 
Quantum Monte Carlo calculations, considered as the best available data 
values. Our calculations include up to the fifth partial wave and 20 radial 
functions per coordinate.

By linear interpolation one estimates the value of the critical cage 
radius at which the ground state crosses the E = 0 value. We found a 
value Rc = 1.101125 a.u., which is in very good agreement with the value 
Rc = 1.1011 a.u. obtained by Aquino.68

4. THREE-BODY PROBLEMS: SCATTERING STATES
4.1 Introduction

The calculation of scattering states (subscript sc) is much more difficult 
than that of bound states; while this is true also for the two-body case, it 
is even more complicated for the three-body case. As we shall see in the 
next subsection, the presence of different channels is one of the major dif-
ficulties. Another aspect that will immediately appear is that hyperspherical 
coordinates are more natural in the asymptotic domain where the three 
particles are well separated.

For the two-body case, vide infra, one of the advantages of using GSF 
is that they allow to successfully impose correct asymptotic scattering 

Table 7.9 Energies of the ground state of the confined He atom for different values of 
the confinement radius R

R Present work Ref. 68 Ref. 67 Ref. 71

0.6 13.318157 13.318340 13.3343 −
1.0 1.015794 1.015870 1.0183 1.0142
1.5 −1.906938 −1.906740 −1.9061 −1.9081
2.0 −2.604013 −2.603630 −2.5998 −2.6051
3.0 −2.872474 −2.871808 −2.8636 −2.8727
3.5 −2.893574 −2.892808 −2.8851 −2.8935
4.0 −2.900465 −2.899687 −2.8931 −2.9003
5.0 −2.903390 −2.902813 −2.8978 −2.9032
6.0 −2.903673 −2.903278 −2.8990 −2.9035
R → ∞ −2.903712 −2.903513 −2.8999 −2.9037

Exact R → ∞50 −2.903724
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conditions. For the three-body case, the same strong statement can-
not be made. The purpose of this section is to provide the theoretical 
Generalized Sturmian approach to solve three-body scattering problems. 
According to the channel one wants to study one of the two following 
expansions could be considered. The first one (essentially Eq. (41)) uses 
spherical coordinates, and is based on an adequate linear combination of 
outgoing two-body GSF, one in each coordinate r1 and r2, and may be 
written as:

Alternatively, one may use hyperspherical coordinates (see Section 4.5) 

ρ =
√

r
2
1 + r

2
2
 and ω5 = {α, r̂1, r̂2}, with α = tan

−1
(r2/r1), and write

Above, outgoing behavior (+) was chosen for the scattering states, aLMl1l2
n1n2

 
and ãmν are linear coefficients, and the label ν collects all angular quantum 
numbers and summation indexes.

Other approaches for atoms and molecules based on Sturmian functions 
can be found in the literature. In the work of Piraux and collaborators, 
CSF are used to study different ionization processes produced by photon 
absorption and electron impact on atoms.9,10,11 CSF have been also used 
by Papp and collaborators69,70 to deal with three-body problem involv-
ing Coulomb plus short-range interactions within a Faddeev approach. 
Regarding issues of interest in quantum chemistry as applied to the elec-
tronic structure of atoms and molecules, Coulomb Sturmians pertaining to 
coordinate systems alternative to the spherical ones have also been devel-
oped and tested numerically for three-body problems.20,23 A different line 
has been implemented by Ovchinnikov.31 However, all these approaches 
are very different to the one reviewed here.

4.2 Asymptotic behaviors
To illustrate the different three-body asymptotic channels, consider the 
collision of an electron with hydrogen. Depending on the energy of the 
projectile, one or more processes may occur, in particular elastic scattering, 
scattering with simultaneous excitation of the residual target, or ionization 

(54)

�
+
sc

(
r1, r2

)
=

∑

LM l1l2

∑

n1

∑

n2

a
LMl1l2
n1n2

A
S

+
n1l1

(r1)

r1

S
+
n2l2

(r2)

r2
Y

LM
l1l2

( r̂1, r̂2).

(55)�
+
sc (r1, r2) =

∑

mν

ãmν

S
+
mν(ρ)

ρ
5/2

�ν(ω5).
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with two electrons escaping in the field of a proton. The three-body wave 
function solving the electron–hydrogen Schrödinger equation must contain 
simultaneously—i.e., it couples—all these possible processes. When solv-
ing the differential equation two major difficulties appear: (i) numerically 
expensive large grids are required since scattering states are spread and the 
probability of finding the particles at any point of the configuration space is 
different from zero; and (ii) it is far from obvious to impose as boundary con-
ditions the well-defined asymptotic behaviors in different spacial domains.

Consider first the �0 region, the one corresponding to all three particles 
far from each other. As all interparticle distances are large, no contributions 
coming from bound states are expected in the asymptotic three-body scat-
tering wave function. Various approximated solutions are known for this 
region.72–74,76–78 An hyperspherical wave is known to be also a correct 
solution8:

where λ0 is a Coulomb parameter,  σ0 is a phase and Tk̃1,k̃2
= T

(
K
ρ
r1, K

ρ
r2

)
 

is the ionization transition amplitude. The coordinate-dependent momenta 
k̃j ( j = 2, 3) were defined originally by Alt and Mukhamedzhanov,74 while 

K =
√

k
2
1 + k

2
2 is the hyper-momentum of the particles.

Next, take the �i regions (with i = 1, 2, 3) which correspond to two of 
the particles close to each other and the third is far away from the pair.75 
We may have the situation in which one of the electrons is close to the 
nucleus, forming a bound state, and the other is far away. In this case, the 
wave function should have the following asymptotic form:

where �i (r1, r2) represents the initial state which is defined before the col-
lision. Here we are assuming that electron 1 is the projectile and η1 is the 
corresponding Sommerfeld parameter. The second term in this expression 
represents the excitation of the target and the dispersion of the projectile; 
Fn

(
kn r̂1, ki

)
 represents the excitation amplitude. The symmetric case is the 

situation where the other electron is far away and the initial one ends up 
bound at the target

(56)
�

+
as,c

(

r1, r2

)

→
ρ→∞

(2π i)
1/2

(2π)
3

K
3/2

T
k̃1,k̃2

e
iKρ−iλ0 ln(2Kρ)−iσ0

ρ
5/2

,

(57)
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where Gm

(
kmr̂2, ki

)
 represents the capture of the incoming electron and η2 

the Sommerfeld parameter for electron 2. The summations in Eq. (57) and 
(58) run over bound and continuum states. The third �i region corresponds 
to the situation where both electrons are close to each other and far away 
from the nucleus.

When the collision process is studied and the Schrödinger equation is 
solved numerically, all the channels, represented by the asymptotic wave 
functions �+

as,1 (r1, r2), �
+
as,2 (r1, r2), and �+

as,c (r1, r2), are coupled and are 
incorporated simultaneously into the solution. In other words, the full solu-
tion should have the following general form at large distances:

Numerically, it is extremely difficult to impose these conditions to the wave 
function. As mentioned in the introduction, however, various methods have 
succeeded but not without difficulties. In this section, we shall see how 
GSF can be used to tackle the problem. Applications for several processes 
will be given in Section 5.

4.3 Driven equation for three–body scattering problems
A standard procedure to solve three-body scattering problems consists in 
transforming the homogeneous three-body Schrödinger equation into 
an inhomogeneous one (driven equation). As in Section 2.3, Eq. (21), the 
three-body the solution is separated as the sum of an initial channel wave 
function �i (r1, r2) and the scattering wave function �+

sc (r1, r2) which 
contains all the information about the collision process:

When this proposal is substituted into the Schrödinger equation (40) the 
following driven equation results for �+

sc (r1, r2)

(58)

(59)

�
+ (

r1, r2

)

→
ρ→∞

�
+
as,1

(

r1, r2

)

+ �
+
as,2

(

r1, r2

)

+ �
+
as,c

(

r1, r2

)

.

(60)�
+

(r1, r2) = �i (r1, r2) + �
+
sc (r1, r2) .

(61)[H − E] �
+
sc (r1, r2) = −W (r1, r2)�i (r1, r2) ,
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where W (r1, r2) represents the interactions not solved by �i (r1, r2).
It is interesting to notice that the transition amplitude Tk̃1,k̃2

 appear-
ing in Eq. (56) can be extracted directly from the solution of (61) which, 
formally, may be written as:

where G+ (
r1, r2, r

′
1, r

′
2

)
 is the three-body Coulomb Green’s function. In 

the �0 region its asymptotic limit reads8

where the function �−
k̃1,k̃2

(

r
′
1, r

′
2

)

 is the exact solution of the three-body 

problem with incoming wave asymptotic behavior. 

From these two relations, one finds that the scattering wave function 
�

−
k1,k2

(
r
′
1, r

′
2

)
 will have the asymptotic behaviour (56) in which the transi-

tion amplitude T
k̃1,k̃2

 is given by

This is the standard definition for the transition amplitudes required by 
scattering theory. Thus, once the driven Eq. (61) is solved with appro-
priate asymptotic conditions, one can extract the ionization transition 
amplitude from the evaluation—at large distances—of the scattering 
wave function itself. However, since all possible channels are coupled, it 
is possible to extract also the other transition amplitudes appearing in  
Eqs. (57) and (58).

4.3.1 Ionization of hydrogen by electron impact
In the case of an electron-hydrogen collision, the Hamiltonian H is given 
by Eq. (50) where z1 = z2 = −1 and z3 = Z = 1. The initial state may 

(62)�
+
sc

(

r1, r2

)

=
∫

dr
′
1dr

′
2G

+ (

r1, r2, r
′
1, r

′
2

)

W
(

r
′
1, r

′
2

)

�i

(

r
′
1, r

′
2

)

,

(63)

G
+ (

r1, r2, r
′
1, r

′
2

)

→ (2π i)
1/2

(2π)
3

K
3
2

e
i[Kρ−λ0 ln(2Kρ)−σ0]

ρ
5
2

�
−
k̃1,k̃2

(

r
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1, r

′
2

)

,

(64)T
k̃1,k̃2

= ��−
k̃1,k̃2

(
r1, r2

)
| W

(
r1, r2

)
| �i

(
r1, r2

)
�.
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be chosen as a plane wave for the incident electron eiki .r1 multiplied by 
an hydrogenic ground state e−Zr2; actually, depending whether one looks 
at singlet (S = 0) or triplet (S = 1) states, one may take the following 
combination

where ki =
√

2(E − (−Z
2
/2)). The RHS of the driven equation (61) is 

then

Other proposals including correlation can be defined for the initial state. 
For example, a C3-like approach where the projectile–target interaction 
is explicitly included presents the advantage of leading to a short-range 
W (r1, r2) function.79 However, it has the disadvantage of coupling all 
the coordinates and making more difficult the task of solving the driven 
equation.

4.3.2 Double ionization of helium by high-energy electron impact
Consider now the double ionization of helium atoms by high-energy 
electron impact. As shown in Ref. 80 and briefly sketched below, this  
four-body scattering problem can be reduced to a three-body problem, and 
thus we end up with a driven equation of the kind (61).

The non-relativistic four-body Hamiltonian for three electrons and an 
infinite mass helium nucleus of charge Z = 2 is given by

where particle 0 labels the electron projectile (incident with momentum 
ki, and scattered with momentum kf ), while particles 1 and 2 are the target 
electrons. We first define a projectile Hamiltonian

�i(r1, r2) = A
1√
π

e
−r1e

iki.r2 ,

(65)−
[(

1

r12

− 1

r2

)
�i(r1, r2) + (−1)

S
(1 ↔ 2)

]
.

(66)

H4b = −1

2
∇2

0 − 1

2
∇2

1 − 1

2
∇2

2 − Z

r0
− Z

r1
− Z

r2
+ 1

r01

+ 1

r02

+ 1

r12

,

(67)Hp(Zp) =
(

−1

2
∇2

0 −
Zp

r0

)
,
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which includes only Coulomb projectile–nucleus interaction with a model 
charge Zp. We then decompose the four-body Hamiltonian as follows:

where

Above Ha is the three-body helium Hamiltonian (50); let �(0)
(r1, r2) 

represent its ground state. As well as all kinetic operators, the Hamiltonian 
H0

(
Zp

)
 includes all interactions of the subsystem (1,2) through Ha, and a 

projectile–nucleus interaction −Zp/r0 through Hp(Zp). The two subsystems 
are coupled through the interaction W̄ (Zp) which may be considered as a 
perturbation.

To study electron-impact double ionization processes we need to 
find a scattering solution, with outgoing-type behavior, of the four-body 
Schödinger equation

Using a perturbation expansion in terms of the magnitude of 
W̄

(
Zp

)
, �

+ =
∑

n λ
n
�

(n)+, we obtain a system of differential equations 

for �(n)+. The function

solution of the Hamiltonian H0 (which is separable in the two subsys-
tems (1,2) and 0), represents the initial state of the system (zeroth-order 
equation). For presentation purposes, the projectile–nucleus interaction is 
neglected and a plane wave is taken (Zp = 0). Alternatively (see Ref. 80, 
for details), it can be properly represented through a Coulomb wave func-
tion with charge Zp = Z81 which includes the projectile–nucleus interac-
tion in both initial and final channels.

(68)H4b = H0

(

Zp

)

+ W̄
(

Zp

)

,

(69a)H0

(
Zp

)
= Hp(Zp) + Ha,

(69b)W̄
(
Zp

)
= −

Z − Zp

r0
+ 1

r01

+ 1

r02

.

(70)
[
H0

(
Zp

)
+ W̄

(
Zp

)
− E

]
�

+ (
r0, r1, r2

)
= 0.

(71)�
(0)+ (

r0, r1, r2

)
= 1

(2π)
3/2

e
iki ·r0�

(0)
(r1, r2) ,
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Next, we explore the first-order equation in which the interaction 
W̄

(
Zp

)
 is included only once. Taking a plane wave for the scattered elec-

tron, the two ejected electrons solution satisfies the driven equation80

where Ea = E − k
2
f /2 denotes the energy of two electrons in interaction 

with the nucleus in the final state, and the driven term includes

with q = ki − kf  the momentum transfer. In this way, the four-body prob-
lem is reduced to a pure three-body one as described by (61) where the 
dynamics of the two ejected electrons in the presence of the heavy nucleus 
is described by Eq. (72). The four-body scattering problem is well formu-
lated and its first-order solution possesses all the information contained in 
the first Born approximation. Following similar steps used for the three-
body case, we can extract a transition amplitude (64) that in this case reads

and one recovers the standard first Born approximation, see, e.g., Ref. 
82,83. In the calculations presented in the literature, approximated wave 
functions, or numerical ones, have been used for �−

k̃1,k̃2
(r1, r2). In the  

transition matrix element (74) the exact solution of the three-body problem 
�

−
k̃1,k̃2

(r1, r2) should be used; the corresponding three-body Schrödinger 
equation has been given, for the first time, in Ref. 80.

Whether for single ionization of hydrogen, or double ionization of 
helium by fast incident electrons, the scattering problem is transformed into 
a three-body driven equation (Eq. (61) or (72)) with outgoing boundary 
conditions. These equations can be solved with GSF either in spherical or 
hyperspherical coordinates.

4.4  Solving the driven equation with GSF (spherical 
coordinates)

In order to solve the driven equation (61), we may use a CI expansion (54). 
Projecting over the basis elements a matrix problem results,

(72)[Ea − Ha] �
(1)+
sc (r1, r2) = Wfi (r1, r2)�

(0)
(r1, r2) ,

(73)Wfi (r1, r2) = �kf |W̄ |ki� = 1

(2π)
3

4π

q
2

(
−Z + e

iq·r1 + e
iq·r2

)

(74)

T
k̃1,k̃2

= 1

(2π)
3

4π

q
2

��−
k̃1,k̃2

(r1, r2) | − Z + e
iq·r1 + e

iq·r2 |�(0)
(r1, r2)�
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where the Hamiltonian H and overlap S matrices have elements [H]l
′
1l

′
2l1l2

n
′
1n

′
2n1n2

 

and [S]l
′
1l

′
2l1l2

n
′
1n

′
2n1n2

 similar to those described for the three-body bound states, 

except that the GSF have outgoing behavior.
The elements of the vector b are the expansion coefficients of the 

driven term

Note that, using the generating potentials Vg1
(r1) and Vg2

(r2), the 
orthogonality property of the GSF makes the matrices diagonal and leads 
to a largely simplified calculation. One of the advantages of using the GSF 
is that they remove from the equation the kinetic energy of each electron, 
and the electron–nucleus potentials by taking them as auxiliary potentials 
in Eq. (2). In this way, only the generating potentials and the electron–
electron interaction have to be evaluated to obtain Hamiltonian H.

4.5  Solving the driven equation with GSF (hyperspherical 
coordinates)

We shall now present an hyperspherical approach. To do so, we first need 
to define the coordinates, set the scattering problem, and then propose 
hyperspherical GSF to solve it.

4.5.1 Hyperspherical coordinates
The three-body Hamiltonian with particles of masses m1, m2, and m3 can be 
written in terms of mass-scaled Jacobi coordinates x and X.21,22,84,85 From 
these vectors, which represent any of the three existing pairs in three-
body problems, hyperspherical coordinates can be defined: a hyperradius 
ρ, defined as ρ2 = x

2 + X
2, and five hyperangular coordinates (denoted 

collectively by ω5) that include the hyperangle tan α = X/x and the polar 
angles θx, φx and θX , φX defining the orientations x̂  and X̂ of the Jacobi 
vectors in the center-of-mass reference frame. The previous definitions 
allow one to write x = ρ cos α and X = ρ sin α; below x = r1 and X = r2.

(75)[S(E − E1 − E2) − H] a = b,

(76)

W
(

r1, r2

)

�i

(

r1, r2

)

=
∑

LMl1l2

∑

n1

∑

n2

b
LMl1l2
n1n2

Vg1
(r1)Vg2

(r2)

A

(

S
+
n1l1

(r1)

r1

S
+
n2l2

(r2)

r2
Y

LM
l1l2

(̂r1, r̂2)

)

.
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The three-body Hamiltonian is now written as H = T + V
(
ρ, ω5

)
 

where the kinetic energy operator takes the form

where µ =
√

m1m2m3/
(
m1 + m2 + m3

)
 is the three-body reduced mass, 

and �2 is the grand orbital angular momentum operator.84

The interaction potentials, say between two electrons (positions r1, r2) and 
a nucleus of charge Z, may be written as86,30

where

the top choice (between brackets) being for 0 ≤ α ≤ 1
4
π and the bottom 

one for 14π ≤ α ≤ 1
2
π.

4.5.2 Scattering driven equation
The Schrödinger equation to be considered is [H − E] �

(
ρ, ω5

)
= 0.  

As proposed in spherical coordinates (see Eq. (60)), the wave func-
tion �(ρ, ω5) for a collision process may be separated in two parts 
�(ρ, ω5) = �i(ρ, ω5) + �sc(ρ, ω5). Again, �i(ρ, ω5) is a known initial 
state, eigensolution of an approximate Hamiltonian H0 = H − W . Recall 
that since H = T + V

(
ρ, ω5

)
 is the full Hamiltonian, W  is the neglected, 

unsolved interaction not included in the initial prepared state. �sc(ρ, ω5), 
on the other hand, is a wave function solving all the interactions V (ρ, ω5).  
According to this separation, the function �sc(ρ, ω5) satisfies a driven 
Schrödinger equation

T = − 1

2µ

[
1

ρ
5

∂

∂ρ

(
ρ

5 ∂

∂ρ

)
− �

2

ρ
2

]
,

(77)V
(
ρ, ω5

)
= −Z

r1
− Z

r2
+ 1

r12

= C(ω5)

ρ
,

(78)

C(ω5) = − Z

cos α
− Z

sin α
+

∞�

l=0

4π

2l + 1

×
l�

m=−l

(−1)
m

Yl−m

�
r̂2

�
Ylm

�
r̂1

�




sec α tan
l
α

csc α cot
l
α



 ,

(79)[T + V (ρ, ω5) − E]�sc(ρ, ω5) = −W (ρ, ω5)�i(ρ, ω5) = ϕ(ρ, ω5),
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where ϕ(ρ, ω5) denotes the driving term. Equation (79) must be solved 
imposing outgoing behavior to �sc(ρ, ω5) for large values of ρ (ρ → ∞).

Let K be the hyperspherical momentum related to the total energy 
through E = K

2
/2µ. When all particles are far from each other, the 

Peterkop-type asymptotic behavior

indicates that an hyperspherical approach could be more adequate than 
the use of interparticle (spherical) coordinates. It also shows that, in the 
asymptotic region, the Coulomb interactions couple the angles with the 
hyperradius in a particular form, through a Coulomb logarithmic phase.

Two important issues when solving this collision problem are (i) the 
range of the interaction W

(
ρ, ω5

)
 and (ii) the use of an appropriate matrix 

definition for the operator (H − E) or for Green’s function (H − E)
−1. 

The basis set to be used has to take into account both issues: it has to be 
complete in the region where the interaction W

(
ρ, ω5

)
 is not negligible, 

and outside that region has to possess the correct asymptotic behavior cor-
responding to all three Coulomb interactions.

4.5.3 Hyperspherical Generalized Sturmian functions
There are various ways of defining a Sturmian strategy in hyperspherical 
coordinates. Two of them were discussed in Refs. 84,86. Here we briefly 
review the approach presented in Ref. 84.

First, as in Ref. 30, we define a set of angular Sturmian functions 
�ν

(
ω5

)
 depending on the angular coordinates ω5. They are solutions of the 

following angular Sturmian eigenvalue equation

where ρν or, alternatively, ν can be considered as the eigenvalues. If ν is used 
as eigenvalue, then ρν is considered as an externally fixed parameter ρeff  
(there are various ways of defining ρeff , some of them have been discussed 
in Ref. 84). In this case, the eigenfunctions �ν

(
ω5

)
 satisfy the following 

orthogonality and closure relations

(80)�
+
sc (ρ, ω5) ∝ e

iKρ−i
C(ω5)

K ln(2Kρ)

ρ
5/2

(81)
[
�

2 + 2µρνC
(
ω5

)]
�ν

(
ω5

)
= ν(ν + 4)�ν

(
ω5

)
,

(82a)

∫

dω5�ν
′
(

ω5

)

�ν

(

ω5

)

= δ
ν

′
ν
,
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where dω5 represents the five-dimensional volume element and δ
(
ω5 − ω

′
5

)
 

is the symbolic product of the Dirac delta corresponding to all five angular 
coordinates.

In the specific case of the S-wave models to be considered in the appli-
cations (Section 5), the eigenfunctions are the Jacobi polynomials21,22,84,86

where 2F1 represents the Gauss hypergeometric function.87  These angular 
functions satisfy the eigenvalue equation

with νn = 2n (n = 0, 1, . . .), form a complete set and satisfy the orthonormality 
relation

For the hyperradial coordinate we can introduce a set of radial functions 
S̄mν (ρ) satisfying the Sturmian equation:

The potential U (ρ) can be of short- or long-range; Vg (ρ) is a generating 
potential. Introducing the reduced function S̄mν (ρ) = Smν (ρ) /ρ

5
2 into  

(86) leads to

(82b)
∑

ν

�ν

(
ω

′
5

)
�ν

(
ω5

)
= δ

(
ω5 − ω

′
5

)
,

(83)�n(α) = 4(n + 1)√
π

2F1

(

−n, n + 2,
3

2
; sin

2
α

)

,

(84)�
2
�n(α) = νn(νn + 4)�n(α),

(85)
∫ π/2

0

�
n
′(α)�n(α) sin

2
α cos

2
α dα = δ

n
′
n
.

(86)

[
− 1

2µ

1

ρ
5

∂

∂ρ

(
ρ

5 ∂

∂ρ

)
+ ν(ν + 4)

2µρ
2

+ U(ρ) − E

]
S̄mν (ρ)

= −βmVg (ρ) S̄mν (ρ) .

(87)

[
− 1

2µ

∂
2

∂ρ
2

+
ν(ν + 4) + 15

4

2µρ
2

+ U(ρ) − E

]
Smν(ρ) = −βmVg (ρ) Smν(ρ),
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which has the same form as Eq. (2) presented in Section 2.1 (the difference 
appearing only in the definition of the 1/ρ

2 term) and similar boundary 
conditions can then be used. Note that the parameter ν can be a fixed 
parameter or the eigenvalue of the angular Sturmian functions. The hyper-
radial eigenfunctions Smν(ρ) form an orthogonal and complete set such 
that

and the algebra maps easily to the one related to the spherical radial 
Sturmian functions.

4.5.4  Hyperspherical Generalized Sturmian functions applied to 
scattering problems

To solve the driven Eq. (79), we use expansion (55) for the wave function 
�sc

(
ρ, ω5

)
. We also propose the following expansion for the driven term

whose range dictates that of the generating potential Vg(ρ) to be chosen. 
Replacing in (79) we obtain

One convenient election for the potential U(ρ) could be U(ρ) = −Z/ρ. 
Projecting Eq. (90) over the basis functions, and using the orthogonality 
properties (82a) and (88a), we find

(88a)

∫

dρS
m

′
ν
(ρ)Vg (ρ) Smν(ρ) = δ

m
′
m

,

(88b)
∑

m

Smν

(
ρ

′)
Vg (ρ) Smν (ρ) = δ

(
ρ − ρ

′)

(89)W
(
ρ, ω5

)
�i

(
ρ, ω5

)
=

∑

mν

cmνVg (ρ)
Smν (ρ)

ρ
5
2

�ν

(
ω5

)
,

(90)

∑

mν

ãmν

[(
U(ρ) + βmVg (ρ)

)
+ ρeff

C(ω5)

ρ
2

+ C(ω5)

ρ

]
Smν (ρ)�ν

(
ω5

)

= W
(
ρ, ω5

)
�i

(
ρ, ω5

)
,

(91)

∑

mν

[(

[−Z

ρ

]

mm
′
,v

+βmδ
mm

′

)

δ
νν

′ +
(

ρeff

[

1

ρ
2

]

mm
′
,v

+
[

1

ρ

]

mm
′
,v

)

[

C(ω5)
]

vv
′

]

ãmν = c
m

′
ν
′ ,
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where the matrix elements 
[
C(ω5)

]
νν

′ are

and the matrix elements [A]
mm

′
,y are defined by one-dimensional integrals

Solving the matrix problem (91) provides the expansion coefficients ãmν. In 
the next section, we see that building the solution in this way provides the 
scattering functions with the correct asymptotic behavior (80).

5. THREE-BODY SCATTERING STATES: APPLICATIONS
5.1 Introduction

Model calculations, used as benchmarks, can be found throughout the 
collision literature. S-wave models, though restricted to zero angular 
momentum states, serve as a test bed as they contain most of the features 
and difficulties associated to the full physical problem but, require less 
computational resources. They are useful, in general, as they allow us to 
put on a strong footing different numerical methods which do not nec-
essarily yield converging results when applied to complicated scattering 
processes. For the three-body problem, for example, before solving the full 
electron–Hydrogen ionization problem, S-wave model (often referred to as 
Temkin–Poet (TP) model88,89) calculationss have played a very important 
role in the development of theoretical methods.

In this section we consider three-body scattering S-wave models solved 
using GSF. We start with a recently proposed break-up model problem, 
then consider the electron–Hydrogen TP model (e, 2e) processes, and 
finally a model calculation for high impact energy (e, 3e) processes.

In the TP model, the electron–electron repulsion 1/r12 is spherically 
averaged and thus replaced by 1/r> where r> = max(r1, r2). The three-body 
Coulomb potential (two electrons and a nucleus of charge Z) becomes

(92)
[

C(ω5)
]

νν
′ =

∫

dω5 �
ν

′
(

ω5

)

C(ω5)�ν

(

ω5

)

,

(93)[A]
mm

′
,ν

=
∫

dρSmν(ρ)A (ρ) S
m

′
ν
(ρ).

(94)V (r1, r2) = −Z

r1
− Z

r2
+ 1

r>
.
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In hyperspherical coordinates, the “charge” C(ω5) defined through (77) is 
replaced by C̃(α) with
Thus only an α dependence is retained in the potential: V

(
ρ, ω5

)
= C̃(α)/ρ.  

The Schrödinger equation corresponding to the TP model provides a sim-
plified version of the physical problem.

5.2 Three-body S-wave model problem
Recently,90 a three-body S-wave model has been proposed. Though appar-
ently rather simple, this model contains the essential difficulties of the real 
problem (Coulomb potentials and non-separability). As the analytical solu-
tion of the model can be written out, it provides a very interesting and 
unique tool to validate numerical methods.

Differently from the TP model, the authors of  Ref. 90 suggested 
replacing C(ω5) by a constant charge C, i.e., the following model Coulomb 
potential

which can be either attractive (C < 0) or repulsive (C > 0). Note that the 
potential is not one of the three Coulomb interactions that appear in the 
physical case V (ρ, ω5). Although seemingly simple in hyperspherical coor-
dinates, it is not separable in spherical coordinates r1 and r2; assuming, for 
example, that r2 < r1, their coupling is very particular

where the second equality illustrates the expansion in terms of the hyper-
angle α.  The lowest order (first term) of expansion (97) corresponds to 
retaining the first term of the real potential (77). The model potential (96) 
therefore tests the r1 and r2 dependence in a way which differs substan-
tially from the TP model. On top of that, it offers the possibility to make 
a detailed and interesting asymptotic investigation of the scattering wave 

(95)C̃(α) = − Z

cos α
− Z

sin α
+







1
cos α

0 ≤ α ≤ 1
4
π

1
sin α

1
4
π ≤ α ≤ 1

2
π .

.

(96)V (ρ) = C

ρ
,

(97)

C√
r
2
1 + r

2
2

= C

r1

[
1 − 1

2

(
r2

r1

)2

+ · · ·
]

= C

ρ cos α

[
1 − 1

2
tan

2
α + · · ·

]
,
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function. Indeed, for a given “angular” set (fixed ω5), the angular depen-
dent charge C(ω5) takes a constant value and thus the physical three-body 
potential reduces to the model. The knowledge of the analytic solution 
allows one to investigate, in an original manner, for what hyperradius the 
corresponding asymptotic regime is actually reached. By varying the angles, 
one may explore different asymptotic domains, and related convergence 
issues.

In the proposed model, the initial state is taken to be a symmetrized 
bound-free product of a standing spherical wave in the relative coordinate 
r1 between the incoming particle and the center of the target and a bound-
like state in the target coordinate r2; the interaction neglected in the initial 
channel is given, for example, by a Yukawa potential e−aρ

/ρ. More specifi-
cally, we take the following source (driving term)

with a parameter a such that ℜ(a) > 1 and a real parameter t ≥ −1. This 
source has a known single series expansion in Jacobi polynomials �n(α), 
the coefficients being functions of ρ.

The Coulomb potential is simple in hyperspherical but not in spherical 
coordinates. The driven term is not separable in either set of coordinates, 
not even asymptotically. Thus the model equation

together with the source (98) provides a physically meaningful Coulomb 
scattering problem which presents typical three-body problem difficulties 
including non-separability.

To numerically solve this three-body problem hyperspherical Sturmian 
functions, built as a product of coupled functions (55), were employed.90,91 
For the angular part, Jacobi polynomials �n(α) were used and can be 
generated either through their analytic definition (83) or by solving 
numerically the hyperangular eigenvalue equation (84) by discretizing the 
functions on a uniform angular lattice.91 Within a finite-difference scheme 
and using a second-order approximation, a discretized version of this equa-
tion is obtained and solved efficiently using standard matrix diagonalization 

(98)ϕ (ρ, α) = ρ
t
e
−aρ 1

2

[
sin r1

r1

sinh r2

r2
+ sin r2

r2

sinh r1

r1

]
,

(99)

[
− 1

2µ

1

ρ
5

∂

∂ρ

(
ρ

5 ∂

∂ρ

)
+ �

2

2µρ
2

+ C

ρ
− E

]
� (ρ, α) = ϕ (ρ, α) ,
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routines, such as those from Lapack package.92 Coupled to these angular 
functions, for a given n, we take as hyperradial basis functions, the Sturmian 
functions Smn(ρ) solving numerically Eq. (87) where ν = νn = 2n and 
E is externally fixed as the energy of the system. The auxiliary potential 
U(ρ) is taken to be equal to the interaction potential C/ρ, while the gen-
erating potential Vg (ρ) is set as a Yukawa potential − exp(−asρ)/ρ. With 
this choice, asymptotically, Eq. (87) reduces to a Coulomb homogeneous 
equation providing all basis functions (and thus the hypersherical GSF) a 
unique—and appropriate—asymptotic behavior

where K is the hyperspherical momentum and η = Cµ/K the Sommerfeld 
parameter.

In Figure 7.6, the functions S+
mn(ρ), corresponding to the first 15 hyper-

radial quantum numbers m, and for the hyperangular quantum number 
n = 0, obtained with as = 0.2, are plotted for a model attractive charge 
C = −1, assuming a reduced mass µ = 1, and for an energy E = 1 a.u. One 
easily appreciates how every function in the set achieves the asymptotic 
behavior (100) smoothly and the set is dense for low hyperradial values. 
Therefore, any well-behaved function that vanishes at ρ < 25 a.u., can be 

(100)lim
ρ→∞

S
+
mn (ρ) ∝ e

iKρ−iη ln(2Kρ)
,

0 5 10 15 20 25 30

ρ (a.u.)

-1

-0.5

0

0.5

1

S
m

,0
(ρ

) 
+

Figure 7.6 The first 15 Generalized Hyperspherical Sturmian basis set S+
mn(ρ), for n = 0 

and E = 1 a.u. For color version of this figure, the reader is referred to the online version 
of this chapter.
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perfectly expanded by this basis. For higher n values, the basis is dense for 
higher ρ values, allowing the expansion at a more extended range.

Let us expand the numerical solution of the scattering problem (99) 
with such a basis set

Since both �NUM
(ρ, α) and S+

mn (ρ) have the same asymptotic behavior, 
the above expansion is restricted to the internal region where particle 
interaction occurs. Using the eigenvalue Eq. (84) for the angular part,  

Eq. (87) for the radial part, projecting over S+
pq(ρ)�q(α)/ρ

5
2 and using the 

orthonormality relation (85), the unknown coefficients a are given by the 
following matrix equation

where the matrix elements are defined as

The RHS vector Ipq elements are defined by

which, for the source (98) considered, reduce to the product of one-dimen-
sional integrals. The driven equation (99) is transformed into an algebraic 
problem which can be easily solved using standard matrix techniques.43

The general solution of the complete scattering problem is known ana-
lytically.90 It is built as a linear combination of products of hyperangular 
�n(α) functions times hyperradial functions90,93 built to have the desired 
outgoing asymptotic behavior

(101)�
NUM

(ρ, α) = 1

ρ
5
2

∑

m

∑

n

amn S
+
mn(ρ) �n(α).

(102)
∑

m

βp,m [V]p,qm apm = Ipq,

(103)[V]p,qm =
∫ ∞

0
S

+
pq(ρ) Vg (ρ) S

+
mq(ρ) dρ .

(104)

Ipq =
∫ π/2

0

�p(α) sin
2
α cos

2
αdα

∫ ∞

0

S
+
pq (ρ) ϕ (ρ, α) ρ

5
2 dρ,

(105)�
+
(ρ, α) → f (α)

e
iKρ−iη ln(2Kρ)

ρ
5
2

,
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expected for a Coulomb scattering problem.94,95 This limit provides an 
analytical expression also for the transition amplitude f (α). The latter can 
be easily extracted also from �NUM

(ρ, α) using the outgoing asymptotic 
behavior (100), since

yielding, by comparison with (105),

In Ref. 90,91, several kinematic situations were studied and overall 
excellent agreement was found between the numerical hyperspherical 
expansion �NUM

(ρ, α) and the analytical solution. An example is provided 
in Figure 7.7 for a fixed value α = π/4. We show the comparison in two 
regions, close to the origin (left) and at very large hyperradii (right).

All hyperradial basis elements not only diagonalize the kinetic energy and 
the interaction, but also possess the same appropriate asymptotic behavior; 
thus, they only need to expand the solution in the interaction region. These 
properties strongly accelerate the expansion convergence rate for the scatter-
ing wave function, and allow for a straightforward extraction of the transition 

(106)�
NUM

(ρ, α) →
∑

n

(∑

m

an,m

)
�n (α)

e
iKρ−iη ln(2Kρ)

ρ
5
2

,

(107)f (α) =
∑

n

(∑

m

an,m

)
�n (α) .
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0.4

Figure 7.7 Real part of the numerical (full line) scattering solution �NUM
(ρ, α)ρ

5/2 
given by Eq. (101) as a function of ρ along the cut α = π/4, for K = 1 a.u. (i.e., the 
energy E = 0.5 a.u.), the parameters of the source are taken to be a = 2 and t = 0, and 
the interaction charge as C = −1. The solid dots correspond to the real part of the ana-
lytical solution �+

(ρ, α)ρ
5/2. For color version of this figure, the reader is referred to the 

online version of this chapter.
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amplitude. Excellent agreement with the analytical results is found with only 
very few expansion terms. The numerical results shown in Figure 7.7 were 
obtained with only 8 hyperangular n- and 15 hyperradial m-terms.

The model problem allowed the authors90,91 to explore how the scat-
tering wave function is modified in behavior for different hyperradial 
domains, and how far one should go to extract the transition amplitude 
from the wave function itself. It was found that the required hyperradial 
distances are very large, especially for low energies. With the GSF hyper-
spherical method, one can reach the truly outgoing asymptotic region, 
where no other numerical method (besides the propagations performed by 
Malegat et al.96) can handle the calculations.

5.3 S-wave model of (e, 2e) processes on hydrogen
In this section, we review our results for the ionization of hydrogen by 
electron impact. To avoid all the difficulties introduced by the angular 
dependence of the wave functions and trying to clarify the crucial numeri-
cal and physical issues, we consider here the TP model:

This is the standard test for any numerical method to be implemented for 
three-body ionization calculations, as it presents the difficulties associated 
to non-separability and to the long-range of the Coulomb potentials. As 
described in Section 4.4, to solve Eq. (108), one may use a CI expansion 
(54) with a linear combination of properly symmetrized products of two-
body outgoing Sturmian functions S+

n1l1
(r1)S

+
n2l2

(r2). In Ref. 97, for each 
coordinate, a short-range generating potential, i.e., V(ri) → 0 for ri > rc, 
was taken. On the other hand, choosing the auxiliary potential U(ri), with 
a Coulomb tail, −Zi/ri for ri > rc, provides an asymptotic behavior of the 
basis functions associated with an outgoing wave of energy Ei, distorted 
by the charge Zi. The best way of defining the asymptotic behavior in 
each coordinate ri corresponds to Ei = E and Zi = Z − 1. It actually cor-
responds to an appropriate description for the �α region: one particle is 
at finite distance with close-to-zero or negative energy and sees the full 
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nuclear charge Z while the other is at infinite distances carrying most 
of the system’s energy but sees a screened charge Zi. Since this screened 
value does not correspond to the atomic value at short distances, in order 
to have a more consistent picture, we define the potential Ui(ri) by parts, 
i.e., Ui(ri) = −Z/ri for the inner region (r < rc), and Ui(ri) = −(Z − 1)/ri 
for the outer region (r > rc) (no major differences were observed between 
the results obtained with smooth or sharp charge transitions). The choice 
of the outer charge has a considerable effect in yielding a CI expansion 
convergence toward the correct asymptotic behavior and, at the same 
time, a smooth inner solution. On the other hand, the inner charge is not 
so important since in the inner region the expansion has to deal with the 
potentials not removed by the basis elements; by choosing Zi = Z in the 
inner region, though, the Sturmian functions diagonalize not only the 
kinetic energy but also the electron–nucleus potentials Z/ri.

The typical form of a two-electron double continuum wave function 
obtained after solving Eq. (108) is shown in Figure 7.8 as a function of r1 
and r2.  As expected from Eq. (56) an hyperspherical wave front can be clearly 
identified in a wide domain which includes the ionization region where 
r1 = r2 are both large. As we already explained in Section 4.1, the scattering 
wave function contains all channels at the same time and they are all coupled. 
On the borders of the figure, close to the axis ri = 0, a different type of struc-
ture can be noticed and corresponds to the presence of excitation channels.

Once the wave function is obtained, various techniques can be applied 
to extract the cross-sections.

Before describing the SDCS results, we would like to add some com-
ments on the convergence properties of the different approaches presented 
in the literature. As we have already mentioned, most of the computational 

Figure 7.8 Schematic view of the real part of the scattering wave function evaluated 
with the Sturmian expansion. For color version of this figure, the reader is referred to 
the online version of this chapter.
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methods are based on the transformation of the Schrödinger equation 
into a linear system of equations. Its size is related to the number of basis 
elements employed. Computational limitation arises of course due to the 
limited size of the computer clusters. To reach convergence in a given 
spatial domain, a minimum number nmin of basis elements is required. 
This number depends on the kind of problem and efficiency of the basis 
employed. In Ref. 97 a detailed comparative study of the convergence rate 
of the GSF method in comparison with finite element method (FEM) 
was performed. The former was shown to perform better (faster and more 
stable). In order to compare the efficiency of the Sturmian expansion 
with respect to other techniques, we compared their density of basis ele-
ments d, a quantity defined as the number of total basis elements divided 
by the two-dimensional expanded area. First we can mention the work 
of Bartlett98 who used the so-called propagating ECS (PECS) (designed 
to increase the numerical efficiency of the ECS), with a discrete variable 
representation with different grid regions. Results in a square domain 
of R0 = 220 a.u. divided in ≃ 625 intervals were presented, yielding a 
density dPECS ≃ 626

2
/220

2 ≃ 8.1. Time-dependent calculation was per-
formed by Pindzola and Robicheaux100 using grid points characterized by 
�r = 0.2 a.u. and domains of size R0 = 100 a.u. to R0 = 500 a.u. in steps 
of 100 a.u.. The best result for the TP model obtained with that method 
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Figure 7.9 SDCS for different impact energies calculated with the GSF. The curves are 
constructed by evaluating the wave function flux at different hyperradius and then 
extrapolating the results to infinity. Also shown are the benchmark results of Jones 
and Stelbovics100 and Baertschy and co-workers.101 For color version of this figure, the 
reader is referred to the online version of this chapter.
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required a box of R0 = 500 a.u., resulting into a density dTD = 25. With 
the GSF expansion, converged SDCS were extracted from the wave 
function evaluated in a spatial domain with rc = 130 a.u., and calculated 
with Ns = 175 basis functions per coordinate.97 The resulting density 
dGSF = 0.9112 illustrates the GSF method high efficiency.

As shown in Section 4.3, ionization amplitudes can be extracted from 
the scattering wave function (see Eq. (56)). The corresponding SDCS, cal-
culated with the GSF method, are shown in Figure 7.9 for three different 
impact energies. They are evaluated at different and finite values of hyper-
radius ρ and then extrapolated to ρ → ∞.97 For comparison, benchmark 
calculations of Jones and Stelbovics100,101 are also presented. All GSF results 
were performed with 150 Sturmian functions per coordinate and in a 
domain of 130 a.u..

Near the region α = 0 and α = π/2, the influence of the excitation 
channel appears, leading to differences in the SDCSs as the latter are 
obtained from the wave function itself. We are currently developing a tech-
nique to separate the individual channels contributions of the scattering 
wave function to be able to define appropriately such SDCS.

5.4 S-wave model of (e, 3e) processes on helium
Kinematically complete (e, 3e) experiments, in which the three outgoing 
particles are detected in coincidence, provide the most detailed information 
of electron impact double ionization of atoms.82 Absolute fivefold differen-
tial cross-sections for helium have been measured by the Orsay group12,83 
in kinematic conditions such that the first Born approximation should be 
suitable. In spite of this, no theoretical study has yet managed to describe 
satisfactorily all the data. What is more confusing and difficult to explain, is 
that several ab initio methods provide different answers both in cross-section 
shapes and magnitudes (see a review in Ref. 102). From a theoretical point 
of view, the description of an (e, 3e) process on helium requires the solution 
of a pure four-body Coulomb problem. However, as discussed in Section 4, 
reduction to a three-body problem can be performed in the case of high-
energy projectiles as those used in the Orsay experiments.

In view of this unsatisfactory situation, the authors of Ref. 80 looked 
for a simplified problem for which agreement between theoretical methods 
could possibly be found. They considered an S-wave (e, 3e) model with 
energy and geometry conditions used by the experimental Orsay group. 
The corresponding three-body model differs from that investigated in  
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Refs. 103,104, suitable for low-energy incident electrons, where the full 
four-body problem was considered.

Instead of considering the solution for the full first-order equation (72), 
they considered the following S-wave model80

where

where j0(x) represents the spherical Bessel function of zeroth order, 
q = ki − kf  is the momentum transfer, and �

(0) (
r1, r2

)
 is the ground-state 

solution of the S-wave helium equation Eq. (109) with the RHS set to 
zero. Moreover, since the idea was to provide benchmark values, all unnec-
essary ingredients were simplified and a simple ground state was taken: the 
product of screened exponentials �

(0) (
r1, r2

)
= (Z

3
e /π)e

−Ze(r1+r2) with 
Ze = Z − 5/16.

The model equation (109) was numerically investigated with both 
Sturmian approaches described in Section 4. For the spherical coordinates 
approach, the numerical technique is essentially the one used above for the 
electron–Hydrogen problem and does not need to be repeated. For the hyper-
spherical approach, expansion (55) was used with the hyperradial Sturmian 
functions S+

mn(ρ) satisfying equation (87). The generating potential was taken 
to be of short-range (vanishing faster than ρ−1 as ρ → ∞), and the auxiliary 
potential as a Coulomb potential with charge Z, thus imposing to the hyper-
radial basis functions the desired asymptotic outgoing boundary condition 
(100) (with η = µZ/K = µZ/

√
2µE). Upon replacing either spherical 

(54) or hyperspherical (55) expansions into the scattering equation (109), and 
projecting onto the basis elements, one obtains a linear system

where H and O are the matrix representation of the Hamiltonian and 
overlap, and F represents the RHS projected onto the basis set; a is the 
vector of coefficients that builds the solution. For the spherical expan-
sion Ẽ = E1 + E2; as the best choice of the Sturmian parameters is 
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E1 = E2 = E, the overlap matrix elements have to be calculated. In the 
case of the hyperspherical expansion, Ẽ = E, so that no overlap matrix 
elements are required.

The (singlet, S = 0) solution �(1)+
sc  of Eq. (109) has been calculated 

with the two Sturmian expansions for several kinematical situations.80 One 
of them is for a momentum transfer q = 0.24 a.u. which corresponds to 

the initial and final projectile energies of, respectively, Ei = 5599 eV and 

Ef = 5500 eV, and a deflection of 0.45 º, used in the (e, 3e) Orsay experi-
ment.83  These values, together with the exact ground-state energy of the 
bound initial state, define the energy of the final three-body subsystem 
(1,2) equal to ≃ 20 eV. For an equal energy sharing situation, this corre-
sponds to 10 eV per electron, as in the experiments.83

The real part of the scattering solution, actually �(1)+
sc × ρ

5/2, is shown 
as a function of r1 and r2 in the contour plots presented in Figure 7.10. The 
factor ρ5/2 was chosen in order to keep the amplitude of the ionization 
(the hyperspherical outgoing wave) uniform as ρ → ∞; it has to be noted 
that this factor increases the amplitude of single ionization channels (the 
peaks close the axis r1 = 0 or r2 = 0, i.e., the �α regions) by the factor ρ1/2.  
The result of the spherical expansion is shown in the left panel.

In the domain r1, r2 > 5 a.u., in which the driven term vanishes, the 
equation has the corresponding homogeneous equation solution. The 
basis functions for ri values larger than rc are simply products of outgoing 

Figure 7.10 Left: Real part of the scattering wave function �(1)+
sc (r1, r2)×ρ

5/2 as a 
function of the ejected electrons’ radial coordinates r1 and r2, for Ea = 0.791 a.u. and 
q = 0.24 a.u. Right: real part of �(1)+

sc (ρ, α)×ρ
5/2.
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waves in spherical coordinates. However, as the figure shows, in the inner 
region they manage to generate the appropriate solution with a hyper-
spherical outgoing front, which is also observed in the electron–Hydrogen 
TP model. For comparison, the result obtained with the hyperspherical 
expansion is shown in the right panel; in this case the hyperspherical wave 
front is naturally generated by the basis. Thus, two completely independent 
codes and methods are leading to the same solution and the exact solution 
is obtained by enforcing outgoing type flux conditions on the basis set.

In Ref. 80, the main aim was to provide e− − He double ionization 
benchmark data within the above S-wave model. The transition ampli-
tude for the double ionization process can be extracted from evaluating 
|�(1)+

sc (ρ, α) ρ
5/2|2 at large values of ρ. This technique is equivalent to tak-

ing the S-wave component of the transition amplitude defined by the inte-
gral (74); besides, it provides a verification of the scattering wave function’s 
accuracy. From the transition amplitude one obtains a SDCS, noted σ(q, α), 
which should be independent of the hyperradial coordinate; effectively, one 
evaluates numerically σρ at different values of ρ and then extrapolates the 
result to infinite distances with a form σ ≃ σρ + O[ρ−1].95 For a given q 
value, σ(q, α) is a singly differential cross-section which—through α (with 
k1 = K cos α and k2 = K sin α)—describes how the energy is shared between 
the two ejected electrons. Such SDCS for S-wave double ionization of the 
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S-wave helium model have been presented as benchmark values in Ref. 
80. A further example is provided by Figure 7.11, for two ejected electrons 
sharing 30 eV (the projectile’s energy is 5600 eV and the momentum transfer 
q = 0.24 a.u. as in the Orsay experiment). This SDCS was obtained with the 
spherical GSF and confirmed by the hyperspherical Sturmian approach. No 
comparison with other calculations could be presented since they are the 
first calculations of the process at the considered projectile energy. The study 
aimed to stimulate other numerical methods: if agreement can be found for 
the present model, one would then attribute the existing differences for the 
real (e, 3e) process102 to L �= 0 and/or convergence issues.

6. SUMMARY AND PERSPECTIVES

In this paper we presented a review of some applications of the 
Generalized Sturmian Method. We want to stress once again that remark-
able work has been done by other researchers but mostly using Coulomb 
Sturmian functions, and not generalized ones. The work of Macek and 
Ovchinnikov,29–34 and Rawistcher24–27 on Generalized Sturmian functions 
had a profound influence on our research. The work of Piraux,9 Avery,17,18 
Aquilanti,21,22,105 Goscinski,106 Manakov,107 Shakeshaft,108 Rotenberg,109 
Szmytkowski,110,111 and Maquet,112,113 among others, have also been of 
great importance for the development of most of our investigations.

In Section 2 we gave a short description of the Generalized Sturmian 
Function theory and how this is applied in two-body problems. We gave 
also a numerical example where the two-body Coulomb problem is refor-
mulated within the short-range scattering theory. The application of the 
method to three-body bound states is discussed in Section 3. We started 
by reviewing the results for the He and H− systems. We showed that the 
convergence of the energies can be substantially improved when the GSF 
are used instead of CSF.  The best energies obtained with uncorrelated 
basis have been produced using GSF.42 We proved that optimizing the 
asymptotic property of the basis functions, the appropriate behavior can be 
generated in the three-body wave functions. This was shown for He-like 
atoms, for the H+

2  molecule, as well as some exotic systems, but even more 
clearly for He doubly excited states. In this case imposing outgoing-type 
behavior to the GSF we obtained not only the real part of the energies but 
also their corresponding lifetimes. The method is robust enough to allow 
the inclusion of general auxiliary potentials in the Sturmian equation. This 
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facilitates, for example, treatment of confined systems. We exemplified 
its robustness performing energy calculations of He atoms confined in a 
model cage representing a C60 fullerene, and in an impenetrable cage. All 
these calculations can be performed with high accuracy; the latter can be 
increased as much as necessary to recognize the avoided crossing structure 
appearing in both systems.

The description of scattering problems is based on the solution of a 
driven equation. The wave function of the problem is separated into a pre-
pared initial state and a scattering state. All the physics about the collision is 
condensed into the scattering part of the wave function, which satisfies the 
driven equation. In Section 2 we showed how to apply the GSF method to 
two-body problems. As an example of the application we defined a distorted 
wave approach to enable inclusion of Coulomb potentials into the standard 
scattering theory. In Section 4, we first derived the driven equations for the 
single ionization of hydrogen atom by electron impact and for the double 
ionization of He by high-energy electron impact. Both problems lead to 
the same type of driven equation. Two Sturmian approaches were discussed 
as tools to solve it. One is based on the product of GSF in r1, r2 coordinates. 
In an alternative approach, the radial coordinates r1, r2 are replaced by ρ and 
α, the hyperspherical radius and angle. In both cases the scattering wave 
function is forced to have purely outgoing behavior at large values of ρ. This 
condition is built in the spherical approach, while it is natural in the case of 
the hyperspherical approach, for the cases under scrutiny.

In Section 5, we presented the application of the GSF method 
to the solution of three benchmark model problems. All of them 
correspond to S-wave models. The first one possesses analytical solution 
in hyperspherical coordinates. We used our hyperspherical GSF recipe to 
solve the problem and found perfect agreement for all the cases consid-
ered. Secondly, we evaluated the electron-impact ionization of Hydrogen 
within the S-wave model. In this case we compared our results with those 
provided by other methods. As a third example, we considered an S-wave 
model for the double ionization of He by high-energy electron impact. 
As the model was introduced only very recently, no other calculations are 
available for comparison. However, we checked our results by computing 
the solution of the problem using the spherical and the hyperspherical 
approaches: agreement between both methods is remarkable. In all the 
cases it can be verified that the expected hyperspherical wave front is effec-
tively built by the GSF method. The corresponding cross-sections can be 
extracted directly from the asymptotic limit of the wave function.
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Results for the full (e, 2e) and (e, 3e) processes as well as for double 
photoionization of atoms are presently being obtained and soon will be 
published elsewhere.

In the present review, we presented GSF in spherical and hyperspherical 
coordinates. However, as mentioned in Ref. 35 parabolic coordinates could 
be very useful to deal with many interesting problems where Coulomb 
potentials appear. Indeed, very important studies have been performed 
using these coordinates. The group of Aquilanti and collaborators has 
done remarkable progress on the treatment of bound states using para-
bolic CSF.114,115 Ojha,116 Burgdörfer,117 Piraux,118,119 and Zaytsev,120–124 
among others, have considered using CSF in parabolic coordinates for the 
treatment of two- and three-body problems involving in many cases ion-
ization. The study and implementation of GSF and quasi-Sturmian func-
tions in parabolic123 and spherical coordinates125 is the object of the actual 
investigations which are being performed in collaboration with Zaytsev. 
These investigations extend and formalize the studies initiated in the 1990s 
by Garibotti’s78,126,75,77 and Miraglia’s76,127 groups.

The application of GSF to the study many-electron atoms and molecu-
lar systems is the purpose of our current research.
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