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Abstract. We study some formal aspects of the exterior complex scaling (ECS) approach when imple-
mented for both short and long-range potentials. In particular, we focus on the inconsistencies related to
the requirement of an artificial cut-off of the potential in order to avoid exponential divergencies due to the
complex rotation. For the pure two-body Coulomb potential we demonstrate analytically and numerically
that the ECS inner solution is indeed the correct one, thus reinforcing the method; the extraction of the
transition amplitude, however, remains problematic. We also show that a consistent application of the ECS
method requires a distorted wave formulation, and two variants are proposed. Finally, we will propose an
approach equivalent to the original ECS but that avoids all formal difficulties. It is based on performing
the complex rotation on the basis functions rather than on the driven equation itself, and makes use of
Sturmian functions with appropriately chosen outgoing boundary conditions. Our proposal differs from
one of the original versions of the ECS method, through the use of physically based basis functions rather
than pure numeric ones.

1 Introduction

The description of the collision processes between three
particles presents significant difficulties both from the
formal and numerical points of view. Different and suc-
cessful time-independent methods as, e.g., the conver-
gent close coupling [1,2], the J-matrix [3] and the ex-
terior complex scaling (ECS) [4–6] have been developed
to deal with them. In general these methods require an
enormous amount of computational resources. The ap-
plication of the same methods to the study of the next
step, the four-body problem, is presently prohibitive or
very difficult from the computational point of view (see,
e.g., [7]). This is proved by the fact that none of the men-
tioned approaches have been applied as a pure ab initio
treatment to the complete study of, e.g., double ioniza-
tion of helium by electron impact; only S-wave models
has been considered [8,9]. The reason is not the fact that
they cannot be extended to deal with more particles,
but because they demand such huge amounts of com-
putational resources that their numerical implementation
are presently impossible. For that reason it is important
to clearly understand the advantages and drawbacks of
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different methods to be able to improve their efficiency
and to extend them to the treatment of more complicated
systems even with the computational resources available
nowadays. In an attempt to improve the already existing
methods, a modification of the original ECS has been im-
plemented and successfully applied for electron-hydrogen
collisions [10–12], the study of threshold behavior of e-H
ionizing collisions [13] and electron-helium double ioniza-
tion, single ionization with excitation, and double exci-
tation within a S-wave model [14]. The main objective
of the propagating exterior complex scaling method pre-
sented in references [10–12] is to maintain the efficiency
of the original ECS approach and to reduce the computa-
tional requirements. It is within this framework and line
of thinking that we present in this article a study of the
ECS method when applied to scattering problems.

Complex scaling has been for a long time an impor-
tant tool to study the structure of atomic systems as well
as resonance states. This was mainly associated to the
fact that only square integrable states could be treated
within the framework of the method. The extension to
collision problems was performed by Rescigno et al., see
e.g. reference [15], for two-body problems. Since this first
application to scattering, the ECS has proved to be one of
the most successful methods to deal with a large variety
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of processes: the ionization of hydrogen by electron im-
pact [4]; the double photo-ionization of helium [16]; the
photo-ionization of molecules [17–19] (and further dis-
cussed using spheroidal coordinates [20,21]); even two-slit
type of experiments were successfully described [22].

In this paper, we do not question the now well-
established capabilities of the ECS approach and its com-
putational technology; rather we concentrate on some
theoretical and formal issues for scattering problems
with long-range potentials. On page 2 of reference [23]
Baertschy et al. stated that “the fundamental correctness
of our procedure relies on the empirical observation that
the computed results are in perfect agreement with absolute
experimental measurements”. Our work has the same phi-
losophy as the recent works of Elander et al. [24], Volkov
et al. [25] and Yakovlev et al.[26] who stated “the definite
success in applying this method to important and compli-
cated problems ... makes a detailed study urgent”. (p. 2 of
Ref. [25]). We shall study the foundations of the method
itself and also its implementation for long-range poten-
tials, with a particular focus on its applicability to pure
Coulomb potentials. Finally, we shall make a proposal to
avoid formal difficulties associated to the recipe.

The implementation of the ECS method is based on
the separation of the total wave function as the sum of
an asymptotic (or approximated) solution of the problem
and a scattering function [27,28] with, respectively, stand-
ing – and outgoing-wave behavior at large distances. This
separation leads straightforwardly to a driven Schrödinger
equation for the scattering part, the driven term being
given by the product of the interaction potential and
the asymptotic solution. Within the ECS method a com-
plex rotation of the radial coordinate is performed on
the driven equation. This enforces, at large distances,
an exponentially decreasing behavior of the scattering
wave function thus avoiding, according to the authors
of reference [15], the imposition of asymptotic condi-
tions. The complex rotation, however, introduces a prob-
lem on the driven term, as the latter becomes divergent
due to the stationary character of the asymptotic solu-
tion. To circumvent this problem Rescigno et al. intro-
duced – artificially – a cut-off on the interaction of the
driven term, and at the same time used an exterior com-
plex rotation of the coordinate. This cut-off is also used in
the propagating ECS of Bartlett et al. [10] and Bartlett
and Stelbovics [11,12]. This means that the rotation is
effectively acting after a given value R0 of the radial co-
ordinate r and in this region the potential of the driven
term is switched off. According to Baertschy et al. (p. 4
of Ref. [23]) “[the cut-off] is the only source of systematic
error in our scheme for calculating the scattered wave with
exterior complex scaling”. As we shall discuss in more de-
tails in Sections 2.2 and 3, the ECS recipe leads to some
formal difficulties. Some of the delicate issues/questions
that appear are: (i) What are the consequences of cutting
the potential only in the driven term? (ii) Does the wave
function obtained in the region r > R0 have any phys-
ical meaning? (iii) Is it really necessary to introduce a
cut-off in the potential? We will investigate some of these

questions and provide answers to some of them. Our work
aims to contribute in understanding how and why the
method works, independently of the fact that it is numer-
ically very efficient as proved by the many important and
successful results already presented to treat a large vari-
ety of processes [4,16–22]. In this report we shall deal only
with the two-body case as it allows to illustrate all the in-
gredients and associated difficulties of the ECS method.
Several results and observations to be presented are of
general character and valid for any potential; however,
the pure Coulomb case is fully treated here as it allows
for an analytical study. A similar, though more cumber-
some, analysis applies to three-body problems; it will be
briefly discussed in Section 5.

Another major issue of the present paper is the ap-
plicability of the ECS method to the pure Coulomb po-
tential. In reference [15], the authors showed how to deal
with long-range potential, but explicitly mentioned in a
note that the method does not apply for Coulomb po-
tentials (note [28] of the cited paper: it is assumed the
two-body “potential should fall off more rapidly than 1/|r|
at infinity”). Recently, the Coulomb case has been under
scrutiny since “its extension to the Coulomb case remained
questionable” (p. 2 of [25]), and a series of papers have
been dedicated to the ECS approach [24–26,29] aiming
“to set the... [ECS] approach on a mathematically solid
basis” (p. 2 of [25]). These facts motivated us to initiate a
careful study of the ECS approach, since the Coulomb po-
tential is the dominating interaction in atomic and molec-
ular physics; the aim is to answer the question of whether
the ECS method can be included into the formal scat-
tering theory and applied to the pure two-body Coulomb
potential.

The rest of the paper is arranged as follows. In Sec-
tion 2 we present the two-body scattering formulation, the
main ECS ingredients (Sect. 2.1), and several formal is-
sues are discussed and questions are raised (Sect. 2.2). Sec-
tion 3 is dedicated to understanding and reinforcing the
method. In particular we will solve analytically the driven
equation for the pure Coulomb case (with the ECS unbal-
anced treatment of the potential), demonstrate that the
solution found in the inner region is indeed proportional
to the correct one, and provide the proportionality coef-
ficient. Next (Sect. 3.2) we show that when dealing with
pure Coulomb potentials the use of a free-particle asymp-
totic initial state leads to a scattering problem which is
not well defined. A Coulomb distorted initial state should
be used instead in order to extract the transition matrix
from the asymptotic behavior of the scattering wave func-
tion. We thus propose a reformulation within which the
ECS approach could be equally applied to long-range po-
tentials including the pure Coulomb case (note that the
latter differs from the case of Coulomb plus short range
potential which can be dealt with according to the descrip-
tion provided in section 4.2 of Ref. [5]). Section 4 presents
an alternative approach based on the use of complex basis
functions. We shall describe and illustrate how Sturmian
functions with appropriately chosen outgoing behavior al-
low to avoid all of the formal difficulties encountered with
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the ECS recipe using real basis functions. This alternative
approach will be useful for the treatment of the three-body
scattering problem. Finally, Section 5 presents a brief sum-
mary and a discussion with respect to the three-body case.

Atomic units (� = e = 1) are used throughout.

2 Formulation of the scattering problem

Consider the scattering between two particles interacting
via a spherically symmetric potential V (r). The radial
two-body Schrödinger equation describing the dynamics
of the problem is

[T + V (r) − E] Φ (r) = 0, (1)

where T = − 1
2μ

(
d2

dr2 + 2
r

d
dr − l(l+1)

r2

)
is the full kinetic

energy operator, μ the reduced mass, l the angular mo-
mentum eigenvalue and the energy E = k2/(2μ) assumed
positive. The transformations Φ (r) = Ψ(r)/r is usually
introduced for convenience converting equation (1) into
the following

[Tl + V (r) − E] Ψ (r) = 0. (2)

where Tl = − 1
2μ

(
d2

dr2 − l(l+1)
r2

)
represents the reduced ki-

netic energy operator.
The free-particle solution

Ψ0 (r) = krjl(kr), (3)

of the simplified problem (without potential)

[Tl − E] Ψ0 (r) = 0 (4)

behaves at large distances as sin
(
kr − π

2 l
)
, and corre-

sponds to a unitary flux; jl(z) represents the spherical
Riccati-Bessel function of order l [30].

As done in standard textbooks (e.g., [27,28]), the solu-
tion of the scattering problem can be separated into two
terms as follows

Ψ (r) = Ψ0 (r) + Ψsc (r) , (5)

where Ψ0 (r) is taken as initial – asymptotic – state
(corresponding to no scattering) and Ψsc (r) is the scat-
tering term describing the dynamics of the collision pro-
cess. In principle, Ψsc(r) should have pure outgoing behav-
ior, noted Ψ+

sc(r); the corresponding wave function (5) is
noted Ψ+(r). Replacing the decomposition (5) into equa-
tion (2) we get the following driven Schrödinger equation
for Ψsc (r)

[Tl + V (r) − E] Ψsc (r) = −V (r)Ψ0 (r) . (6)

2.1 The ECS approach

The non-homogeneous equation (6) is the one solved
within the context of the ECS [5,6,15]. The strategy used

to solve it is based on two main ingredients: (i) an (ex-
terior) complex rotation of the radial coordinate, such as
the one proposed in reference [7,15]

r = q(r) =
{

r r ≤ R0

R0 + (r − R0)eiη r > R0
(7)

where R0 defines the radius within which the wavefunction
will be the usual function of real valued coordinates, and
η > 0 represents the scaling rotation angle on the complex
plane; and (ii) a sharp cut-off of the potential V (r) at the
value r = R0

VR0(r) =
{

V (r) r ≤ R0

0 r > R0,
(8)

for every potential excluding those decreasing expo-
nentially or faster. According to the authors of refer-
ence [5,6,15], these two key bricks allow to affirm that the
imposition of the asymptotic conditions is avoided. This
is associated to the fact that, when the exterior complex
rotation is performed, the wave function Ψ+(r) decreases
to zero in the region r > R0, and a numerical zero can be
assumed for the function in, e.g., a numerical grid. Within
the method, the amplitude Al can be extracted from the
function defined in the inner region (r < R0) by taking
the limit of the function for large r but smaller than R0,
or using the definition [6]

Al = −2μ

k

〈
jl(kr) |V (r)| Ψ+(r)

r

〉
, (9a)

=
2μ

k

〈
jl(kr) |T − E| Ψ+

sc(r)
r

〉

R0

, (9b)

where the subscript R0 in (9b) denotes the integration lim-
ited to the domain 0 ≤ r ≤ R0. The second equality (9b)
is obtained using the Schrödinger equations (1) and (4),
and assuming a vanishing contribution for r > R0. (We
should mention that in Ref. [6], equations (26), (27a) and
(27b) are inconsistent with the definition (14); this, how-
ever, does not affect the rest of the review paper.)

2.2 Issues and difficulties associated to the ECS
approach

Let us start by looking at the effect of performing the ex-
terior complex rotation (7) of the radial coordinate on the
solution of equation (6). Assuming that the wave function
Ψsc (r) possesses pure outgoing behavior, the transforma-
tion r → q(r) given by (7) (actually, any general trans-
formation similar to it) will give rise to an exponentially
decreasing asymptotic behavior. On the other hand, the
function Ψ0 (r) appearing in the RHS of equation (6) has a
standing wave behavior and becomes, for values of r > R0,

Ψ0 (r) ∼ sin
(
kreiη − π

2
l
)

� 1
2i

[
eikr(cos(η)+i sin(η)) − e−ikr(cos(η)+i sin(η))

]

� − 1
2i

e−ikr cos(η)ekr sin(η). (10)
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Upon rotation of the coordinate, for r > R0, the term
with incoming behavior makes the standing wave func-
tion (10) – and hence the full wave function (5) – expo-
nentially divergent. The non-homogeneity of equation (6)
will be divergent unless the potential V (r) on the RHS
decreases fast enough to make it well defined and bound:
this condition is met only for short-range potentials de-
creasing exponentially or faster. When V (r) is already of
that kind of short-range, then the potentials on the left
and right-hand-sides of equation (6) are treated on equal
footing. However, if V (r) is not of short enough range,
or is of long-range character (e.g., a Coulomb potential),
something has to be done to avoid the difficulty and keep
the non-homogeneous equation (6) well defined.

Within the standard ECS method [5,6,15], but also
the propagating ECS [10–12], one – artificially – cuts
the potential appearing on the RHS of equation (6) at
a distance R0 from the origin. Hence, the driven equa-
tion (6) is solved with the cut-off potential VR0(r) defined
through (8) on the RHS, but with V (r) on the LHS, thus
with an unbalanced treatment. This procedure is used in
all the papers where the ECS method is presented and
applied. In reference [15], the authors stated that “by ze-
roing the potential on the complex portion of the contour,
we eliminate any numerical difficulties associated with a
less than exponential fall off of the potential at large dis-
tances, but have no measurable effect on the cross section”,
and that “we do not expect this remedy to come without a
price.” We want here to explore the price of doing that.

A first point is connected with the error introduced
into the transition amplitude when using the cut-off po-
tential VR0(r). Indeed, starting from (9a) we have

Al =
2μ

k

〈
jl(kr) | T − E| Ψ+

sc(r)
r

〉

R0

− 2μ

k

〈
jl(kr) | V (r) − VR0(r)|

Ψ+(r)
r

〉
. (11)

Within the ECS framework, only the first term, i.e. equa-
tion (9b), is used to evaluate the transition amplitude as
the potential is assumed to be cut, and hence V (r)−VR0(r)
is zero. Thus, an error (which decreases as R0 increases)
is introduced in the calculation by neglecting the exter-
nal contribution of the potential. Of course if the energy
E � V (R0) one can expect this approximation to be valid,
as numerically verified in many applications.

Another price payed through the rotation to the com-
plex plane is that the whole wave function (5) loses mean-
ing in the outer region r > R0 while quantum mechanics
requires the wave function to be well defined and bound
over the whole domain. Thus, to make the ECS work,
one makes use of the artifice of cutting the potential. Two
main questions then arise: (i) What is the real Schrödinger
equation solved in that case? and (ii) What is the con-
nection between the exact solution and the one obtained
by this artificial cut-off? These two issues are essential to
understand how, and why, the ECS approach leads nu-
merically (as claimed by the authors in Refs. [5,6,15] and
demonstrated through many numerical results) to the ex-
act solution of two- and also three-body problems [6,7].

To address these two points let us suppose that, us-
ing the original decomposition (5), one solves the driven
equation (6) with VR0(r) on the RHS. Since the poten-
tial VR0(r) is of short range it allows to mathematically
impose to the solution, noted Ψ+

sc,R0
(r), a pure outgoing

asymptotic behavior. Starting from equation (6), and us-
ing the fact that Ψ0(r) satisfies equation (4), it is rather
easy to see that the full solution ΨR0(r) = Ψ0(r)+Ψ+

sc,R0
(r)

satisfies the following equation

[Tl + VR0(r) − E] ΨR0(r) = −Vdis(r)Ψ+
sc,R0

(r). (12)

where Vdis(r) = V (r)−VR0(r) is the tail (external) poten-
tial. This non-homogeneous equation (it is actually homo-
geneous up to the point r = R0) is neither the Schrödinger
equation corresponding to the full potential V (r), nor the
one corresponding to the truncated case VR0(r). It is the
Schrödinger equation solved by the ECS method as pre-
sented in references [5,6,15]. While it will coincide with the
correct Schrödinger equation (2) in the limit of R0 → ∞,
it is not clear if, and how, the solution of equation (12)
will reach the exact solution. If the potential V (r) is of
short range, and if R0 is located in a region where the
potential is already negligible, then the procedure is jus-
tified since the Schrödinger equation is homogeneous be-
yond R0. However, if the potential is of long range, then it
is difficult to justify the use of equation (12), unless one is
able to demonstrate that the exact solution of the problem
is found in the region r < R0. This issue is the subject of
Section 3.1 where such a demonstration is provided ana-
lytically for the pure Coulomb problem.

As explained in reference [15], there are two alternative
formulations of the ECS, one where the complex rotation
is performed on the Hamiltonian and another where the
complex rotation is performed on the basis set used to
represent the operators and the wave functions. In most
applications of the method the first one is used; this means
one solves the equation resulting from changing r by q(r)
in equation (6). By writing the scattering wave function
as Ψsc(r) =

∑
aiχi(r) where χi(r) are, e.g., B-splines, the

driven equation is reduced to the resolution of a set of
linear equations for the ai coefficients

[Tl,η + Vη − EO] a = bη, (13)

where Tl,η and Vη are the matrices associated to the ro-
tated kinetic energy and the rotated interaction potential
represented on the basis; O is the overlap matrix. On the
right hand side, the vector bη is:

bη,i = −
∫ ∞

0

χi(r)V (q(r))Ψ0(q(r))dr. (14)

As explained before, the rotation applied to Ψ0(r) →
Ψ0(q(r)) produces a divergency for the initial function,
and therefore of b, requiring the cut-off of the potential
V (r). What is interesting here is that, assuming that an
appropriated distorted wave approach is used, the LHS of
equation (13) can be represented in the whole configura-
tion space including the outer region r > R0. This allows
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for the inclusion of the correct asymptotic behavior. To see
this we explore the problem by looking at the formal so-
lution of the driven equation (6) through the full Green’s
function G+

l (r, r′)

Ψ+(r)
r

=
Ψ0(r)

r
+

∫ ∞

0

r′2drG+
l (r, r′)V (r′)

Ψ0(r′)
r′

. (15)

Taking the limit r → ∞, expression (9a) results. To avoid
the divergence, however, the potential underneath the in-
tegral symbol is cut

Ψ+(r)
r

=
Ψ0(r)

r
+

∫ R0

0

r′2drG+
l (r, r′)V (r′)

Ψ0(r′)
r′

, (16)

so that the second term on the RHS is well defined; besides
it possesses the correct asymptotic behavior provided by
the Green’s function since the latter is associated to the
full potential kept in the LHS of the driven equation.

The basis representation of the operator
[Tl,η + Vη − EO] up to the asymptotic region, al-
lows one to provide the correct asymptotic behavior to
the solution of equation (13) by using the inverse of the
operator (E − H). Again a fundamental issue surges: an
appropriated distorted wave approach is required to be
sure that the operator (E −H)−1 will provide the correct
asymptotic behavior to the wave function. But even when
a scattering wave function similar to the correct one is
obtained (it is not the exact one because the RHS in
Eq. (16) is not the correct one), the divergence of (5) is
still present and not removed by cutting the potential.
We believe that these are unnecessary inconveniences
created by the way in which the method is implemented.
In Section 4, we will propose an approach as efficient
as the original ECS but that avoids all the mentioned
formal difficulties. It is based on performing the complex
rotation on the basis functions rather than on the driven
equation itself, and makes use of Sturmian functions with
appropriately chosen outgoing boundary conditions.

3 Understanding and reinforcing the ECS
approach, and adapting it for long-range
Coulombic potentials

The separation of the wave function in two terms, as done
in equation (5), is quite common in scattering theory. If
the potential V (r) is of short-range, the function Ψsc(r)
may have outgoing wave behavior at large distances. In-
deed, in this case, the RHS of the driven Schrödinger
equation (6) is zero at large enough distances from the ori-
gin, and hence it becomes asymptotically homogeneous. A
possible representation for the asymptotic form of Ψsc(r)
is given by the Riccati-Hankel functions, noted H±

l (0, r),
which are irregular at the origin and behave asymptoti-
cally as e±i(kr−π

2 l) (see Eq. (A.8) in Appendix A). If the
outgoing (+ sign) behavior is imposed onto Ψsc(r), then
the solution Ψ+(r) of the full Schrödinger equation (2) will

behave at large distances as follows

Ψ+(r) = Ψ0(r) + Ψ+
sc(r)

→ 1
2i

[
−e−i(kr−π

2 l) + ei(kr−π
2 l)

]
+ Al ei(kr−π

2 l)

(17a)

= eiδl sin
(
kr − π

2
l + δl

)
. (17b)

Thus, for short range potentials it is possible to expect for
a scattering solution Ψ+

sc(r) which provides asymptotically
the transition matrix Al = eiδl sin(δl) (or the scattering
matrix Sl = e2iδl) in terms of the scattering phase-shift
δl.

When dealing with long-range potentials, however, the
treatment should be different. As it is well known, the dis-
torted wave theory can be applied in this case. Within the
ECS, a reformulation of the scattering driven equation al-
lowing for an outgoing spherical wave has been proposed
(see section 4.2 of Ref. [5]). The interaction potential can
be separated into two terms V (r) = V1(r) + V2(r) where
V1(r) is of long range, including the Coulomb case, and
V2(r) of short range. The regular solution of V1(r) is then
taken as initial state and the scattering is associated to
V2(r). However, the case of the pure Coulomb potential
V (r) = z1z2/r has not been considered in [5,6], and it had
been explicitly excluded in reference [15] which was ded-
icated to long-range potentials. We should also mention
that a distorted wave approach was discussed in the con-
text of molecular ions [18,20]. A practical (but not formal)
way to apply right boundary conditions to the incoming
wave was put forward; however, no explicit recipe is pro-
posed for the pure two-body Coulomb case. In Section 3.2,
we shall show how that case can be dealt with within a dis-
torted wave formulation (actually, our analysis is of gen-
eral character and is valid for any type of potential); two
proposals will be put forward. One of them is equivalent to
that presented by Elander et al. [24] and Volkov et al. [25].
We shall emphasize that, within a distorted wave approach
in ECS, it is essential to get an exponentially decreasing
or strictly zero driven term in the asymptotic region.

Before doing that we present a fully analytical inves-
tigation of the driven equation (6) for the pure Coulomb
case to answer the following two questions: Is it possible
to define a ECS procedure in this case? and: Can the tran-
sition amplitude be extracted from the inner part of the
wave function at large distances, or using equation (9b)?

3.1 Reinforcing the ECS method: the pure Coulomb
potential

Consider the pure Coulomb potential V (r) = z1z2/r and
let α = z1z2μ/k define the Sommerfeld parameter. We
want to present the exact solution obtained when the stan-
dard recipe of the ECS is used to solve the problem, i.e.,
to cut the potential on the RHS of (6). We will show,
on one hand, that the exact solution of the (Coulomb)
problem is not obtained on the whole domain but, on the
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other hand, that the solution obtained in the inner region
is correct thus reinforcing the ECS approach.

According to the standard theory of differential equa-
tions [31] the general solution of equation (6) is given
by the sum of the linearly independent solutions (A.1a)
and (A.1b) of the corresponding homogeneous equa-
tion and of the particular solution ΨP (r) of the non-
homogeneous equation:

ΨG
sc(r) = ARegvReg(r) + AIrregvIrreg(r) + ΨP (r), (18)

where the coefficients AReg , AIrreg are chosen according to
the boundary conditions one wants to impose to the scat-
tering problem. The particular solution ΨP (r) is provided
in Appendix B. Let us solve equation (6) where the po-
tential V (r) is truncated only on the RHS. The solution,
regular at the origin, in the inner region (I ), reads

ΨG
sc,I(r) = AIv

Reg(r) + ΨP (r). (19)

In the outer region (II ), the RHS of equation (6) is equal
to zero, and a solution possessing outgoing asymptotic
behavior is simply

ΨG
sc,II (r) = AII H+

l (α, r) , (20)

where H+
l (α, r) is defined through equation (A.6). Impos-

ing continuity at r = R0 of the logarithmic derivative of
the wave function leads to

AI = −
(

γP − γ+
C

γReg − γ+
C

)
ΨP (R0)
vReg (R0)

, (21)

where γReg = [(dvReg(r)/dr)/vReg(r)]r=R0 ,
γP = [(dΨP (r)/dr)/ΨP (r)]r=R0 and γ+

C =
[(dH+

l (α, r)/dr)/H+
l (α, r)]r=R0 . Note that γReg and

γP are real, while γ+
C is complex; thus AI will be a

complex constant. The constant AII of the external
region is complex and given by

AII =
ΨG

sc,I(R0)

H+
l (α, R0)

. (22)

The solution ΨG
sc(r) and its derivative are continuous on

the full domain [0,∞). This is what typically is expected
for a scattering wave function. The ECS method (with
sharp rotation [6,15]) provides a solution having a dis-
continuity on the first derivative at r = R0. Therefore,
a question arises: Is our solution ΨG

sc(r) equivalent to the
ECS solution? It is not clear to us what is the limit of
the function provided by ECS when the rotation angle η
tends to zero. On the other hand, ΨG

sc(r) should be the
right solution at this limit.

The next step is to explore the behavior of the full so-
lution of the Schrödinger equation (2). In the inner region
(I) we have

Ψ(r) = krjl(kr) + ΨG
sc,I(r)

= krjl(kr) + AIv
Reg(r) + ΨP (r). (23)

With the property (B.3), we get

Ψ(r) =
(

AI +
kl+1NC(l)
(2l + 1)!!

)
vReg(r), (24)

that is to say a function proportional (with a complex
constant) to the exact solution of the Coulomb potential.
In order to obtain exactly vReg(r), we can renormalize
the whole wave function Ψ(r) simply by dividing it by a
complex constant. This is a very important result and, we
believe, it could be the cornerstone of the ECS method-
ology. We presented the results for the Coulomb poten-
tial, but the same conclusion will result for any type of
potential (though it is generally difficult to demonstrate
analytically).

For the truncated Coulomb potential VR0(r), we have
fixed the constant AI of equation (19) by asking at r = R0

for continuity of the function and its derivative. However,
any other condition applied at that coordinate will lead
to the same conclusion, i.e., a Coulomb wave function
vReg(r) multiplied by constant. This implied no necessity
of imposing any boundary condition as stated in the ECS
approach. Again, this conclusion applies for any type of
potential. The problem is to find appropriately the renor-
malization constant.

In Figure 1a, respectively Figure 1b, we plot (solid line)
as a function of r the real (respectively imaginary) part of
the function Ψ(r), given by equation (23), and renormal-
ized using the constant provided in equation (24). The
plot is performed up to r = 200 and with R0 = 100;
we have taken z1z2 = −1, k = 1, μ = 1 and hence
E = k2/2μ = 1/2. For comparison vReg(r) is included
(dotted line), allowing the observation of differences be-
tween our total solution and the exact solution of the
Coulomb problem. In the inner region the functions are
equal (for both the real and imaginary parts), but in
the outer region they clearly disagree. This illustrates the
differences between solving the driven Schrödinger equa-
tion (6) with the full potential V (r) or with a cut-off po-
tential VR0(r).

In principle, since the potential VR0(r) is of short
range, we can try to extract the transition matrix from
the asymptotic limit of the wave function in the region
where the potential becomes negligible. In the outer region
(II ), we have the complex solution Ψ0(r) + AII H

+
l (α, r).

Assuming the limit is taken for r > R0, we find

Ψ+(r) → krjl(kr) + AII H+
l (α, r)

=
1
2i

(
−e−i(kr−π

2 l) + ei(kr−π
2 l)

)

+
ΨG

sc,I(R0)

H+
l (α, R0)

ei[kr−α ln(2kr)−π
2 l]. (25)

The resolution of the Coulomb problem with the trun-
cated potential VR0(r) on the RHS of (6) clearly shows
that the initial state is not compatible with the Coulomb
distorted outgoing state, and a proper transition matrix
(as shown by Eq. (17a) for a short-range potential) can-
not be extracted. As described in the next subsection, a
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Fig. 1. (Color online) In part (a), the real part of the rescaled function Ψ(r) studied in Section 3.1 is plotted (solid line) as a
function of the radial coordinate r. The scaling factor, given by equation (24), was used to have complete agreement in the inner
region I , up to r = R0 = 100, with the exact Coulomb function vReg(r) (dotted line). We have taken an angular momentum
l = 0, a momentum k = 1, a reduced mass μ = 1, and charges z1z2 = −1. The insets show the behavior of the functions with
more details in the inner (I) and outer (II ) regions; in the latter the disagreement with the Coulomb function starts to appear.
In part (b) the imaginary part of the function is shown. It is zero up to r = R0 and then increases leading, as in the real part,
to a disagreement with the exact Coulomb wave function in the outer region.

distorted initial state, Ψ0,dis(r), with proper Coulombic
asymptotic behavior (A.7) should be used. We are study-
ing here the Coulomb case, but the same difficulty would
appear for any type of long-range potential. Thus, cutting
the potential only on the RHS of (6) leads to this type of
incompatibilities.

Following a similar analytical investigation one may
consider the artificial scattering problem where the cut-off
potential VR0(r) is set on both sides of the driven equa-
tion (6). Such a balanced treatment of the cut-off leads
to a well defined scattering problem, since the transition
amplitude can be obtained from the wave function in the
region where the interaction potential is negligible; how-
ever, this implies working with an approximated short-
range potential instead of dealing with the real long-range
potential.

3.2 Distorted wave proposals for the pure Coulomb
potential

The pure Coulomb potential case is now treated formally
within a distorted wave approach. If the free-particle so-
lution (3) is used as initial state Ψ0(r), then the solution
Ψsc(r) of the driven equation (6) must contain correc-
tions to it, in order to build the well known asymptotic
logarithmic phase α ln(2kr) produced by the long-range
of the Coulomb potential. In other words, as Ψ0(r) is a
free-particle standing-wave while a Coulomb-like behav-
ior should be observed, the corrections should come from
Ψsc(r). Thus, the scattering function Ψsc(r) can not pos-
sess pure outgoing wave behavior. This is actually a con-
sequence of the fact that the decomposition (5) is not
well formulated from the very beginning (a connected
analysis has been presented in details in a recent pa-
per [32]). To avoid this difficulty, and to be sure that pure

outgoing wave behavior can be imposed to the solutions of
equation (6), a (Coulomb) distorted initial state – noted
Ψ0,dis(r) – should be used instead of Ψ0(r). We now present
two possible ways to introduce such a function Ψ0,dis(r)
which “diagonalizes” the Coulomb potential at large dis-
tances. One of them leads to a distorting potential falling
as O

(
1
r2

)
, while the second produces a distorting potential

being strictly zero at large distances.
Our first proposal is

Ψ0,dis(r) = sin
[
kr −

(
α ln(2kr) +

π

2
l
)

g(r)
]

r → ∞−−−−→
1
2i

(
−e−i[kr−α ln(2kr)−π

2 l] + ei[kr−α ln(2kr)−π
2 l]

)
,

(26)

where g(r) can be any function growing faster than r at
the origin and going to one at large distances as, e.g.,
g(r) = 1 − e−ar2

(a is a positive real constant). The
function Ψ0,dis (r) solves, asymptotically, the Schrödinger
equation

[Tl + V (r) − E] Ψ0,dis (r) = O
(

1
r2

)
. (27)

By using Ψ0,dis(r) instead of the free-particle function
Ψ0(r) given by (3), we may redefine the decomposition
of Ψ(r) as

Ψ(r) = Ψ0,dis(r) + Ψ̄sc(r), (28)
and the standard scattering theory can then be recovered.
Indeed, instead of equation (6), the Schrödinger equa-
tion (2) becomes

[Tl + V (r) − E] Ψ̄sc (r) = (E − Tl − V (r)) Ψ0,dis (r) . (29)

According to equation (27), the RHS of (29) goes as 1/r2

at large distances, so that one may ask Ψ̄sc (r) to have out-
going behavior Ale

i[kr−α ln(2kr)−π
2 l] (see Eq. (A.7)), as the
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Fig. 2. (Color online) The functions Ψ0,dis(r) (top panel),
Ψ̄sc(r) (middle panel) and Ψ(r) (botton panel) of, respectively,
equations (26), (29) and (28) are plotted as a function of the
radial coordinate r; we have taken l = 0, k = 1, μ = 1 and
z1z2 = −1 (as in Fig. 1), and a = 0.5 in equation (26). In the
bottom panel, the Coulomb wave function vReg(r) is included
(dotted line) for comparison. The numerical solution for Ψ̄sc(r)
is obtained using Sturmian functions with outgoing asymptotic
behavior.

scattering theory establishes, and a transition amplitude
may be extracted. At large distances, we have

Ψ+(r) → 1
2i

(
−e−i[kr−α ln(2kr)−π

2 l] + ei[kr−α ln(2kr)−π
2 l]

)

+ Al ei[kr−α ln(2kr)−π
2 l], (30)

where the transition matrix Al = eiδl sin(δl) will result
from solving equation (29) for Ψ̄sc (r). This type of ap-
proach was not considered in references [24–26,29] and
does not require an exact asymptotic solution of the scat-
tering problem.

To illustrate the proposal we have solved numerically
(using Generalized Sturmian tools, see [33–37] and refer-
ences therein) the distorted wave driven equation (29) in
the case of the Coulomb potential. In the top and mid-
dle panels of Figure 2, we plot the functions Ψ0,dis(r) and
Ψ̄sc (r). In the bottom panel the function Ψ(r), as given
by the sum of equation (28), is compared with the exact
Coulomb wave function (dotted line) vReg(r). We have
taken z1z2 = −1, k = 1, μ = 1 (as in Fig. 1), and a = 0.5
in equation (26). The facts that Ψ0, dis(r) possesses the
appropriated Coulomb distortion and that the sum (28)
leads to the correct result, show that the driven equa-
tion (29) is well formulated and in accordance with the
scattering theory.

Our second proposal is

Ψ0,dis(r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

krjl (kr) = Ψ0(r) r ≤ R0

1
2i

(
eiδdis,lF+

l (α, r) − e−iδdis,lF−
l (α, r)

)

r > R0,
(31)

where the functions

F±
l (α, r) = e±i[kr−α ln(2kr)−π

2 l]
[

N∑
n=0

A±
n

rn
+ O

(
1

rN+1

)]

(A0 = 1), (32)

have a Coulombic asymptotic form and the series con-
structs the correct solution to increasing orders in 1/r
(see, e.g., Ref. [38]). The function Ψ0,dis (r) solves the
Schrödinger equation

[Tl + Vdis(r) − E] Ψ0,dis (r) = 0, (33)

where Vdis(r) = V (r)− VR0(r); in our case, Vdis(r) is sim-
ply the Coulomb potential in the external region (r > R0)
and zero internally.

Here, it is assumed that the functions F±
l (α, r) are

solutions of the Coulomb problem from r = R0 and up
to ∞; if this is not fulfilled then the RHS of (33) will be
zero to a given order O (1/rn) with n > 2. The phase-shift
δdis, l in equation (31) is determined in such a way that the
logarithmic derivative of the wave function is continuous
at R0, i.e.,

e2iδdis,l =
γ−

F − γ0

γ+
F − γ0

F−
l (α, R0)

F+
l (α, R0)

, (34)

where γ0 = [(dΨ0(r)/dr)/Ψ0(r)]r=R0
and γ±

F =[(
dF±

l (α, r)/dr
)
/F±

l (α, r)
]
r=R0

. The function Ψ0,dis(r)
may be defined as having unit flux at infinity, i.e., behav-
ing as sin [kr − α ln(2kr) − lπ/2 + δdis,l]. As in the pre-
vious proposal, we may use the new decomposition (28)
and, instead of equation (6), the Schrödinger equation (2)
becomes

[Tl + V (r) − E] Ψ̄sc (r) = −VR0(r)Ψ0,dis (r) . (35)

Since the RHS is again of short range, one may ask Ψ̄sc (r)
to have outgoing behavior Āle

i[kr−α ln(2kr)−π
2 l] where Āl

will result from solving equation (35) for Ψ̄sc (r). Thus,
from the wave function at large distances r > R0,

Ψ+(r) → −eiδdis,l

2i
e−i[kr−α ln(2kr)−π

2 l]

+ Ale
i[kr−α ln(2kr)−π

2 l], (36)

one may extract the transition amplitude Al =
eiδl sin(δl) = 1

2ie
iδdis,l + Āl. Note that in this case, the

potential in the external region is zero (as the ECS recipe
requires) as it is naturally imposed by using a distort-
ing potential. This procedure could be used in general to
make zero, or exponentially decreasing, the RHS of the
driven equation (6) thus avoiding the problems related
to the ECS standard procedure. Our second proposal is
equivalent to the one discussed in the work of Elander
et al. [24] and Volkov et al. [25]. It allows for a direct im-
plementation of the original ECS recipe, but requires the
knowledge of the exact asymptotic solution of the prob-
lem under consideration. While this is fine for the pure

http://www.epj.org


Eur. Phys. J. D (2012) 66: 91 Page 9 of 13

two-body Coulomb problem, it is not for a general po-
tential; we should add that for the three-body problem
similar arguments apply, and the asymptotic solution is
not known.

Up to this point we just remarked something which is
well known: to formulate appropriately a scattering prob-
lem the driven term must be of short range. If the po-
tential is not of that nature, a distorted wave formula-
tion must be implemented. Another issue that we wanted
to emphasize is that there exists infinite distorted wave
formulations; however, only the one based on the ex-
act asymptotic solution of the problem (second proposal)
leads to a zero driven term in the asymptotic region. This
is crucial, not only for the two-body problem, but also
for the extension of the ECS theory to three- and n-body
problems.

The previous analysis permits to formulate the scat-
tering problem for both short – and long-range (including
the pure Coulomb) potentials. With the above proposals,
the driven equation admits a true outgoing solution as re-
quired for the ECS to work. However, even when the ECS
method can be applied, the introduced artificial cut-off
gives rise to a new issue: the driven Schrödinger equation
leads to a meaningless solution for r ≥ R0. From the scat-
tering theory formal point of view, the complex rotation
cannot be applied in general to full scattering type wave
functions because it leads to a divergent total wave func-
tion. This said, if R0 is taken sufficiently large to ensure
that the outgoing asymptotic behavior is reached, then
the method will provide numerically acceptable transition
amplitudes since the neglected part in equation (11) will
be negligible. This is what Baertschy et al. observed, and
clearly stated, e.g., on page 2 of reference [23]: “The physi-
cally correct results are then recovered by extrapolating the
computed values to infinite box size. Because we cannot
offer a strict mathematical proof that this extrapolation
yields the exact value, we have carried out a number of
numerical tests to show that the procedures employed are
in fact producing the correct result.”

4 Alternative approach: use of complex basis

As shown in Section 3, the divergency associated to
the (incoming part of the initial wave function in the)
driven term is artificially created, within the ECS, when
performing the complex rotation (exterior or standard) of
the coordinate. In general, in atomic scattering problems,
the driven term should be mathematically well behaved,
meaning that after a given distance it must be zero, in
such a way that pure outgoing behavior can be set to the
solution of equation (6), or equation (29) or (35) when
dealing with the Coulomb potential. The divergence ap-
pearing in the driven term can be circumvented by an
artificial potential cut-off. This trick brings in some other
issues on the interpretation of the solution in the outer
part of the scattering wave function, where it is supposed
that the information about the scattering process has to
be extracted, as provided by the asymptotic form of the
Green’s function (see Eq. (15)). All these difficulties are

completely avoided if a set of complex basis functions pos-
sessing pure outgoing behavior is used. The exterior (or
even standard) complex rotation can then be performed
on the basis as explained in this section, leading to a for-
mulation which, from the theory point of view, is more
adequate. This approach supports the proposal made in
reference [15] where the authors studied with some details
the equivalence between solving the driven Schrödinger
equation resulting after performing a complex rotation of
the coordinate and solving the same equation with a real
coordinate, i.e., a real Hamiltonian, but using L2 basis sets
with a complex rotation of the coordinate. We believe that
this is a clue point.

The basic idea of the ECS is to find a matrix rep-
resentation of the operator (E − hl) and its inverse
(E − hl)−1, the Green function; here hl = Tl + V (r).
In reference [15], Rescigno et al. instead of representing
the real Hamiltonian hl on a L2 basis set, they used an
Hamiltonian hη,l where the coordinate is rotated to the
complex plane by an angle η. This procedure is adequate
for the LHS of, e.g., equation (6) but brings in the prob-
lems in the RHS as already explained.

Sturmian functions Sn,l(r) may be used as an
appropriate basis to deal with scattering problems
(see [33,34,37] and references therein). These functions
satisfy the equation

[Tl + U(r) − E] Sn,l(r) = −βnV(r)Sn,l(r). (37)

where U(r) and V(r) are, respectively, the auxiliary
and a short-range generating potentials, and βn are the
eigenvalues; here the energy E is taken as an externally
fixed value (E ≥ 0 for scattering problems). Assuming
r = x is a point located in a region where the generating
potential is negligible, Sturmian functions are associated
with the two-points boundary conditions: Sn,l(r = 0) = 0
and Sn,l(r = x) → f±

l (x), where f±
l (x) = H±

l (α, x) if
U(r) is dominated by a Coulomb character (α 	= 0) and
f±

l (x) = H±
l (0, x) if U(r) is of short range. As in all two-

point boundary value problem, the Sturmian functions
Sn,l(r) form a complete and orthogonal set (with respect
to the generating potential V(r)).

All the Sturmian functions possess the same energy
and the same (e.g., outgoing) asymptotic behavior ruled
by U(r). These properties allow to define an appropriate
basis set to deal with scattering problems, and we can use
it to solve the driven equation (6). Indeed, setting Ψsc(r) =∑

n anSn,l(r), the scattering problem is converted into a
matrix problem which can be easily solved by standard
matrix methods. Taking the asymptotic limit of Ψsc(r)
yields

Ψsc(r) →
∑

n

ane±i[kr−α ln(2kr)−π
2 l]

= Tle
±i[kr−α ln(2kr)−π

2 l] (38)

which provides directly the transition amplitude Tl =∑
n an.
The Sturmian basis functions transformed the opera-

tor (hl − E) into a diagonal matrix whose elements are
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Fig. 3. Real and imaginary parts of four Hulthén Sturmian functions Sn,0(r) (n = 1, 2, 6, 7) for angular momentum l = 0, range
r0 = 4 and energy E = 2. The Hulthén potential (solid line) is also shown.

simply the Sturmian eigenvalues. The ECS uses also spec-
tral methods to represent (hl − E), however the main
difference with our proposal is that we are using here
basis functions that diagonalize the dominant Coulomb
interaction and the kinetic energy. Besides, the generat-
ing potential V(r) can be defined as having the range
of the driven term, implying that all the basis functions
are concentrated in the region where the driven term
V (r)Ψ0(r) is not negligible. This is illustrated in Figure 3
where we plot versus r the real and imaginary parts of
the Sturmian functions corresponding to the Hulthén po-
tential V(r) = −e−r/r0/(1 − e−r/r0) with r0 = 4 and
U(r) = 0 [37] with n = 1, 2, 6 and 7. One can easily observe
that all the basis functions possess the same asymptotic
behavior for values of r where the potential can be as-
sumed to be zero; all of them have the same energy, here
E = 2. If we assume that the range R0 of the driven term
is that of the the generating potential, then it is clear
that the efficiency of the basis is increased because all the
nodes are located in that region, the convergence rate of
the expansion of Ψsc(r) is accelerated, the convergence it-
self being guaranteed by the fact that V (r)Ψ0(r) is of short
range. We should mention that, generally, one should be
careful when using complex basis as they can provide con-
vergence problems and even lead to wrong results [39] (see
also [40]). However, as our Sturmian functions are con-
structed to contain most of the physics of the problem, no
convergence problems arise; this was illustrated, for exam-
ple, in reference [34] for two-body and in reference [33] for
three-body problems where a very fast convergence to the
correct collision result was observed.

The previous description of the Sturmian method im-
plemented to deal with scattering problems shows that it
is equivalent to the ECS in the sense that a matrix rep-
resentation of (hl − E) and (hl − E)−1 is used to solve
the problem, and a similar type of linear system of equa-
tions appears. In the Sturmian case the basis is optimized
to have not only the energy of the problem but also the
appropriate asymptotic behavior; besides, it is localized
in the region where the interaction potential appearing
in the driven term is not negligible. The difference with
the ECS approach is, up to this point, that we are not
performing a rotation of the coordinate. However, we can
do it. Consider a smooth exterior complex rotation of the

coordinate, noted τ(r, η), which at the origin and until a
point close to R0 behaves as r and for large r > R0 as
reiη. For r > R0 this rotation will transform all the basis
functions with, e.g., outgoing behavior into

Sn,l(τ(r, η)) → H+
l (α, reiη). (39)

For large values of r we have H+
l (α, reiη) →

e±i[kreiη−α ln(2kreiη)−π
2 l] → 0 as desired.

A complete connection between the ECS and the
Sturmian approaches can be established if the set of
Sturmian functions is derived from the equation

[h0(τ(r, η)) + U(τ(r, η)) − E] S̄n,l(τ(r, η))

= −βnV(τ(r, η))S̄n,l(τ(r, η)), (40)

with the two-points boundary conditions: S̄n,l(r = 0) = 0
and S̄n,l [τ(r, η) = τ(x, η)] → f±

l (x). The boundary condi-
tion at large values of the coordinate is imposed for a real
value x of the radial coordinate and the parameter η en-
ters parametrically through the relation τ(r, η) = τ(x, η).
Here, we are giving not only the optimal basis func-
tions to be used in scattering problems, but also the way
of obtaining them. All the methods discussed in refer-
ences [33,34,37] (and references therein) can be applied to
solve the complex rotated Sturmian equation. The limit
η → 0 can be easily taken and will lead to Sturmian func-
tions obtained over the real axis of the coordinate. The use
of a smooth exterior complex rotation of the coordinate
avoids the occurrence of a discontinuity of the Sturmian
functions derivative contrary to the ECS proposal [6].

The proposed formulation is formally more adequate
than the commonly used ECS: the divergency of the driven
term is completely avoided when Sturmian functions with
outgoing behavior are used. Besides, the use of this basis
for solving the driven Schrödinger equation can consider-
ably increase the efficiency of the standard ECS approach
as indicated in, e.g., reference [15]. Numerical results for
different scattering problems will be presented elsewhere.

For completeness, we should mention that the idea
of combining Sturmian functions and complex scaling
has been used before in several occasions and by dif-
ferent authors. As an example we can mention the use
of Sturmian functions in perimetric coordinates [41]; in
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that work, however, the basis functions had no clear con-
nection with the physical problem under consideration.
Eiglsperger et al. have performed many different calcu-
lations using Sturmian functions and complex rotation
(see, e.g., [42]). In all these publications, use was made of
Coulomb-like Sturmian functions which are not necessar-
ily the most adequate for solving the considered physical
problems (they have though the advantage of being an-
alytic, and allow for precise evaluation of all the matrix
elements required). To the best of our knowledge there is
no discussion in the literature about how to define Gen-
eralized Sturmian functions in combination with the com-
plex rotation technique. This was the aim of the present
section.

5 Summary and three-body problem
considerations

In this contribution we performed a careful analysis of the
foundations of the exterior complex scaling method ap-
plied to two-body scattering problems. We studied some
difficulties appearing in its formulation from the theoret-
ical point of view and from the scattering theory itself.

We recalled in the introduction that even when com-
plex rotation is well known since years now, it was for the
first time implemented in scattering theory by Rescigno
et al. in 1997 [15]. The main problem encountered in such
applications was due to the fact that standing wave func-
tions turn divergent when rotated to the complex plane.
Even when a strategy can be defined to obtain the scat-
tering part of the solution, the total wave function is di-
vergent and thus looses physical meaning. What Rescigno
et al. found is a way to avoid the consideration of the
full wave function and to work out the full problem as
depending only on the scattering part; in other words,
only the physical part (r < R0) is used to extract scat-
tering amplitudes. However, here two ingredients are cru-
cial. The first ingredient is that the complex rotation has
to be performed in a region of the configuration space
where the asymptotic behavior of the wave function is al-
ready reached. The second one is that the driven equation
defining the scattering part has to be well defined. For
long-range potentials it is indispensable to use a distorted
wave approach to ensure that a pure outgoing wave will
be admissible as solution of the driven equation. While
this statement is quite general, we showed that, for the
Coulomb case, if this approach is not used, wrong re-
sults will come from the procedure; the work presented
here complements the one of reference [5]. With these two
ingredients, the extraction of the information, as imple-
mented by the ECS method, will bring the correct result.

The treatment of the pure two-body Coulomb poten-
tial is perfectly possible within the ECS if an appropriated
distorted wave approach is implemented; the only admissi-
ble way requires the use of the exact asymptotic solution.
If not, a cut-off will be necessary. In that case, we showed
that while the outer solution has no physical meaning, the
inner solution is indeed proportional – with known con-
stant – to the exact solution. This proof reinforces the ECS

approach as the property is a cornerstone for the method
to work. While this is fine for the two-body case, it is im-
portant to underline here that such a demonstration for
the three-body case is not possible as the exact solution
is not known.

A very interesting conclusion can be extracted from
reference [15]: the use of complex basis avoids all the men-
tioned problems. It is not necessary to rotate the original
Schrödinger equation or the driven one, and it is not neces-
sary to cut-off the potential in the driven term. If one still
wants to use the efficient technique of complex scaling, a
complex rotation, uniform or exterior, can be applied on
the basis functions. We presented here the use of Sturmian
functions as a very convenient basis set to solve scattering
problems both with or without complex scaling.

Similar difficulties as those discussed for the two-
body case appear when dealing with three-body prob-
lems. Again, the full wave function is separated into
the sum, Ψ = Ψ0 + Ψsc, of an initial channel Ψ0 with
standing-wave character and a scattering part Ψsc with,
e.g., outgoing character; a partial wave expansion is gen-
erally performed. The replacement of this ansatz into the
Schrödinger equation leads to a driven equation for Ψsc,
(H − E)Ψsc = −VinΨ0 where H is the full Hamiltonian.
Generally, the initial state does not include correlation
between all the particles and Vin is of long-range [4]. For
example, for the study of ionization of hydrogen by elec-
tron impact, Ψ0 is constructed as a symmetrized product
of a plane wave for the projectile and a hydrogen bound
state. In the region where both electrons are close to each
other and far from the nucleus, the interaction results to
be of long range. When solving this problem by complex
rotation of the coordinate again surges the problem that
divergencies are observed due to the stationary character
of part of the initial state. The cut-off in a long range
interaction is then required with the inconveniences dis-
cussed in Section 2 for the two-body case. According to
the results provided by using the ECS method these diffi-
culties are not numerically appreciable even when they are
present. We should mention that, contrary to the electron
impact case, for double photoionization by a single photon
no difficulties appear as the driven term is exponentially
bounded [6,18,20,21].

The ECS representation of the three-body problem im-
plies also some issues not present in the two-body case.
There are various asymptotic conditions to be fulfilled
and they depend on the channel to be analyzed. How-
ever, when using the ECS method, all the channels are
coupled and simultaneously present. As in the two-body
case, use is made of a numerical representation of (H−E)
and the Green’s function G = (E−H)−1 on a grid or in a
numerical basis (as, e.g., B-splines). The Hamiltonian H
is rotated to the complex plane and a zero is forced on a
square box of size R0, meaning that a “square” boundary
condition is imposed. However, it is well known that the
asymptotic behavior for ionization or ionization-excitation
channels possess outgoing hyper-spherical wave forms [43].
The complex rotation of the Hamiltonian and the imposi-
tion of box type condition force the solution of the driven
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equation (H − E)Ψsc = −VinΨ0 to possess outgoing flux
on both coordinates r1 and r2. This in turn creates purely
outgoing flux on the hyper-spherical coordinate ρ (this is
supported also by the work presented in Ref. [33]), but
the reason why this is so is unclear and it is a subject
of our present investigations. The complex rotation of the
Hamiltonian on both coordinates induces on the Green’s
function G an outgoing flux, leading to a good represen-
tation of the channels associated to continuum spectra.
We wonder how this could be mathematically explained
and it would be interesting to seek a mathematical way of
evaluating the error appearing through such type of repre-
sentations. Besides, it is not clear if and how the appropri-
ate logarithmic Coulomb phase (see Ref. [43]) is produced
through the numerical implementation. According to the
study presented in reference [23] a phase proportional to
the correct one is obtained, but as far as we know no
general and formal – or even numerical – study has been
performed on this point.

An additional issue to observe is that the cut-off im-
posed on the RHS of the driven equation affects mostly
the excitation channels which are more strongly coupled
to the initial state Ψ0. When numerically solving the prob-
lem, all channels are included in Ψsc, but because of the
flux conditions imposed on a square contour the double
continuum is expected to be the best channel represented.
It is clear, however, that even when the three-body Green’s
function – and its numerical representation – includes all
the interactions, the implementation of the ECS leads to
an approximate solution (whose convergence to the ex-
act solution can in principle be reached). However, it is
not clear up to now, how to evaluate the error introduced
by the cut-off performed on a square contour. A proce-
dure similar the ECS which avoids all these problems as-
sociated with the complex rotation is the one presented
in reference [33]. In connection with that work, we again
suggest that the use of complex Sturmian basis would be
well adapted to the problem because it avoids the poten-
tial cut-off and possible – unnecessary – sources of er-
rors. It has been already demonstrated [33,34] that the
Generalized Sturmian method works in spherical coordi-
nates, with no convergence difficulties as those observed
by Baumel et al. [39]. All the matrix elements required to
evaluate the wave functions and transition amplitudes are
well defined, and the method converges towards the cor-
rect results. This is due to the built in properties of the
basis functions, and in particular to the unique and com-
mon asymptotic behavior. We are currently working on
the implementation of a Sturmian method to solve three-
body problems in hyper-spherical coordinates including
the suitable asymptotic conditions into the basis func-
tions. The study of double ionization of helium by electron
and photon impact will soon be presented.
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Appendix A

For the Coulomb potential V (r) = z1z2/r, the solutions
vReg (r) and vIrreg (r) of the Coulomb Schrödinger equa-
tion (2) are well known [28]. They are given by

vReg (r) = NC(l)rl+1eikr
1F1

(
iα + l + 1

2l + 2

∣∣∣∣ ;−2ikr

)

(A.1a)

vIrreg (r) = NC(l)rl+1eikr U

(
iα + l + 1

2l + 2

∣∣∣∣ ;−2ikr

)
,

(A.1b)

where α = z1z2μ/k defines the Sommerfeld parameter,
1F1(a, b; z) and U(a, b; z) represent the regular and irregu-
lar solutions of the Kummer equation [30]. Both solutions,
regular [vReg (r)] and irregular [vIrreg (r)] at the origin, are
real functions. The normalization constant

NC(l) =
(2k)l+1

2
|Γ (iα + l + 1)|

Γ (2l + 2)
e−

π
2 α, (A.2)

is chosen in such a way to have the following (unit flux)
large distances behavior

vReg (r) −→ sin [ΦC(l) + σC(l)] (A.3a)

vIrreg (r) −→ cos [ΦC(l) + σC(l)] (A.3b)

where

ΦC(l) = kr − α ln (2kr) − π

2
l (A.4)

σC(l) = Arg [Γ (iα + l + 1)] . (A.5)

Close to the origin, the function vReg(r) behaves as
NC(l)rl+1.

From the standing-wave behaviors (A.3a) and (A.3b)
one may construct solutions with incoming (H−

l (α, r)) or
outgoing (H+

l (α, r)) asymptotic behaviors, namely

H±
l (α, r) =

[
vIrreg (r) ± ivReg (r)

]
e∓iσC(l), (A.6)

which are irregular close to the origin, and at large dis-
tances behave as

H±
l (α, r) −→ H±

l,as(α, r) = e±iΦC(l). (A.7)

For the free particle case, α = 0, these solutions reduce to
the Riccati-Hankel functions, noted H±

l (0, r), which be-
have asymptotically as

H±
l (0, r) −→ H±

l,as(0, r) = e±i(kr−π
2 l). (A.8)
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Appendix B

A particular solution ΨP (r) of the Coulomb driven
Schrödinger equation (6) is readily available in closed form
and is given by [32]

ΨP (r) = (−2μ)(−z1z2)
kl+1

(2l + 2)(2l + 1)!!

× eikrrl+2Θ(1)

(
1, 1| l + 1, iα + l + 2
iα + l + 2| 2, 2l + 3

∣∣∣∣ ;−2ikr,−2ikr

)
,

(B.1)

where Θ(1) represents a two-variable hypergeometric func-
tion (convergent for all values of r)

Θ(1)

(
a1, a2| b1, b2

c1| d1, d2

∣∣∣∣ ; x1, x2

)

=
∞∑

m1=0

∞∑
m2=0

(a1)m1
(a2)m2

(b1)m1
(b2)m1+m2

(c1)m1
(d1)m1+m2

(d2)m1+m2

xm1
1 xm2

2

m1!m2!

(B.2)

introduced and studied in reference [44]. It can be verified
that ΨP (r) satisfies

krjl(kr)+ΨP (r) = vReg(r) kl+1/(NC(l)(2l+1)!!), (B.3)

and hence possesses the following behavior at large
distances

ΨP (r) → 1
NC(l)

kl+1

(2l + 1)!!
sin (ΦC(l) + σC(l))

− sin
(
kr − π

2
l
)

. (B.4)
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