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Abstract

The aim of this work is to face the challenge of describing the stopping power in heavy
transition and posttransition metal solids in an extended energy range. The present
study examines the stopping of hydrogen in Hf, W, Pb, and Bi. The electronic structure
description of the targets requires solving the many-electron Dirac Hamiltonian. We
inquire the influence of employing various relativistic approximations, and its effect
on the energy loss. The theoretical model of the stopping power considers separately
the valence electrons of the metal-accounted for as a free-electron gas and the bound
electrons. The former are described using a nonperturbative binary screening potential
or the dielectric formalism, depending on the energy regions and plasmon excitation
threshold. For the later, the approach uses the dielectric formalism for each subshell by
means of the shellwise local plasma approximation. We inspect the importance of accu-
rately describing the 4f and 5d electrons, the spin–orbit split, the intra- and intershell
screening among electrons, and the different quantum dielectric response functions.
The present results correctly describe the stopping cross sections in comparison with
the data available, the theoretical models DPASS and CasP, and the semiempirical
SRIM. Based on these results, we analyze the state of art of the experimental values
and suggest the need for new measurements in certain energy ranges and targets.
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1. Introduction

The electronic stopping power is a fundamental input of any simula-

tion or experimental research that describes the passage of high energy

charged particles through matter. These applications include, among others,

ion beam analysis, deposition range and radiation damage; all of them with

different technological or medical applications. Providing reliable stopping

values for such purposes challenges modern science and encourages the

development of accelerator technologies, theoretical modeling, and high

performance computing.

Theoretical electronic stopping power calculations go back to the early

times of atomic physics.1–3 Pioneering works by Sabin and coworkers4 pro-

vided useful tabulations for atoms, with shell-by-shell calculations. For molec-

ular targets, the authors considered chemical bonds5 to improve the usual

Bragg rule (addition of the atomic constituents). Many theoretical approaches

have been proposed since then. For instance, we can point out the electron–
nuclear dynamics to solve the time-dependent Schr€odinger equation6 and the
time-dependent density functional theory.7 Within the binary collision for-

malism, stand out theories such as the unitary convolution approximation,8

the binary stopping theory9 and the self-consistent nonperturbative

approach,10 among others.

A different approach to the inelastic response of the target electrons to

the ion passage comes from the quantum dielectric formalism.11–14 This

many-body approximation considers an homogeneous density of non-

interacting electrons within the Fermi energy band, including dynamic

screening and collective excitations within the limits of the linear response

approximation. The dielectric formalismwas extended to describe all the tar-

get electrons by means of the local plasma approximation (LPA).15,16 Even

though Lindhard’s LPA, and its subsequent developments, assume a local

response of the bound electrons, it considers the electronic cloud as a whole

by using the total electronic density of the atom.Recent proposals17–19 prove

that the models based on the dielectric formalism are still quite efficient to

describe the stopping power.

However, despite all the recent theoretical efforts, discrepancies between

models and experimental measurements remain present.20 These differences

are originated primarily because the energy loss through matter is a many-

body and many-collision phenomena. One of the open problems in the field

is the stopping power modeling of systems with nuclear charge ZT � 55:
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lanthanides, heavy transition metals, and beyond. Recent measure-

ments21–23 show the limitations of the energy loss models for these heavy

targets. A first step toward solving this problem presumes considering a rel-

ativistic formalism to describe the electronic structure. In fact, recent theo-

retical works support this assertion.24

In this contribution, we present and discuss the results of the shellwise

local plasma approximation (SLPA)18,25 combined with various relativis-

tic electronic structure calculations. This approximation improves the full

dielectric formalism by Chu and Powerd16 considering independent

subshells, as proposed by Meltzer and Sabin,17 and the ionization thresh-

old of each subshell by using the Levine dielectric function.26 In fact, the

present SLPA surpasses previous versions by introducing the Levine-

Mermin dielectric function.27 The SLPA is a collective model: it takes

into account screening among electrons of the same subshell, and also

inter-shell screening, when required.24 This feature constitutes a valuable

asset when dealing with the 4f and 5p subshells of the heavy transition

metals. For these targets, the 4f and 5p electrons are so close in energy that,

for impact ions above certain threshold, they respond as a single density of

electrons and mutual screening must be considered.

The aim of the present contribution is to study the stopping power in

relativistic targets. We examine four illustrative cases: two transition metals,

Hf and W, and two posttransition metals, Pb and Bi. These targets include

the closed 4f-subshell, and open (Hf and W) or closed (Pb and Bi) 5d-sub-

shell, while the valence electrons are considered as a free-electron gas (FEG).

Detailed electronic structure calculations were performed by implementing

nonrelativistic, semirelativistic and fully relativistic approaches. The impor-

tance of these calculations to the final stopping values is discussed. Atomic

units are employed throughout all this work, unless explicitly stated

otherwise.

2. Theoretical description

2.1 The shell-wise local plasma approximation
The many-body consistent treatment for an ion traveling through an homo-

geneous FEG was developed by Lindhard11 and by Ritchie12,14 within the

linear response approximation. For the valence electrons of metals we can

consider a FEG of density ρFEG ¼ Neρat, with Ne and ρat being the number

of valence electrons and the atomic density of the solid target, respectively.
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The stopping power of a bare ion of charge ZP moving at velocity v within

the FEG is expressed as

SFEG ¼ 2 Z2
P

πv2

Z ∞

0

dk

k

Z kv

0

ω Im
�1

εðk, ω ρFEGÞ
� �

dω, (1)

where ε(k,ω, ρFEG) is the dielectric function. In this work, we employed the

Mermin–Lindhard dielectric function,28 which improves Lindhard’s11 by

considering a finite time between electron–electron collisions τ or, equiv-
alently, a damping γ ¼ 1/τ. It is worth to underline that this many-electron

formalism includes plasmon excitation, with the plasmon frequency being

ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π ρFEG

p
, as introduced by Lindhard and Scharff.15 Instead, the value

of γ is experimental and related to the energy loss function of the target in the

optical limit.29,30

Within this formalism, the SLPA18 describes the response of each nl sub-

shell of bound electrons as a gas of electrons of local density ρnl(r) and ion-

ization threshold Enl. The SLPA expression for the energy loss by a bare

ion within the atomic cloud of electrons of the nl subshell is given by

Snl ¼ 2 Z2
P

πv2

Z ∞

0

dk

k

Z kv

0

ω Im
�1

εnlðk, ωÞ
� �

dω, (2)

with

Im
�1

εnlðk, ωÞ
� �

¼
Z

Im
�1

εðk, ω, ρnlðrÞ, EnlÞ
� �

dr: (3)

The dielectric function ε(k, ω, ρnl(r), Enl) is the Levine–Mermin one,26

which includes explicitly the energy gap Enl to the Mermin dielectric func-

tion.28 The selection of the dielectric function is key since it represents all

possible inelastic processes of the bound electrons. Within the SLPA, a local

density ρnl(r) implies a local plasmon frequency ωnl
p ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π ρnlðrÞ

p
.

Following this methodology, a local damping is proposed,27 given by

γnlðrÞ ¼ ωnl
p ðrÞ=2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πρnlðrÞ

p
. It is worth mentioning that all the parameters

included in the SLPA depend on ρnl(r) and Enl, which are computed before-

hand. This feature maintains the full-theoretical characteristic of the model.

As a collective approach, no postmodel shell correction is necessary. The

evaluation of Eqs. (2) and (3) is straightforward, with only two inputs values

for each nl subshell: the electron density (derived from the wave functions)

and the binding energy.
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2.2 Electronic structure
Since electron densities and binding energies are the only input parameters

of the SLPA model, obtaining an accurate description of the target is key.

For species with heavy nuclei, whether neutral or ionized, relativistic effects

must be included in the computation of the electronic structure. Many

methods and numerical codes have been developed to this end; for example,

see the reviews by Grant31 and Fischer et al.32 In this work, we describe the

electronic structure of heavy targets by implementing a nonrelativistic

method with relativistic corrections (semirelativistic) and a fully relativistic

approach.

The first technique considers the Breit–Pauli (BP) effectiveHamiltonian.

For a target of N electrons and nuclear charge Z, the BP Hamiltonian is

given by,

HBP ¼ HNR+ HRC, (4)

where the first term is the usual nonrelativistic (NR) Hamiltonian

HNR ¼
XN
i¼1

hi +
X
i<j

1

rij
, (5)

and

hi ¼ � 1

2
r2

i �
Z

ri
: (6)

The second term correspond to relativistic corrections, composed by one-

and two-body terms; see Refs. 33, 34 for more details.

In the second method, the Dirac-Coulomb equation is solved. This

Hamiltonian is given by

H ¼
X
i

hDi � Z

ri

� �
+

X
i<j

1

rij
, (7)

where hDi is the single-electron kinetic Dirac Hamiltonian

hDi ¼ c αi � pi + ðβi � 1Þc2, (8)

while the remaining terms correspond to the nuclei–electron and electron–
electron interaction.Many approaches have been developed to solve Eq. (7);

for example, see Refs. 35–37.
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3. Results and discussion

For solving the Dirac–Coulomb Hamiltonian, we considered the rel-

ativistic version of the parametric potential method developed byKlapisch,38

which is implemented in the RELAC code and included in the HULLAC suite of

codes.39 We call these calculations R. The full Breit interaction in the Pauli

approximation, developed by Eissner et al.,33 was implemented here by

considering the AUTOSTRUCTURE code by Badnell.40 Within this approach,

we used the Thomas–Fermi–Dirac–Amaldi (TFDA) potential,33,41,42

which features scaling λnl parameters, and allows adjusting the solutions

of Eq. (5). These calculations are denoted as sR. We also implemented a

nonrelativistic approach. For this, we used the Hartree–Fock code by

Froese Fischer.43

The relativistic binding energies (R), the semirelativistic (sR), and the

nonrelativistic values (NR) are shown in Fig. 1 for Hf, W, Pb, and Bi.

We compare our theoretical calculations with experimental binding ener-

gies (measured in solids), compiled by Williams.44

Since Fig. 1 displays the binding energies in a five order magnitude range,

we add Fig. 2 to discern the discrepancies between the present values and the
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measurements. Binding energy relative errors are given in Fig. 2 for Hf, W,

Pb, and Bi. Themissing orbital data in the figure correspond to values smaller

than�1. For the inner shells, i.e., 1s-5s forHf andWand 1s-5d for Pb and Bi,

the semirelativistic calculations and nonrelativistic ones are fairly similar,

with a �9% agreement, while the relativistic binding energy calculations

coincide with the experimental values in about 3%. As expected, the inclu-

sion of relativistic effects are responsible for these improvements. The overall

good agreement of the relativistic calculations demonstrates the necessity of

including properly the relativistic effects in the structure calculations. As it

will be shown later, some of the outer electron wavefunctions have a non-

negligible overlap with the internal ones. Therefore, the relativistics effects

spread all over the full structure calculation, including the outer-shells. There

are some discrepancies for the 5p and 4f electrons, in the case of Hf and W,

and for the 5p and 5d subshells in Pb and Bi, which can be understood if one

recalls that the theoretical calculations assume isolated atoms, whereas the

experimental data were taken from the targets in solid state.

In Fig. 3, we display the most outer shells of Hf,W, Pb, and Bi. As can be

noticed, the 5d and 6s, in Hf and W, and the 6s and 6p electrons, in Pb and

Bi, are part of the FEG. For these subshells, the binding energies displayed in
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Fig. 3 only have sense for atoms but not for solids. No experimental values in

solids are available, as expected, because these electrons belong to the con-

duction band. Moreover, these results for the electronic structure are coher-

ent with the expected number of electrons in the FEG, i.e., Ne ¼ 4 for Hf

and Pb, Ne ¼ 5 for Bi, and Ne ¼ 6 for W.

The semirelativistic (sR) calculation shown in Figs. 1 and 3 can be further

improved by optimizing the λnl radial scaling parameters that define the

TFDA potential employed. There are many approaches to this end; in par-

ticular, we manually adjusted the values of λnl so that the computed binding

energies are the same as the experimental measurements. The optimized cal-

culation, denoted sR*, is not shown in Figs. 1 and 3. To illustrate this result,
we present in Fig. 4 the calculated densities and mean radius of the inner

subshells of Pb. For the relativistic data, the reduced electron density is given

by dnl(r) ¼ Pnl(r)
2 + Qnl(r)

2, where P and Q are the strong and weak com-

ponents of the reduced radial wavefunction (
R∞
0
dnlðrÞ dr ¼ 1). To simplify

this analysis, we have considered a split-orbit average for the nlj subshells.

The right panel in Fig. 4 shows that the NR mean radius of the core elec-

tron’s radial distributions are generally larger than the R, sR and sR* results,
as expected. We can observe that the radial distribution of the sR* calcula-

tions are also influenced by the optimization. For most of the inner shells,
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these results follow the correct behavior: the optimized electron densities are

pulled toward the nuclei. The analysis of the differences in the 4f and 5d

subshells surpasses the scope of this work.

In what follows, we present stopping cross sections for Hf, W, Pb, and

Bi. The total stopping is obtained by calculating separately the contribution

of valence (FEG) and bound electrons, given by Eqs. (1) and (2), respec-

tively. The density ρnl used in Eq. (3) is related to the reduced electron den-
sity dnl by ρnl(r)¼Nnldnl(r)/r

2, withNnl being the number of electrons in the

subshell nl. Three formalisms are combined to obtain the total stopping cross

sections. The first one considers a nonperturbative description of the energy

loss in the FEG, based on an screening potential SPCC.25 Thismodel relies on

the binary collisional theory, so no collective excitations (plasmons) are

included. The second one calculates the stopping power of the FEG by using

Mermin–Lindhard28 dielectric formalism (ML), which follows a perturbative

approximation but includes collective excitations in the energy region, where

the plasmon contribution is important. Finally, the third approach combines

the SLPA and relativistic electronic structure computations described above.

The first step in the total stopping calculation consists on determining

how many electrons are included in the FEG, while the rest are assumed

bound to the atom. To make this decision, we considered the relativistic

results displayed in Fig. 3. In previous works,45,46 we based this choice

on external experimental values from energy loss measurements in the opti-

cal limit. In this contribution, we decided to rely on our full-theoretical

developments. Other important improvement constitutes the introduction

of the Levine-Mermin dielectric function, which is critical for many target

subshells. It is worth mentioning that, in all our calculations, the

H projectiles are considered as protons. This characterization is based on

two physical processes: (i) Inside the solid, at low impact energies, the

dynamic screening of the ion by the FEG prevents any electron to occupy

the 1s bound state of H.47 (ii) At high energies, the probability of projectile

ionization is more important than capture, so the hydrogen looses the only

bound electron in few collisions and arrives to an equilibrium charge state

of ZP ¼ 1. For hydrogen projectiles, this charge state is also considered in

other calculations like SRIM48,49 but these are based on the empirical stop-

ping results.

In Fig. 5, we display the present results for H in Hf. The total stopping

agrees quite well with the experimental data, suggesting a maximum around

70 keV/amu. Separate curves for the FEG and bound electrons contribu-

tions are displayed, together with the total value. As mentioned before,
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the FEG curve results from the combination of the SPCC at low energies

(dashed line) and theML at intermediate and high energies. The vertical line

illustrates the threshold energy for plasmon excitations.25,47 The recent

version of the SLPA, which considers a local damping,27 and the present rel-

ativistic calculations are employed, improving previous results obtained in

Montanari et al.24

In Figs. 6–9, we show a set of four total stopping cross sections calcula-

tions for H on Hf, W, Pb, and Bi, respectively. In the following, we analyze

the importance of the electronic structure calculations by comparing relativ-

istic, semirelativistic and nonrelativistic results. We also include comparison

with the semiempirical values by Ziegler’s SRIM code,48,49 the theoretical

results by Schiwietz and Grande’s code CasP version 6.0 forZP¼ 1,52,53 and

the Sigmund and Schinner’s DPASS54,55 curve.

For Hf, no experimental data are available for impact energies around the

maximum and below. It can be noted in Fig. 6 that the differences between

NR and R are not dramatic, being the former smaller than the latter and

with a maximum value slightly shifted to higher energies. On the other

hand, the sR and sR* curves are quite different, but neither of them agree

with the experimental data. If one recalls Fig. 3, it becomes evident that the

more binded are the electrons of the subshell below the FEG (following the

experimental description), the larger the cross section.
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Similar results are obtained for H onW, as displayed in Fig. 7. However,

recent measurements by Moro et al.23 (represented with letters E and F in

Fig. 7) agree better with the NR results for energies below the maximum.
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The comparison with other theoretical and semiempirical curves shows that

DPASS54 is the closest to our results. It is worth mentioning that for Hf and

W, the 4f electrons are close in energy to the 5p electrons. The SLPA

includes the screening among electrons of similar binding energy. For these
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cases, inter-shell 5p-4f screening is included considering the small difference

between the binding energies and the meantime for the ion to get through

the subshells, as discussed in Ref. 24.

The results for Pb and Bi are different. As can be noted in Fig. 3, the

closed 5d subshell is located just below the FEG and, consequently, it

becomes the main contribution to the stopping power around the maxi-

mum. The theoretical structure calculation of such multielectronic targets

is a difficult task; particularly for the outer electrons. We can observe in

Figs. 8 and 9 that the NR, sR and R calculations are very similar, which fol-

lows the corresponding binding energy comparison in Fig. 3. Moreover,

these values are close to other models, such as DPASS.54 The double max-

imum shape of our R curves indicates that the bound electron contribution

could be underestimated. The difference between theoretical (deeper) and

experimental (smaller) binding energy for the 5d subshell may explain this.

In fact, the sR*, which agrees the 5d experimental binding energy, describes

better the data for impact energies below 500 keV/amu. It should be noted

that the latest data on Bi and Pb, for energies around the stopping maximum

and below, were measured 30 years ago. Bi and Pb are exceptional cases and

new experimental efforts at impact energies below 200 keV are encouraged

to clarify these differences.

4. Conclusions

In this contribution, we advanced in the theoretical description of the

target’s electronic structure by using the best relativistic descriptions avail-

able. The combination of these results with the dielectric formalism, the

SLPA and the nonperturbative model based on the screened potential

allowed us to predict stopping values in an extent energy region. Hf and

W were examined to illustrate postlanthanides transition metals, while

Pb and Bi exemplified the posttransition metals of the group p. The present

stopping power results are compared with the experimental data available,

and other theoretical and semiempirical models. The influence of the 4f

electrons (of Hf and W) and the 5d electrons (of Pb and Bi) is discussed.

From the stopping cross sections analysis, we show that even though there

are limitations in the atomic structure approximations, doubts rise over cer-

tain experimental values around the stopping maximum. It is obvious from

the present analysis that the disagreement among data sets makes it imper-

ative to count on independent theoretical models. Of course, semiempirical

models will adapt to the existing data, and this is valid, as far as the existing
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measurements are correct. However, for the targets considered here, our

model provides one of the best fully theoretical description available.
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