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Abstract
Simple and accurate wavefunctions for the He atom and He-like isoelectronic
ions are presented. These functions—the product of hydrogenic one-electron
solutions and a fully correlated part—satisfy all the coalescence cusp conditions
at the Coulomb singularities. Functions with different numbers of parameters
and different degrees of accuracy are discussed. Simple analytic expressions
for the wavefunction and the energy, valid for a wide range of nuclear charges,
are presented. The wavefunctions are tested, in the case of helium, through
the calculations of various cross sections which probe different regions of the
configuration space, mostly those close to the two-particle coalescence points.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

While a large variety of methods can be applied to the calculation of the wavefunctions and the
energies of He-like ions [1–4], finding simple yet accurate wavefunctions for these systems
remains an important challenge. Such wavefunctions are of importance for the study of a
variety of physical processes such as the double ionization of atoms by ion and electron or
photon impact [5–12]. The evaluation of cross sections for those processes demands large
dimensional numerical integrations of two-electron wavefunctions both for the initial and the
final collisional channels [11, 13, 14]. One way of reducing the difficulty of the calculations
is to use simple wavefunctions in both channels. Our work is an attempt in this direction.

The efforts related to the determination of bound states energies and wavefunctions
for He-like systems can be roughly separated into two approaches. The first one is based
on highly sophisticated calculations, and the second on simple functions with the correct
functional structure. Within the first approach, thousands of variational parameters are used
in order to produce very highly precise approximations, which are essentially exact for all
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practical purposes [15–20]. It is computationally prohibitive to use these wavefunctions for the
calculation of cross sections. Thus, no report can be found in the literature with applications
of that kind of functions to collisional problems such as photo-double ionization or (e,2e)
and (e,3e) processes. Within the second approach, a very low number of parameters are used
to produce quite simple wavefunctions for He-like ions [21–24]. These functions are built
with the correct asymptotic behaviour and cusp conditions. The drawback of this approach is
that the energies and general characteristics reported are often not good enough to properly
describe the systems [9]. The Hylleraas-like functions [25] can be considered an intermediate
approach. On the one hand, these types of functions are relatively simple. On the other hand,
they have been tested as useful functions for many collisional calculations [26]. For example,
the functions given by Green et al [27], by Chandrasekhar et al [28, 29] and by Hart et al
[30] use a few dozens of parameters and yield good energies for practical collisional purposes.
However, these wavefunctions do not have the correct asymptotic behaviour and fail to describe
properties such as the cusp conditions at the two-body coalescences (Kato cusp conditions
[31]). Failure to describe these last properties leads to wrong results in the calculations of the
cross section of particular physical processes [6, 7, 32, 33]. The importance of the fulfilment
of the Kato cusp conditions has been pointed out by many authors [11, 12, 14, 34–38] who
have discussed the value of satisfying them in the electron–atom double ionization and (e,3e)
processes.

Many simple and accurate wavefunctions are generated, based on the semi-separable
method originally proposed by Pluvinage [39]. In this method the wavefunctions are the
product of two factors. The first term includes the electron–nucleus interactions. The second
term takes into account both the electron–electron interaction and the correlation between all
the parts of the system. This method was applied to atoms [22, 24, 40–44] and molecules [45].
Moumeni and co-workers [41] modified Pluvinage’s original proposal introducing a screening
function to represent the correlation. Siebbeles et al [42] and Le Sech [22] further modified
the angular correlation factor, and also generalized the idea to other atomic systems [46, 47].

The aim of our work is to construct relatively simple functions having accuracies and
shapes similar to those given by Green et al [27] or by Chandrasekhar et al [28, 29], but with
correct cusp conditions. We chose this form for our wavefunctions because it might avoid
substantial rewriting of already existing codes designed to evaluate the cross sections based
on convergent close-coupling, exterior complex scaling and perturbative calculations based
on the continuum distorted wave methods (see, for example, [13, 14]). In a previous paper
(see Rodriguez et al [44]), simple and accurate wavefunctions were given for the ground state
of the He atom, but the method was not discussed in detail. In the present work, a detailed
discussion of the method is presented, analysing the different basis set of functions as well as
its properties. Furthermore, the application of the method is extended for other ions belonging
to the He isoelectronic sequence, from Z = 1 to Z = 10. Approximate analytical expressions
are given, allowing the calculation of the wavefunctions and the energies for other ions in the
sequence.

Our work is organized as follows: in section 2 we give a complete description of our
method. In section 3, we report the calculated energies for the ground states of helium-like
ions, up to Z = 10. In sections 3.1 and 3.2, we make a detailed analysis of the convergence
of the different types of functions, paying particular attention to the H− ion and the He atom.
For these ions, we give a complete set of variational solutions having an accuracy of about
1.5 × 10−4 for H− and 4.3 × 10−5 for He. In section 3.3 we present approximate analytic
expressions for the wavefunctions and energies which are valid for all the two-electron ions in
the isoelectronic sequence with Z starting from Z = 1. The behaviour of the bound states near
the two-particle coalescence points is studied in section 4. Dynamical quantities associated
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with photoabsorption processes which probe various parts of the configuration space are
evaluated. Some conclusions are given in section 5. Atomic units are used throughout this
paper.

2. Theory

2.1. The method

The non-relativistic Schrödinger equation for a two-electron atomic system is

H�(r1, r2) =
[
T − Z

r1
− Z

r2
+

1

r12

]
�(r1, r2) = E�(r1, r2), (1)

where r1 and r2 are the usual vectors describing the electron locations, r12 is the relative
distance between them and Z is the charge of the nucleus. The total kinetic energy T in terms
of these relative coordinates is

T = − 1
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In this paper we report S states having total angular momentum L = 0. In this case
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where the domain of the coordinates r1, r2 and r12 appearing in the last equation are
r1 ∈ [0,∞), r2 ∈ [0,∞) and |r1 − r2| � r12 � (r1 + r2), respectively. When the kinetic
energy T is replaced in the Schrödinger equation (1), the following expression results:

[D0 + D1 − Ec] �(r1, r2, r12) = 0. (5)

Here D0 and D1 are given by
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D1 ≡ −t1
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∂r12∂r2
, (7)

and the total energy E is written as the sum of partial energies E = E0 + Ec, with
E0 ≡ E1 + E2 + E12 and a correlation energy Ec. The D0 term in equation (5) does not
couple the coordinates; it represents three independent two-body Coulomb problems. The
cross derivatives included in D1 couple the motion of the pairs and lead to a non-separable
equation. Thus, equation (5) suggests a possible structure for the wavefunction as the product
of two factors: one exactly solving the equation

D0φn1,n2 = 0, (8)

and the other taking into account the coupling between the coordinates. In mathematical terms

�n1,n2(r1, r2, r12) = φn1,n2(r1, r2, r12)�n1,n2(r1, r2, r12). (9)
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The solution of equation (8) is

φn1,n2(r1, r2, r12) = ϕn1(r1)ϕn2(r2)χP (r12), (10)

where ϕn are the one-electron hydrogenic solutions

ϕni
(ri) = e− Z

ni
ri F

[
1 − ni, 2, 2

Z

ni

ri

]
, i = 1, 2, (11)

χP is the angular correlation factor

χP (r12) = 2β

2β + 1
e−iβr12F

[
1 − i

2β
, 2, 2iβr12

]
, (12)

F is the confluent hypergeometric function [48], and the energies are Ei = − Z2

2n2
i

and E12 = β2.

We impose to the proposed functions to satisfy all the Kato cusp conditions [31]:[
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where � means the average of �, e.g., in the first term of equation (13), the average is taken
over a small sphere of radius r1 keeping the other values fixed. Since the φ part of the function
is composed of Coulomb functions that naturally satisfies them, the Kato cusp conditions are
fulfilled if the function � behaves like
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(
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2 , r2

12

)
(14)

near the two-particle coalescence points.
Following our previous paper [44], we use
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The coefficients c must be restricted by the condition that the power series should not include
first power on the coordinates; otherwise the Kato cusp conditions are not satisfied. This is
actually observed in other proposals [22, 40, 41] in which the coupling functions sinh(λr)/r

or cosh(λr) explicitly exclude the first powers on r.
We define the angular correlated configuration–interaction (ACCI) solution of equation (1)

as

�(r1, r2, r12) =
∑
n1,n2

�n1,n2(r1, r2, r12). (16)

The coefficients c from equation (15) are obtained by solving the generalized eigenvalue
problem [49]: ∑

n1,n2,i,j,k

[Ĥ − EŜ]c(n1,n2)
ijk = 0, (17)
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where Ŝ is the overlap matrix

S
n1,n2,m1,m2
ijk,lmn = 〈

φm1,m2(r1, r2, r12)r
l
1r

m
2 rn

12

∣∣φn1,n2(r1, r2, r12)r
i
1r

j

2 rk
12

〉
, (18)

and Ĥ is the Hamiltonian matrix
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2.2. The angular correlation factor χ(r12)

In many ab initio electron structure methods such as the different variants of the quantum
Monte Carlo methods (see, for example, [50–52]), the correlation effects are often taken
into account by the introduction of a correlation function, generally known as a Jastrow-type
function [53]. These functions are included in different manners, but it is standard practice to
use a trial function, chosen to reflect particular characteristics desired for the wavefunctions,
and parametrized efficiently.

Exponential correlation factors, similar to the function χP (equation (12)), have been
employed in various guises in many explicitly correlated wavefunction methods. The function
χP is the continuum Coulomb solution of the third term of equation (6). This continuum
function presents many nodes, as is typical for any continuum function. However, there is
no physical reason for such nodes in a distortion factor introduced to represent the angular
correlation. There is a way to avoid these unphysical nodes by taking E12 = 0 as used,
for example, in [54]. However, setting E12 = 0 has the effect of eliminating the variational
parameter β, which we have found to have a significant effect on the energy. In a previous paper
[44], an angular correlation factor χE different from the continuum Coulomb wavefunction
χP was used, and here we will explain its origin. The factor χE is the solution of the equation[

−
(

∂2

∂r2
12

+
2

r12

∂

∂r12

)
+ VE(r12) − E12

]
χE = 0, (20)

where VE is a particular case of the Eckart potential [55]

VE = b
e−βr12

1 + c e−βr12
. (21)

The Eckart potential VE is plotted as a function of r12, for different parameters b, β and c, in
figure 1. This potential has an exponentially decreasing behaviour e−βr12 at large distances
representing the screening produced by the nucleus over the electron–electron interaction.

The zero energy solution (E12 = 0) of equation (20) can be written in terms of the Gauss
hypergeometric function 2F1 [a, b, c, z] as follows [56]:

χE(β, b, c, r12) = 2β + 1

2β
2F1

[
i

β

√
b

c
,− i

β

√
b

c
, 1,−c e−βr12

]
. (22)

where it has been assumed that b, β > 0 and c > −1. The constant in front of the 2F1 has been
introduced for convenience. The function χE(β, b, c, r12) is plotted in figure 2(a) for different
values of the parameters β, b and c as a function of r12. The figure shows that for particular
combinations of the coefficients, the function χE has a monotonically increasing behaviour
approaching a constant, as is expected for a correlation factor (see, for example, [57]). The
different angular correlation functions χE(r) and χP (r) are compared in figure 2(b). As can
be seen from the figure, these functions have a completely different behaviour for large values
of the coordinate. When r12 is very large, the solution of the atom must be separable, and that
is in agreement with the constant asymptotic behaviour presented by χE and not given by χP
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Figure 1. Eckart potential VE(r12). Solid line: β = 0.5, b = 0.125 and c = −0.5. Dashed line:
β = 1.75, b = 0.6806 and c = −0.22.
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Figure 2. (a) The solution χE(β, b, c, r12) of the Eckart potential for different parameters: Upper
curves: β = 0.5 and c = −0.5 ; solid curve: b = 0.125 and dashed curve: b = −0.125. Lower
curves: β = 1.75 and c = −0.22 ; solid curve: b = 0.68 and dashed curve: b = −0.68.
(b) Comparisons between the solutions of the Coulomb and Eckart potentials. Solid line:
χE(0.5, 0.125,−0.5, r12). Dashed line: the Pluvinage angular correlation factor 2β+1

2β
χP (0.5, r12).

[58, 59]. However, in the region where the electrons spend more time—around the 〈r12〉 ≈
1.4 au—the functions are quite similar.

Choosing the parameter b = −cβ2 and using the relation 2F1 [−1, 1, 1, z] = 1 − z, then

χE(β,−cβ2, c, r12) = 2β + 1

2β
2F1[−1, 1, 1,−c e−βr12 ]

= 2β + 1

2β
(1 + c e−βr12). (23)



Accurate and simple wavefunctions for helium-like ions 3929

Defining c = − 1
1+2β

the zero energy solution χE of equation (20) reads
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The replacement of χP by the χE defined in equation (24) produces a new φ function
(equation (10)) which still satisfies all the correct cusp conditions. Now φ includes a free
parameter β, to be fixed by variational methods. The numerical procedure requires the
redefinition of the operators D0 and D1. The new D̃0 operator should be defined as in
equation (6), but the Coulomb potential 1

r12
is replaced now by the Eckart potential VE . On

the other hand, D1 should be replaced by D̃1 = D1 +
(

1
r12

− VE

)
.

3. Results

The method described in section 2 is now applied to the study of the ground state of He-like
systems. In this case the wavefunction (9) becomes

�GRN(r1, r2, r12) = A e−Z(r1+r2)χE(r12)
∑

n1,n2,i,j,k

c
n1,n2
i,j,k ri

1r
j

2 rk
12, (25)

where A is a normalization factor. We denote the function �GRN following the notation used
in our previous paper [44], where N indicates the total number of different parameters included
in the function. Since the He ground state has S = 0 (antisymmetric spin function), the spatial
function � must be symmetric under the exchange of the electron coordinates, imposing the
constraints ci,j,k = cj,i,k and imax = jmax . Assuming only n1 = n2 = 1, the function acquires
a shape quite similar to that given by Green et al [27] and by Chandrasekhar et al [28, 29].
Even though in our assumption we are using only combinations of 1s one-electron functions,
the method also provides reasonable good wavefunctions for the low-lying excited states.
Including other n quantum numbers has improved considerably the wavefunctions for these
levels. We are currently investigating this subject.

The simplest of the �GRN functions is obtained by keeping powers up to order 2 on the
coordinates r1 and r2 in equation (25). Thus, the �GR2 function results:

�GR2(r1, r2, r12) = A e−Z(r1+r2)χE(r12)
[
1 + c200

(
r2

1 + r2
2

)]
. (26)

We present, in table 1, the mean energies obtained for the H− and He ground states
by using the �GR2 function. For comparison, the table displays the results obtained with
the angular correlation factor χE (equation (24)) together with those obtained by using the
Pluvinage factor χP (equation (12)). The table shows that the best values are obtained with χE

for both ions. For H−, the parameter β is much smaller than for He, allowing the wavefunction
χE to attain greater distances from the origin before reaching its asymptotic region.

3.1. Correlated open-shell-type functions

A separable function such as

�GRON(r1, r2, r12) = A{e−Zr1g(r2) + e−Zr2g(r1)}χE(r12), (27)

where g(ri) is defined according to equation (15) in terms of the power series

g(ri) = e−Zri
[

1
2 + c200r

2
i + c300r

3
i + c400r

4
i + c500r

5
i + c600r

6
i + · · · ], (28)
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Table 1. Parameters and mean energies for the H− and He ground states obtained by using
the �GR2(r1, r2, r12) function. Values obtained by using χP (equation (12)) in place of χE

(equation (24)) are also given for comparison.

χE χP χE χP

Z 1 1 2 2
A 0.0769 0.1615 1.3891 2.3170
β 0.0374 0.42 0.4435 0.7
c200 0.1030 0.0795 0.1556 0.1306
〈−E〉 0.5199 0.5166 2.9013 2.898

−Ea
exact 0.5277 2.9037

a Pekeris [63].

Table 2. Variational calculations of the parameters and energies for the H− ion, calculated with
the open-shell-type �GRON functions (equation (27)).

GRO2 GRO3 GRO4A GRO4B GRO5A

β 0.0374 0.1065 0.1142 0.1248 0.1246
c200 0.1030 0.0608 0.1026 0.0828 0.0295
c300 −0.0188 0.0300
c400 0.0034 0.0059 0.0017 −0.0033
c600 0.000 05 0.000 08
〈−E〉 0.5199 0.5258 0.5260 0.5265 0.5267

Table 3. Variational calculations of the parameters and energies for the He atom, calculated with
the open-shell-type �GRON functions (equation (27)).

GRO2 GRO3 GRO4A GRO4B GRO5A

β 0.4435 0.4519 0.4493 0.4511 0.4709
c200 0.1556 0.1346 0.1138 0.1330 0.1351
c300 0.0193 0.0008
c400 0.0057 0.0012 0.0063 0.0062
c600 −0.000 06 −0.000 06
〈−E〉 2.9013 2.9020 2.9020 2.9020 2.9020

is called an open-shell-like function [57]. This is a separable function, in the sense discussed
in section 2.1, in which the exponential term describes the Coulomb interaction between the
inner electron and the nucleus, while the function g describes the dynamics of the ‘outer’
electron. A number of combinations of linear parameters ci00 was performed in order to get
the best representation of the electron–electron correlation. The mean ground state energies
for the H− ion, obtained for the polynomials in the expansion (28) up to order 6, are shown in
table 2.

The same results are given for the He atom in table 3. Besides the GRON label to identify
the number of independent parameters, we include capital letters A and B to denote different
functions. It can be seen from the table that the effect of the inclusion of different terms is
much more significant for the H− ion than for the He atom. This can be associated with the
fact that the H− ion is larger than the He atom; thus it is necessary to include higher powers
to appropriately represent the regions of the ion farther from the origin. Another conclusion
drawn by analysing the results is that for He the series rapidly saturates the convergence.
Adding more terms to the expansion (28) hardly changes the final energy. The best function
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obtained for the H− ion is the GRO5A which includes the powers 2, 3, 4 and 6. For the He
atom, the GRO5A function does not improve the GRO3 function. We found that including a
r5 term did not significantly improve the accuracy of the solution beyond that of the function
having only powers r2, r3 and r4. The r3 term seems to produce some effect for the H− ion
when combined with the r6 (see GRO5A). We noticed that the most important contributions
to the energy are due to the even powers in agreement with the cosh(λr) function used by Le
Sech [22]. Still, our H− energies with only two parameters are better than those obtained by
Le Sech.

3.2. Highly correlated wavefunctions

Highly correlated wavefunctions can be obtained including more terms in the polynomial
representation of the correlation. We consider non-separable functions by adding the crossed
terms not included in expansion (28), and adding powers of r12 representing the angular
correlation.

In table 4 we present the mean ground state energies of He and H− for the GRN functions
having N = 5, 9, 14 and 29 parameters. We have used the χE angular correlation function in
all the calculations due to its simple form and its correct asymptotic behaviour. In our study,
we have tried to keep the expansion degree as low as possible.

The best functions obtained with two and three parameters (GR2 and GR3 functions)
are the GRO2 and GRO3 functions, respectively, already listed in tables 2 and 3. The first
function listed in table 4, including powers up to order 3 on all the Hylleraas coordinates, is
the GR5B, with four linear parameters. All the functions listed satisfy all the two-body Kato
cusp conditions. In every case, the energy does not vary significantly in a wide range around
the minimum value of the nonlinear parameter β. Therefore, the accuracy required for this
parameter is not high.

The functions listed in table 4 for the He atom are alternative proposals to the Hylleraas
functions with 6, 10, 14 and 20 parameters given by Green et al [27], by Chandrasekhar et al
[28, 29] and by Hart et al [30], respectively. The mean energies obtained for these functions
are similar to the corresponding functions denoted number 9 and 10 in Bonham and Kohl [21],
and are better than the values presented by Le Sech [22], Moumeni et al [41] and Siebbeles
et al [42]. The most accurate function (GR29) presented in this report yields energies with an
accuracy of 4.3 × 10−5. We analysed the quality of our wavefunctions testing local properties
which probe the function in different regions. All the mean values are in excellent agreement
with those given by the high-order parameter Hylleraas functions. Another global property of
interest is the Virial coefficient which converges very rapidly to the exact value of −2: it is
−2.012 for the GR3, −2.002 for the GR5B and −2.0003 for the GR9.

For the case of the H− ion, two highly correlated functions are reported in table 4, with
14 and 29 parameters. Note that two parameters are zero on the definition of the GR29
function for the H− ion; thus, our best function effectively has 27 parameters. The energies
of our functions are in very good agreement with the energies calculated by Henrich [60]
(−0.527 559 au, obtained with an 11-parameter function) and by Hart et al [30] (−0.527 645 au,
20 parameters). Recently, Qiu et al [61] reported a 43-parameter function (parameters not
reported) to study one- and two-electron emission from H− by high-energy photons. This
function, written in terms of Hylleraas coordinates, gives a mean energy of −0.527 68 au, and
does not satisfy the cusp conditions. Our best function produces almost the same mean energy,
but with a considerably smaller number of parameters and with the correct cusp conditions.
In contrast to the open-shell-like expansion, the expansion for the correlated wavefunctions
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Table 4. Parameters and energies for the He atom and the H− ion, corresponding to highly
correlated �GRN wavefunctions (equation (25)).

He H−

GR5B GR9 GR14 GR29 GR14 GR29

N 1.403 9859 1.390 9157 1.385 8475 1.381 633 5 0.073 386 239 0.073 293 631
β 0.70 0.56 1.43 1.80 0.15 0.82
c200 0.132 7041 0.166 6377 0.194 1680 0.216 445 3 0.116 972 024 0.106 045 350
c220 −0.024 9529 −0.090 2841 −0.114 7580 −0.265 781 3 −0.013 888 435 −0.043 414 801
c300 0.026 3593 0.011 4176 −0.011 3241 −0.017 856 7 −0.017 928 453 0.000 963 730
c320 0.014 3997 0.015 9012 0.078 584 6 0.000 694 004 0.006 839 546
c400 0.010 9928 0.015 622 5 0.006 978 128 0.005 774 476
c420 −0.012 325 5 −0.000 845 991
c430 −0.000 369 3 0.000 025 452
c002 0.022 0519 −0.010 0572 0.140 8332 0.206 031 0 0.001 100 876 0.107 959 091
c202 0.017 0400 0.031 9705 0.091 479 0 0.006 191 243 0.024 586 696
c222 0.004 0334 0.036 830 6 0.000 253 537 0.001 827 515
c302 −0.008 7965 −0.015 0901 −0.068 119 57 −0.002 251 535 −0.012 163 022
c322 −0.014 091 6 −0.000 305 902
c402 0.001 2633 0.001 8194 0.011 978 2 0.000 183 044 0.001 710 909
c422 0.002 153 9 0.000 032 183
c432 0.000 188 8 0
c552 −0.000 001 2 0
c003 −0.070 530 4 −0.151 308 7 −0.006 861 951 −0.044 690 827
c203 −0.023 988 8 −0.001 939 658
c223 −0.000 848 4 0.036 830 67 −0.000 018 989 0.000 027 058
c303 0.030 739 7 0.002 211 197
c403 −0.008 158 6 −0.000 498 590
c423 −0.000 209 9 −0.000 001 354
c503 0.000 405 7 0.000 018 019
c004 0.009 1852 0.043 703 0 0.000 795 513 0.006 765 652
c204 −0.010 544 4 −0.000 723 228
c304 0.002 617 3 0.000 148 783
c324 0.000 030 6 0.000 000 395
c405 −0.000 006 4 −0.000 000 225
〈−E〉 2.902 86 2.903 27 2.903 42 2.903 60 0.527 432 0.527 673

corresponding to the H− ion converges slowly. The most accurate function (GR29) presented
in this report yields energies with an accuracy of 1.5 × 10−4.

It should be noticed that the wavefunctions here proposed do not have the appropriate
asymptotic behaviour in the region where one of the electrons is close to the nucleus and the
other is far from the origin [62]. In our proposal, a power series expansion is used to build
that behaviour. We decided to use power series instead of exponential functions time powers
to keep the wavefunctions as similar as possible to the Hylleraas functions which are currently
used in collisional calculations. The inclusion of the appropriate asymptotic behaviour within
the angular correlated method will be presented elsewhere.

3.3. The He-like isoelectronic sequence

We extended our calculations for other helium-like ions. Systematic calculations were
performed for the simplest variational functions along the whole isoelectronic sequence.
The values of the coefficients and energies given in table 5 correspond to the correlated
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Table 5. Variational coefficients β and c200 for the GR2 function along the He-like isoelectronic
sequence.

Z A β c200 〈−E〉 −Ea
exact

1 0.0769 0.0374 0.1030 0.5199 0.5277
2 1.3891 0.4435 0.1556 2.9013 2.9037
3 5.8526 0.8122 0.2102 7.2777 7.2799
4 15.379 1.1726 0.2652 13.6535 13.6556
5 31.876 1.5313 0.3208 22.0290 22.0309
6 57.252 1.8895 0.3768 32.4043 32.4062
7 93.417 2.2476 0.4330 44.7795 44.7814
8 142.28 2.6055 0.4893 59.1545 59.1566
9 205.75 2.9635 0.5457 75.5295 75.5317

10 285.75 3.3214 0.6021 93.9044 93.9068

a Pekeris [63].

Table 6. Variational coefficients β, c200, and c400 for the GR3 function along the He-like
isoelectronic sequence.

Z A β c200 c400 〈−E〉 −Ea
exact

1 0.0801 0.1065 0.0608 0.0034 0.5258 0.5277
2 1.4054 0.4519 0.1346 0.0057 2.9020 2.9037
3 5.8738 0.8062 0.1965 0.0075 7.2778 7.2799
4 15.396 1.1660 0.2576 0.0072 13.6534 13.6556
5 31.871 1.4709 0.3122 0.0044 22.0287 22.0309
6 57.248 1.9261 0.3834 −0.0071 32.4039 32.4062
7 93.379 2.2446 0.4394 −0.0212 44.7790 44.7814
8 142.21 2.6036 0.4998 −0.0446 59.1542 59.1566
9 205.65 2.9648 0.5604 −0.0776 75.5293 75.5317

10 285.59 3.3174 0.6200 −0.1205 93.9043 93.9068

a Pekeris [63].

wavefunction GR2 obtained by the variational procedure of equation (17), for the He
isoelectronic sequence up to charge Z = 10.

Table 6 shows the variational parameters and the resulting energy, though now using the
GR3 function. As can be seen from these tables, the energies obtained with the GR2 and the
GR3 functions are almost identical for charges higher than 4.

In order to obtain analytical approximate expressions for the wavefunctions and energies,
we first neglected the angular correlation factor χE . The two-electron uncorrelated system
admits an analytical solution of the variational equations for the GR2U function (the analogous
uncorrelated version of the GR2 function). Details about the theoretical procedure and the
analytical expressions obtained for the coefficients are given in [64]. Once we had these
analytical expressions for the uncorrelated GR2U functions, we tried the same functional form,
in order to produce a numerical fitting for the coefficients of the completely correlated GR2
function. We obtained then general formulae for the coefficient values, along the isoelectronic
series. All of them have the appropriate asymptotic behaviour as a function of the nuclear
charge. The best fitting for the GR2 functions are

β(GR2)(Z) = Z2

77.8498 − 66.0392Z +
√

4737.8518Z2 − 10436.7557Z + 5922.2474
, (29)
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c
(GR2)
200 (Z) = 1.9945Z2

−16.3362 + 32.969Z +
√

4.934 01Z2 − 19.5053Z + 22.0567
, (30)

and for the energy E(GR2)(Z) is

E(GR2)(Z) = −Z(0.599 107 + 0.033 295Z −
√

1.067 596Z2 − 0.051 764Z + 0.312 009).

(31)

The coefficients and the energies obtained by using the fitting expressions agree with the
variational results up to the last figure given in the tables. These energy values are in excellent
agreement with the exact results of Pekeris [63]. The accuracy of the calculated energies
ranges from about 1.4 × 10−2 for Z = 1 to 2.5 × 10−5 for Z = 10. Moreover, formulae
(29)–(31) are valid for ions with higher degree of ionization, giving excellent values for the
energies. As an example, the energy E(GR2) corresponding to Ti20+(Z = 22) is −470.395 au.
The value obtained by solving the variational system of equations (17) with β(GR2)(Z = 22) is
−470.40 au. It is worth noting the value of −470.361 au reported by Koga et al [65] obtained
using a Hartree–Fock calculation.

Using the technique developed by Bonham and Kohl [21] to evaluate the integrals
involving the coordinates r1, r2 and r12 and the analytic expression given for GR2 function, it is
possible to obtain analytic expressions for different expectation values, dipolar and quadrupolar
polarizabilities and other physical atomic properties for the two-electron isoelectronic
sequence. In addition, it might be useful to study different collisional problems as a function
of the nuclear charge similar to that described in, e.g., [66].

4. Dynamical tests for the correlated wavefunctions

The simultaneous excitation and ionization, as well as double ionization of atoms by photon
impact, offers a series of dynamical tests for the bound state wavefunctions. The ejection
or excitation of two electrons strongly depends on the electron-electron correlation of both
initial and final states [33]. In particular, in the asymptotically high-energy regime, the
photoionization cross sections are closely linked to the Coulomb singularities of the electron–
nucleus and electron–electron interactions [33]. The photoabsorption might occur through
the shake-off (SO) and quasi-free (QF) mechanisms. The SO process corresponds to the case
where one of the electrons is ejected with high energy while the second remains bound to the
nucleus (ionization–excitation) or leaves the atom with low velocity. The QF mechanism, on
the other hand, is associated with the situation where both electrons share the absorbed photon
without any participation of the nucleus. The ratio of cross sections for double photoionization
to single photoionization

R(ω) = σ 2+(ω)

σ +(ω)
(32)

can be written, in the asymptotic region of very high photon energies ω, as

R(ω) = RSO + RQF(ω). (33)

The photoionization cross sections for both mechanisms are related to the correlation
matrix defined by Dalgarno and Sadeghpour et al [67, 68],

Mn =
∣∣∣∣∫ dr2ϕ

∗
n(r2)� (0, r2)

∣∣∣∣2

, (34)

where ϕn(r2) is a hydrogenic bound-state wavefunction.
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Table 7. Relative Ratio Rn of single-to-total photoionization given by the shake-off mechanism
(equation (36)) for helium. n denotes the principal quantum number of the hydrogenic bound states
of the residual ion.

n GR5B GR9 Hy6 Hy10 Hy20

1 0.931 96 0.930 02 0.926 65 0.927 20 0.929 41
2 0.044 26 0.044 81 0.045 33 0.045 20 0.044 49
3 0.005 67 0.005 37 0.006 11 0.005 64 0.005 54
4 0.001 85 0.001 82 0.002 00 0.001 89 0.001 83
5 0.000 85 0.000 85 0.000 94 0.000 88 0.000 85
6 0.000 46 0.000 47 0.000 52 0.000 48 0.000 46

The shake-off ratio of double-to-single ionization cross section at high photon energies is
given by

RSO = 1 −
∑

n

Rn, (35)

where

Rn = Mn∫
dr2|�(0, r2)|2 , (36)

and the sum runs over all possible bound states of the residual ion. The shake-off
photoabsorption process, in the asymptotic high-energy regime, probes the wavefunction
at the origin of coordinates of the fast emitted electron. The expression for the ratio RSO given
by equation (36) is obtained using the sudden approximation, i.e., by projecting the initial
state wavefunction onto the final state of the shaken-up electron. As demonstrated by Åberg
[32], this expression is valid only if the electron–nucleus cusp conditions are satisfied.

On the other hand, the total cross section for double ionization through the quasi-free
mechanism, in the asymptotic high-energy regime, is found to be proportional to [33]

σQF ∝
∫

dr|�(r, r)|2. (37)

As explained by Drukarev [69], the contribution to the asymptotic ratio of double-to-single
photoionization given by the quasi-free mechanism can be written as

RQF(ω) = 8
√

2

5Z2
C

ω

m
, (38)

where m is the electron mass and Z is the effective charge. The quantity C is given by

C =
∫

dr|�(r, r)|2∑
n Mn

. (39)

The quasi-free mechanism is associated with the electron–electron cusp condition; it thus tests
a different part of the configuration space, the region where the electrons are close to each
other.

We have calculated several of these quantities in the case of He. In tables 7 and 8, we
give the results obtained by using our simple wavefunctions GR5B and GR9. For comparison
we have included the values obtained by using different Hylleraas functions, with the 6 [27],
10 [28] and 20 parameters [30], noted here Hy6, Hy10 and Hy20, respectively.

In table 7, we show the results obtained for the ratios Rn leaving the residual ion in the
ns state (n = 1–6). The main discrepancies appear for n = 1. The sum of the Rn values
reported by Dalgarno and Sadeghpour [67] is in excellent agreement with the experimental
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Table 8. Values of the quantity C calculated by using equation (39) for He. This quantity is the
proportionality constant which defines the asymptotic ratio of double-to-single photoionization as
a linear function of the photon energy ω for the quasi-free mechanism (equation (38)).

GR5B GR9 Hy6 Hy10 Hy20

C 0.0608 0.0602 0.0625 0.0617 0.0601

values reported by Spielberger et al [70]. Although the energies of our GR5B and GR9
functions are similar to the energy of the 6-parameter function reported by Green [27], our
Rn ratios are in better agreement with the highly correlated Hy20 function. Therefore, the
energy is not the most relevant magnitude related to the quality of a wavefunction when
dealing with particular dynamical processes. In this case the probability density to find the
electrons around the nucleus is the relevant one, and this is better described by our simple
GR5B and GR9 wavefunctions rather than by the Hy6 and Hy10. Note also that some
Hylleraas wavefunctions can produce remarkable disagreements in the ratios of double-to-
single ionization cross sections at asymptotically high energies, either when these ratios are
calculated by using equation (36), or by the explicit calculation of the cross sections. This is a
direct consequence of the fact that the electron–nucleus cusp conditions are not satisfied [32].

In table 8, we present the results obtained for the quantity C given by equation (39).
The value C = 0.053 reported by Surić et al [33] was estimated by using a very simple
approximate ground-state wavefunction which only takes care for the fulfilment of the Kato
cusp conditions. Drukarev [69] obtained a value C = 0.055 using the 39-parameter Kinoshita
function [71]. Later on, Krivec et al [72] reported a value of C = 0.0597 using the correlation
function hyperspherical harmonic method. However, they also reported a value of C = 0.068
using a Hylleraas 6-parameter wavefunction. This value is not in good agreement with our
calculations. Therefore, for a consistent comparison, we have calculated the C values using
different Hylleraas functions (6-, 10- and 20-parameter). The results calculated with our GR5B

and GR9 functions are in agreement with the value obtained by using the Hy20 function. This
shows, again, that the peculiarities that characterize the functions at the coalescence points
must be reproduced well by the wavefunctions used in order to obtain reliable values of
double-photoionization cross-sections at high energies.

5. Conclusions

In this report we have introduced the angular correlated configuration–interaction method
to carry out highly accurate calculations for He-like systems. All the wavefunctions were
constructed satisfying the correct cusp conditions at the two-body coalescence where the
Coulomb potentials diverge. The procedure presented in section 2 constitutes an extension of
the semi-separable method. The approximate solutions are the product of two functions. One
function describes a separable problem involving three non-interacting subsystems, while the
second function introduces the couplings. The separable part was written as the product of
functions depending on each of the three relative coordinates, r1, r2 and r12.

For the angular correlation part of the wavefunction, two different analytical proposals
were studied. We first considered a pure Coulomb wavefunction χP and discarded it later as a
correlation factor due to its oscillatory behaviour which introduces a number of nonphysical
nodes. Secondly, we studied a correlation factor χE which is the analytical solution of the
Eckart potential for zero–energy. The efficiency and simplicity of the definition of χE , together
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with the fact that it has the proper asymptotic behaviour, led us to adopt this angular correlation
factor for all the other calculations to be performed in these systems.

In the first part of section 3 we discussed different proposals for the factor which correlates
the non-interacting subsystems. This factor is defined in terms of power series, giving a
Hylleraas-like shape to the ground state wavefunction. We compared the energies of H− and
He given by two-parameter functions corresponding to the Coulomb χP , and the Eckart χE

angular correlation factors. The Eckart factor proves to be more efficient.
In the second part of section 3 functions with different numbers of linear parameters

were analysed. We discussed the separable part of the two-electron wavefunction and the
relative importance of the different powers included in the coupling factor �. In section 3.1
different types of open shell-like functions were studied. The results obtained with these simple
wavefunctions for the H− and He agreed with Pekeris’ results [63] up to three significant
figures. A set of more accurate wavefunctions including up to 29 linear parameters was
presented in section 3.2, and accuracies 1.5 × 10−4 for H− and 4.3 × 10−5 for He were
obtained.

Following our goal of providing both simple and accurate wavefunctions, in section 3.3 we
studied the solutions for many ions along the isoelectronic sequence. Analytical expressions
for all the coefficients and energies were given for the simplest correlated functions. The
expressions are valid for a wide range of charges.

Different dynamical tests of the He wavefunctions have been performed. They are
associated with cross sections corresponding to photoabsorption processes at asymptotically
high photon energies. The values for Rn and C calculated with the wavefunction GR5B and
GR9 were compared with the highly correlated 6-, 10- and 20-parameter Hylleraas functions.
The calculations show that good descriptions of the configuration space are given by our
functions, even better than those obtained with the 6- and 10-parameters Hylleraas functions.
That means that the quality of the wavefunctions is improved by satisfying the cusp conditions.

Although our method is valid also for excited levels, we have only considered the ground
states in the present work. The extension of the method to n-electron atoms and its application
to the ground and excited states will be presented in a separate contribution.
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