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We compare the physical information contained in the Temkin-Poet (TP) scattering wave function representing
electron-impact ionization of hydrogen, calculated by the convergent close-coupling (CCC) and generalized
Sturmian function (GSF) methodologies. The idea is to show that the ionization cross section can be extracted
from the wave functions themselves. Using two different procedures based on hyperspherical Sturmian functions
we show that the transition amplitudes contained in both GSF and CCC scattering functions lead to similar
single-differential cross sections. The single-continuum channels were also a subject of the present studies, and
we show that the elastic and excitation amplitudes are essentially the same as well.
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I. INTRODUCTION

From the very beginning of quantum mechanics scattering
theory has been of great importance due to the direct applica-
tions it has in many areas of physics. Of particular interest to us
is the few-body context. In 1999, Rescigno et al. [1] using the
exterior complex scaling (ECS) proved for the first time that
the three-body problem was solvable. Today there are many
methods which can solve the quantum three-body problem in
addition to the ECS: convergent close coupling (CCC), the
J matrix, the R matrix, time-dependent close coupling [2–4],
and more recently the generalized Sturmian function approach
(GSF) [5]. However, processes such as double ionization
of helium by high-energy electron impact show that this
problem is not closed or completely understood [6,7], though
some benchmark results for the S-wave model exist [8,9].
At high incident energies the four-body (e,3e) problem can
be reduced to a three-body one [5]. Even so, within this
three-body framework no agreement is found between three
independent ab initio methods: CCC [6], the J matrix [10–12],
and wave-packet evolution [13].

In the following we focus on time-independent methods.
The ECS, CCC, J -matrix, and GSF methods solve the three-
body Schrödinger equation to a precision that in principle can
be arbitrarily increased by just incrementing the grid density
or the number of basis functions. The three-body scattering
problem requires the imposition of appropriate outgoing type
asymptotic conditions which represent the particle emission.
For the double continuum those consist of hyperspherical
outgoing wave fronts, when all the emitted particles are far
apart from each other. The GSF approach imposes outgoing
flux to each of the electron coordinates [14]. This is done

by using GSFs which are obtained by solving a two-body
Schrödinger equation and where the outgoing behavior is
explicitly enforced on the solutions. The three-body wave
function is proposed as a linear combination of products of
GSFs for each electron coordinate. The discussion presented
by Ambrosio et al. [15] explains how the GSF method
in the spherical coordinates (r1,r2) can provide a good
characterization of a problem whose asymptotic conditions
are defined on the hyperspherical coordinate ρ.

Both approaches, ECS and GSFs, treat the emitted particles
on an equal footing, and in both schemes the resulting
wave function is sufficiently accurate to allow the extrac-
tion of the transition matrix directly from its asymptotic
region.

Methods aimed at obtaining integrated quantities like
scattering amplitudes directly rather than through the wave
functions, on the other hand, contain particular features that
make them very different from ECS and GSFs. In the CCC
framework, see Ref. [16] for a recent review of applications to
ionization problems; the electrons are treated in an asymmetric
manner. For instance, in the ionization of hydrogen by electron
impact, CCC uses for one of the electrons an L2 basis and
for the second one uses stationary target continuum states.
The target (pseudo) states are obtained by diagonalization of
the target Hamiltonian in a Laguerre basis [17] or are box
based [18]. Due to the standing wave-type behavior imposed
on the basis, the spectra of the target are not only discrete
and finite (for a finite number of basis functions) but also real.
So no outgoing-type behavior is imposed on the target system.
The three-body outgoing behavior is in principle guaranteed by
the use of the three-body Green’s function in the formulation
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of the method. However, it has never been shown that the
method effectively generates the outgoing hyperspherical
wave front expected for the three-body double continuum.
Additionally, it was found that the cross sections obtained
present oscillations around the correct shape and a step-
function behavior near the equal-energy-sharing point [19,20].
The asymmetric treatment of the two electrons leads to an
asymmetric single-differential cross section (SDCS), even
though symmetrization is included and the results are obtained
independently for a total spin S. Various discussions have
been presented to understand this behavior [21–23] within the
electron-hydrogen Temkin-Poet (TP) framework [24,25] for
which the calculations are much simpler, due to the absence
of any angular momentum algebra. This is an ideal model for
developing general scattering theories and testing numerical
approaches. The original CCC method was tested on this TP
model [26], which continues to be of great importance for
further development of the method [27], and its relation to other
approaches.

In this paper we study these issues by performing a
comparison between the results obtained with the GSF and
CCC methods. We explicitly show that the reconstructed CCC
total wave function indeed contains the expected outgoing
hyperspherical wave fronts. Furthermore, we show that the
CCC scattering wave function can be used to directly extract
the transition amplitude and the cross sections, as done with
the GSF [5]. In fact, the SDCS extracted from the CCC wave
function this way does not display any step-function behavior.
Atomic units (� = e = 1) are assumed throughout.

II. STATEMENT OF THE THREE-BODY PROBLEM

Let us first define the problem to be analyzed. We start
with the Schrödinger equation corresponding to the electron
impact ionization of hydrogen (nuclear charge Z = 1) in the
TP model [24,25]:[
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Here r1 and r2 are the electron coordinates, and E is the
total energy of the three-body system. The scattering process
develops from the initial asymptotic state, i.e., the hydrogen
ground state and a plane wave of incident momentum ki . In a
time-independent representation this implies the definition of
the initial channel:

�0(r1,r2) = 1√
2

[j0(kir1)φ(r2) + (−1)Sj0(kir2)φ(r1)]. (2)

We search for the solution of the Schrödinger equation
describing the full dynamic of the process. This can be written
as

�+(r1,r2) = �0(r1,r2) + �+
sc(r1,r2). (3)

The function �+
sc(r1,r2) contains all of the information about

the scattering process and the correlation between the particles.
Substituting �+(r1,r2), of Eq. (3), in Eq. (1) we obtain the

following driven equation:[
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The source term F(r1,r2) is
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The description of hydrogen ionization requires solving the
driven equation (4) with the appropriate asymptotic conditions.
Within the TP model, this means enforcing on �+

sc(r1,r2) at
large distances the following form:

�+
sc(r1,r2) → T (E,α)

ei[Kρ− C(α)
K

ln(2Kρ)]

ρ
5
2

. (6)

Here ρ =
√

r2
1 + r2

2 and α = arctan (r2/r1) (α ∈ [0,π/2]) are
the hyperradius and hyperangle, respectively, and K = √

2E

is the hyperspherical momentum. C(α) defines an angular
dependent charge and it is given by
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(7)

In Eq. (6) T (E,α) represents the transition amplitude for the
ionization process.

Equation (1) shows that the radial coordinates are coupled
through the interaction 1/r>. From a practical point of view,
imposing the asymptotic behavior (6) on the scattering solution
�+

sc(r1,r2) is the key and is a difficult problem.

III. WAVE-FUNCTION COMPARISON

In this section we obtain and compare the wave functions
calculated with the GSF and CCC methods. It is helpful to
work with the reduced function

�+
sc(r1,r2) = r1r2�

+
sc(r1,r2)

≡ ρ2 sin(α) cos(α)�+
sc(ρ,α)

≡ �+
sc(ρ,α), (8)

where for brevity of notation we make the dependence on
the total spin S implicit. Without loss of generality we take
54.4-eV electrons incident on the ground state of atomic
hydrogen, within the TP model where only states with zero
orbital angular momenta are retained. At this energy the total
ionization cross section is near its maximum for both S = 0
and 1 (see, for example, Fig. 3 of Bray et al. [27]). In the
CCC calculations we have taken 30 Laguerre functions with
an exponential falloff [17] λ = 2, i.e., optimized for the ground
state. In the CCC method the solution of the coupled equations
yields the scattering transition amplitudes TS directly, with the
variational principle assisting in their accuracy. It is unusual to
reconstruct the wave function �+(r1,r2) in coordinate space,
but we do so when calculating double photoionization [20,28],
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FIG. 1. (Color online) Real part of the scattering wave functions, see Eq. (8), for the singlet case of 54.4-eV electron scattering on atomic
hydrogen in the TP model. The present GSF results are on the left and the CCC ones are on the right.

and we do so here for the one-dimensional case. Having solved
the CCC equations [17] for the transition amplitudes via

〈kf φf |TS |φiki〉 = 〈kf φf |VS |φiki〉 +
N∑

n=1

×
∫ ∞

0

dk〈kf φf |VS |φnk〉〈kφn|TS |φiki〉
E + i0 − εn − k2/2

,

(9)

we write

�+(r1,r2) = 〈r1r2|φiki〉

+
N∑

n=1

∫ ∞

0

dk〈r1r2|φnk〉〈kφn|TS |φiki〉
E + i0 − εn − k2/2

. (10)

A different path is taken within the GFS approach
[14,29–31], since we work our way up to the transition
amplitudes starting with the wave-function calculation, from
Eq. (4). The not yet determined solution is proposed as a linear
combination of a product of two-body GSF functions:
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n2
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]
, (11)

FIG. 2. (Color online) Example of the filtering process. Black
solid line: Filtered CCC real. Red dashed line: Filtered CCC
imaginary. Green line with circles: Unfiltered CCC real. Blue line with
squares: Unfiltered CCC imaginary. Hyperradius: ρ = 36.37 a.u..

where aS
n1,n2

are linear coefficients for a given spin state S

(singlet or triplet) and the factor gn1,n2 = [1 − δn1,n2 (1 − 1√
2
)]

ensures no double counting is done in the symmetrization.
After inserting the expansion (11) into Eq. (4), and projecting
on the left with the GSF, the driven equation is transformed
into a linear system of equations:

[H − EO]a = f, (12)

where the matrix O contains the overlaps between the three-
body GSF basis elements appearing in Eq. (11). The matrix
H is the GSF representation of the full Hamiltonian [see
Ref. [14], Eq. (45)]. Once the wave function is obtained, the
collisional information is extracted from it [5,30,32]. For the
present kinematics, we used 50 Sturmians per coordinate.

We begin by displaying the resulting solutions from Eq. (4)
for S = 0 in Fig. 1. Only the real parts are shown, since the
imaginary parts have similar structures. Both methods yield
the asymptotic behavior required by the Peterkop asymptotic
conditions [33,34], with the GSF results going out accurately
to larger distances. Beyond a given hyperradius (ρ ≈ 35), the
usage of the short-ranged Laguerre basis limits the quality of
the CCC-calculated wave function.

IV. SINGLE-DIFFERENTIAL CROSS
SECTION EXTRACTION

While both wave functions contain essentially the same
double-continuum physics, from Fig. 1 it is clear that the GSF
solution is more accurate. We wish to extract the SDCS from
the asymptotic range of both wave functions (GSF and CCC),
based on the work by Kadyrov et al. [34,35]. In terms of the

FIG. 3. (Color online) Real part of the (e,2e) scattering function,
obtained by the GSF method but extended via the HGSF expansion.
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FIG. 4. (Color online) Real part of the (e,2e) scattering function,
obtained by the CCC method but filtered and extended via the HGSF
expansion.

reduced function (8) for the TP model, the SDCS is written as

dσ (α)

dE2
= 1

kiK
lim

ρ→∞
ρ |�+

sc(ρ,α)|2
sin(α) cos(α)

. (13)

Filtering procedure for the CCC solution

As can be seen in Fig. 1, the CCC function presents a mild
degree of noise, which would propagate to the cross section if
Eq. (13) were used directly. To filter the CCC wave function
we reexpand it in terms of a basis set in the hyperangular
coordinate α, which we refer to as hyperangular Sturmian
functions (HaSFs). These functions, denoted by Hn(α), satisfy
the following:

−1

2

d2

dα2
Hn(α) =−βn

(
Zcos

cos(α)
+ Zsin

sin(α)
+ Z0

)
Hn(α), (14)

where βn is the eigenvalue. The parameters Z0, Zcos, and Zsin

are arbitrarily chosen to shape the angular basis. In particular,
nonzero values for the weights Zcos and Zsin tend to concentrate
the oscillations of the basis functions towards the boundaries
(α = 0 and α = π/2). If the interest is an even distribution of
the zeros, it can be obtained by setting Zcos = 0, Zsin = 0, and
Z0 
= 0. We chose, for the present work, Zcos = 1, Zsin = 1,
and Z0 = 0. Since the Hn(α) values are regular at α = 0 and
α = π/2, they imply no net flux and consequently can be
normalized to be purely real.

For fixed hyperradii ρ =
√

r2
1 + r2

2 , the resulting �+
sc(ρi,α)

were subsequently reexpanded in terms of the HaSF basis:

�+
sc(ρi,α) =

N∑
n=1

ai,nHn(α). (15)

The inclusion of too many basis elements Hn(α) would
allow the high-frequency noise to pass through the filter.
However, the idea here is to retain as few terms as possible
in the reexpanded function, while still preserving its main
features. The procedure can be thought of as a low-pass filter.
The consequences of the filtering process can be observed in
Fig. 2, where the more slowly varying structures are preserved.

The wave functions �+
sc(r1,r2) from the CCC and GSF

three-body calculations were generated in spherical {r1,r2}
coordinates. Through a bicubic interpolation scheme they were
evaluated on hyperspherical contours of a fixed hyperradius.
Then, for every ρi a reexpansion was performed, obtaining a
neater version of the CCC hyperangular cuts. With these we
then proceeded to evaluate the SDCS using Eq. (13). For the
GSF scattering function, the cuts were not filtered, as they
were already devoid of noise, and Eq. (13) was used directly.

FIG. 5. (Color online) Real part of the (e,2e) scattering function, fixed hyperangle αj cuts: (a) α1 = 5◦, (b) α2 = 15◦, (c) α3 = 30◦, and
(d) α4 = 45◦. Original: Black solid line with squares. Reexpanded: Solid red line.
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FIG. 6. (Color online) SDCS. (a) GSF. (b) CCC. The orange lines
show the SDCSs calculated via interpolation and filtering of fixed
hyperradial cuts. The black dashed line shows the SDCS extracted
from the HGSF reexpansion.

V. REEXPANSION PROCEDURE WITH A
HYPERSPHERICAL OUTGOING BASIS SET

For the purpose of extracting the transition amplitude,
we reexpanded the CCC and GSF solutions in terms of a
hyperspherical Sturmian basis. Hyperspherical generalized
Sturmian functions (HGSFs) were introduced by Gasaneo
et al. [36]. For application examples, see Refs. [5,37].

The three-body basis is composed of outer products of
noncoupled hyperangular and hyperradial functions. The hy-
perradial functions satisfy the following differential equation:[

− 1

2μ

(
d2

dρ2
− l(l + 4) + 15/4

ρ2

)
+ U(ρ) − Es

]
Sn,l(ρ)

= −βn,lV(ρ)Sn,l(ρ), (16)

with energy Es and potential U(ρ) shaping the asymptotic
behavior of the basis. The generally short-ranged potential
V(ρ) regulates where the oscillations of the basis set are mostly
localized. In this particular application we choseU(ρ) = −

√
2

ρ
,

whose asymptotic charge is exact for α = π/4 [see Eq. (7)],
and a Woods-Saxon type V(ρ). Angular functions are used
to expand the logarithmic phase for other hyperangles. We
chose an energy coincident with the total available energy for
the electrons, i.e., Es = Ea = 1.5 a.u. Both the parameters Es

and the charge in U(r) are of fundamental importance for the
radial HGSF. If they are properly selected, not many HGSF
basis elements are required because the basis has the correct
asymptotic behavior built in.

We construct a hyperspherical three-body basis with a radial
HGSF multiplied by the Hn(α) (HaSF) already defined in

Eq. (14),

�ν(ρ,α) = Sn,l(ρ)Hm(α), (17)

and with this the expansion reads

�+
sc(r1,r2) = 1√

ρ

∑
n,m

an,m�ν(ρ,α). (18)

We stress that the HGSF basis is used to reexpand the
already determined scattering GSF and CCC functions. The
idea is to take advantage of a readily extractable transition
amplitude, since the basis already has the expected hyperspher-
ical outgoing behavior that factors out from Eq. (6). We use a
small number of basis elements to filter the higher-frequency
angular oscillations present mainly in the CCC wave function.
In expansion (18) we worked with as few as 20 angular and
15 radial functions, since the purpose was to extract the chief
features of the double continuum and filter out the unwanted
lateral wrinkles.

For this application, we found that the best way to obtain
a good representation of �+

sc(r1,r2) at least far from the origin
consists of projecting Eq. (18) onto every basis element as∫

dr1dr2�
∗
ν ′(ρ,α)ρ1/2�+

sc(r1,r2)

=
∑
n,m

an,m

∫
dr1dr2�

∗
ν ′(ρ,α)�ν(ρ,α), (19)

where the asterisk denotes complex conjugation. This differs
from the standard usage of the HGSF basis presented in
Ref. [5], but this worked best for the present analysis.
We chose to perform the integrations in Eq. (19) using
the (r1,r2) coordinates. Consequently, we used a modified
bilinear scheme to translate the hyperspherical basis into the
rectangular grid, maintaining good accuracy. With the whole
integrand expressed in (r1,r2) coordinates, a two-dimensional
Simpson integration was applied. The integration boundaries
were controlled via a masking function, which smoothly
shut off the integrand beyond a given hyperradius, ρmax. The
two-dimensional integration was, for the CCC case, restricted
to the region inside ρ < ρmax = 30 a.u., in order to avoid the
less desirable regions where the unphysical oscillations begin
to appear.

FIG. 7. (Color online) Elastic channel, real part (left panel) and imaginary part (right panel). GSF: Black solid line. CCC: Red line with
circles.
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FIG. 8. (Color online) n = 2 excitation channel, real part (left panel) and imaginary part (right panel). GSF: Solid black line. CCC: Red
line with circles.

Equation (19) can adopt a matrix form when run through
the indices m,n and n′,m′:

S a = b, (20)

with b collecting the terms from the integral with �+
sc(r1,r2).

This resulting linear system in an,m is solved numerically with
the routine ZGESV from the LAPACK [38] library.

We show in Figs. 3 and 4 the real parts of the scattering
wave functions in their reexpanded versions. The HGSF basis
is tailored to efficiently expand the double-continuum region.
To some degree, the single continuum is also sketched, but this
comes more as a by-product.

To show that our expansion does match the original
functions properly in the region where they are well defined,
we show in Fig. 5 some fixed hyperangle cuts of the original
CCC function and its reexpanded counterpart. Figure 5(a)
shows less agreement because of the low hyperangle, which
implies that the cut passes through a sector where the single
continuum (see the shorter wavelengths) is dominant, whereas
the reexpansion is tailored to match the double-continuum
wave fronts.

By virtue of expressions (18) and (6) the squared module
of the transition amplitude is simply

|T (α)|2 =
∣∣∣∣∣
∑
n,m

an,m�(ρas,α)

∣∣∣∣∣
2

, (21)

where ρas is any hyperradius beyond the range of V(ρ)Sn,l(ρ).
It is of interest to note that the calculation of the GSF

function with that degree of precision requires about 2500
basis elements, whereas the HGSF reexpansion was acceptable

in the far region, requiring only 300 elements. Clearly, the
HSGF approach shows strong potential for double-continuum
problems.

SDCS results

We proceed to compare the SDCSs that originate from
both scattering wave functions and from the two separate
procedures: the full reexpansion in terms of the HGSF basis
and the angular filtering of the fixed hyperradial cuts via
the angular Hn(α) basis. Having removed much of the CCC
wave-function noise, we proceed to compare its SDCS with
the GSF one. Within the double-continuum region, both CCC
and GSF point to the same physical content—the cross section,
which is an observable quantity. No attempt was made to deal
with the behavior of the SDCS in the energy sharing extremes
of 0 and 1.

Two different aspects stand out when observing Figs. 6(a)
and 6(b). It is clear that the two different methods for extracting
SDCSs provide equivalent results, ensuring that both GSF
and CCC lead to similar physical results. The contributions
to the SDCS from single-continuum channels are severely
diminished in the HGSF representation.

VI. SINGLE-CONTINUUM CHANNELS

We now turn to the comparison of the single-continuum
information contained in both the original wave functions. We
obtain the single-continuum functions φn(r1) from �+

sc(r1,r2)
as follows:

φn(r1) =
∫ R̃2

0
dr2 �+

sc(r1,r2)ϕn(r2), (22)

FIG. 9. (Color online) n = 3 excitation channel, real part (left panel) and imaginary part (right panel). GSF: Solid black line. CCC: Red
line with circles.
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TABLE I. Single-continuum amplitudes, GSF calculation.

GSF CCC

n Abs(A+) Abs(A0) Abs(A0)/Abs(A+) Abs(A+) Abs(A0) Abs(A0)/Abs(A+)

1 0.3615 7.124×10−3 0.01970 0.3625 6.318×10−3 0.017
2 0.1017 3.853×10−4 0.00379 0.1027 2.349×10−3 0.023
3 5.2572×10−2 1.257×10−4 0.00239 5.2577×10−2 1.2570×10−4 0.00239

with R̃2 being the extreme of the radial grid r2 considered. States ϕn(r2) are simply the target eigenstates. The elastic channels
in the CCC and GSF approaches are in good agreement (see Fig. 7).

A similar agreement is observed in Figs. 8 and 9, suggesting that, as expected, the CCC and GSF three-body functions contain
the exact same information regarding the excitation channels as well.

We now perform an asymptotic decomposition of the functions φn(r1). This allows us to test whether the solutions are properly
calculated and represent the physical situation. We chose to decompose the solutions into an outgoing wave plus a standing wave
(another viable choice would have been decomposing the single-continuum functions into outgoing and incoming waves). The
coefficients of the expansion represent the amplitudes of the outgoing and stationary waves and are written as, respectively,

A+ = φn(R1)F (Zas,En,R2) − φn(R2)F (Zas,En,R1)

H+(Zas,En,R1)F (Zas,En,R2) − F (Zas,En,R1)H+(Zas,En,R2)
, (23)

A0 = φn(R2)H+(Zas,En,R1) − φn(R1)H+(Zas,En,R2)

H+(Zas,En,R1)F (Zas,En,R2) − F (Zas,En,R1)H+(Zas,En,R2)
. (24)

The functions F (Zas,En,r) and H+(Zas,En,r) are the regular
and outgoing Coulomb radial functions and are evaluated at R1

and R2 far enough from the origin. We find that the amplitude
extraction is very sensitive to the charges Zas chosen. In the
present case, since one electron remains close to the nucleus,
the continuum one sees no net charge (Zas = 0).

Table I has the outgoing and stationary amplitudes. GSF
and CCC functions contain only minute traces of stationary
solution, which cannot be solely ascribed to the three-body
functions themselves, but also to the amplitude calculation.
In any case, it is clear that the single-continuum channels
characterized by both methods are asymptotically outgoing
waves, and the single-continuum amplitudes obtained from
both schemes agree well.

VII. SUMMARY

We showed that it is possible to extract the scattering
information from the asymptotic GSF- and CCC-calculated
wave functions for the S-wave model corresponding to
hydrogen ionization. The GSF solution is sufficiently accurate,
but the presented CCC wave function required a smoothing
procedure based on a reexpansion in terms of a hyperangular

basis set on specific hyperradii. Those fixed hyperradii arcs
were used to calculate the SDCS from the assumed asymptotic
range of the wave function. A three-body hyperspherical basis
was constructed with hyperangular Sturmian functions and hy-
perradial generalized Sturmian functions. The CCC and GSF
scattering functions were reexpanded with a HGSF basis. The
expansion was focused mainly in the region where the double
continuum is dominant, i.e., where both radial coordinates
are far enough from their respective origins. The asymptotic
behavior imposed on the HGSF basis provided an adequate
description of the hyperspherical double continuum. We have
also considered the single-continuum channels and found that
both CCC and GSF scattering functions contain essentially the
same excitation and elastic scattering amplitudes.

ACKNOWLEDGMENTS

We acknowledge the support of the PIP 201301/607
CONICET (Argentina). One of the authors (G.G.) is grateful
for the support of the PGI (24/F059) of the Universidad
Nacional del Sur. The support of the Australian Research
Council, the National Computer Infrastructure, and the Pawsey
Supercomputer Centre are gratefully acknowledged.

[1] T. N. Rescigno, C. W. McCurdy, W. A. Isaacs, and M. Baertschy,
Phys. Rev. A 60, 3740 (1999).

[2] M. S. Pindzola, D. Mitnik, and F. Robicheaux, Phys. Rev. A 59,
4390 (1999).

[3] M. S. Pindzola and F. J. Robicheaux, Phys. Rev. A 61, 052707
(2000).

[4] M. S. Pindzola, S. A. Abdel-Naby, J. Colgan, and A. Dorn,
J. Phys. B 45, 215208 (2012).

[5] G. Gasaneo, D. M. Mitnik, J. M. Randazzo, L. U. Ancarani, and
F. D. Colavecchia, Phys. Rev. A 87, 042707 (2013).

[6] A. Kheifets, I. Bray, A. Lahmam-Bennani, A. Duguet, and
I. Taouil, J. Phys. B 32, 5047 (1999).

052518-7

http://dx.doi.org/10.1103/PhysRevA.60.3740
http://dx.doi.org/10.1103/PhysRevA.60.3740
http://dx.doi.org/10.1103/PhysRevA.60.3740
http://dx.doi.org/10.1103/PhysRevA.60.3740
http://dx.doi.org/10.1103/PhysRevA.59.4390
http://dx.doi.org/10.1103/PhysRevA.59.4390
http://dx.doi.org/10.1103/PhysRevA.59.4390
http://dx.doi.org/10.1103/PhysRevA.59.4390
http://dx.doi.org/10.1103/PhysRevA.61.052707
http://dx.doi.org/10.1103/PhysRevA.61.052707
http://dx.doi.org/10.1103/PhysRevA.61.052707
http://dx.doi.org/10.1103/PhysRevA.61.052707
http://dx.doi.org/10.1088/0953-4075/45/21/215208
http://dx.doi.org/10.1088/0953-4075/45/21/215208
http://dx.doi.org/10.1088/0953-4075/45/21/215208
http://dx.doi.org/10.1088/0953-4075/45/21/215208
http://dx.doi.org/10.1103/PhysRevA.87.042707
http://dx.doi.org/10.1103/PhysRevA.87.042707
http://dx.doi.org/10.1103/PhysRevA.87.042707
http://dx.doi.org/10.1103/PhysRevA.87.042707
http://dx.doi.org/10.1088/0953-4075/32/21/301
http://dx.doi.org/10.1088/0953-4075/32/21/301
http://dx.doi.org/10.1088/0953-4075/32/21/301
http://dx.doi.org/10.1088/0953-4075/32/21/301


M. AMBROSIO et al. PHYSICAL REVIEW A 92, 052518 (2015)

[7] L. U. Ancarani, C. D. Cappello, and G. Gasaneo, J. Phys.:
Conf. Ser. 212, 012025 (2010).

[8] P. L. Bartlett and A. T. Stelbovics, Phys. Rev. A 81, 022715
(2010).

[9] P. L. Bartlett and A. T. Stelbovics, Phys. Rev. A 81, 022716
(2010).

[10] V. A. Knyr, V. V. Nasyrov, and Y. V. Popov, AIP Conf. Proc.
697, 76 (2003).

[11] A. D. Alhaidari, E. J. Heller, H. A. Yamani, and M. S.
Abdelmonem, The J-Matrix Method: Developments and Ap-
plications, 1st ed. (Springer, New York, 2008).

[12] M. S. Mengoue, M. G. K. Njock, B. Piraux, Y. V. Popov, and
S. A. Zaytsev, Phys. Rev. A 83, 052708 (2011).

[13] V. V. Serov, V. L. Derbov, B. B. Joulakian, and S. I. Vinitsky,
Phys. Rev. A 75, 012715 (2007).

[14] G. Gasaneo, L. U. Ancarani, D. M. Mitnik, J. M. Randazzo,
A. L. Frapiccini, and F. D. Colavecchia, Adv. Quantum Chem.
67, 153 (2013).

[15] M. J. Ambrosio, F. D. Colavecchia, D. M. Mitnik, G. Gasaneo,
and L. U. Ancarani, J. Phys.: Conf. Ser. 601, 012004 (2015).

[16] I. Bray, D. V. Fursa, A. S. Kadyrov, A. T. Stelbovics, A. S.
Kheifets, and A. M. Mukhamedzhanov, Phys. Rep. 520, 135
(2012).

[17] I. Bray and A. T. Stelbovics, Phys. Rev. A 46, 6995 (1992).
[18] I. Bray, K. Bartschat, and A. T. Stelbovics, Phys. Rev. A 67,

060704(R) (2003).
[19] I. Bray, Phys. Rev. Lett. 78, 4721 (1997).
[20] I. Bray, D. V. Fursa, A. S. Kheifets, and A. T. Stelbovics,

J. Phys. B 35, R117 (2002).
[21] I. Bray, Phys. Rev. A 60, 5118 (1999).
[22] M. S. Pindzola, D. Mitnik, and F. Robicheaux, Phys. Rev. A 62,

062718 (2000).

[23] K. Bartschat, M. P. Scott, P. G. Burke, T. Stitt, N. S. Scott, A. N.
Grum-Grzhimailo, S. Riordan, G. Ver Steeg, and S. I. Strakhova,
Phys. Rev. A 65, 062715 (2002).

[24] A. Temkin, Phys. Rev. 126, 130 (1962).
[25] R. Poet, J. Phys. B 11, 3081 (1978).
[26] I. Bray and A. T. Stelbovics, Phys. Rev. Lett. 69, 53

(1992).
[27] A. W. Bray, I. Abdurakhmanov, A. S. Kadyrov, D. V. Fursa,

and I. Bray [Comput. Phys. Commun. (to be published,
2015)].

[28] A. S. Kheifets and I. Bray, Phys. Rev. A 54, R995 (1996).
[29] A. L. Frapiccini, J. M. Randazzo, G. Gasaneo, and F. D.

Colavecchia, J. Phys. B 43, 101001 (2010).
[30] J. M. Randazzo, F. Buezas, A. L. Frapiccini, F. D. Colavecchia,

and G. Gasaneo, Phys. Rev. A 84, 052715 (2011).
[31] D. M. Mitnik, F. D. Colavecchia, G. Gasaneo, and J. M.

Randazzo, Comput. Phys. Commun. 182, 1145 (2011).
[32] M. J. Ambrosio, G. Gasaneo, and F. D. Colavecchia, Phys. Rev.

A 89, 012713 (2014).
[33] R. K. Peterkop, Theory of Ionization of Atoms by Electron

Impact (Colorado Associated University Press, Boulder, CO,
1977).

[34] A. S. Kadyrov, A. M. Mukhamedzhanov, A. T. Stelbovics, I.
Bray, and F. Pirlepesov, Phys. Rev. A 68, 022703 (2003).

[35] A. S. Kadyrov, A. M. Mukhamedzhanov, A. T. Stelbovics, and
I. Bray, Phys. Rev. A 70, 062703 (2004).

[36] G. Gasaneo, D. M. Mitnik, A. L. Frapiccini, F. D.
Colavecchia, and J. M. Randazzo, J. Phys. Chem. A 113, 14573
(2009).

[37] D. M. Mitnik, G. Gasaneo, L. U. Ancarani, and M. J. Ambrosio,
J. Phys.: Conf. Ser. 488, 012049 (2014).

[38] LAPACK–linear algebra package, http://www.netlib.org/lapack/

052518-8

http://dx.doi.org/10.1088/1742-6596/212/1/012025
http://dx.doi.org/10.1088/1742-6596/212/1/012025
http://dx.doi.org/10.1088/1742-6596/212/1/012025
http://dx.doi.org/10.1088/1742-6596/212/1/012025
http://dx.doi.org/10.1103/PhysRevA.81.022715
http://dx.doi.org/10.1103/PhysRevA.81.022715
http://dx.doi.org/10.1103/PhysRevA.81.022715
http://dx.doi.org/10.1103/PhysRevA.81.022715
http://dx.doi.org/10.1103/PhysRevA.81.022716
http://dx.doi.org/10.1103/PhysRevA.81.022716
http://dx.doi.org/10.1103/PhysRevA.81.022716
http://dx.doi.org/10.1103/PhysRevA.81.022716
http://dx.doi.org/10.1063/1.1643681
http://dx.doi.org/10.1063/1.1643681
http://dx.doi.org/10.1063/1.1643681
http://dx.doi.org/10.1063/1.1643681
http://dx.doi.org/10.1103/PhysRevA.83.052708
http://dx.doi.org/10.1103/PhysRevA.83.052708
http://dx.doi.org/10.1103/PhysRevA.83.052708
http://dx.doi.org/10.1103/PhysRevA.83.052708
http://dx.doi.org/10.1103/PhysRevA.75.012715
http://dx.doi.org/10.1103/PhysRevA.75.012715
http://dx.doi.org/10.1103/PhysRevA.75.012715
http://dx.doi.org/10.1103/PhysRevA.75.012715
http://dx.doi.org/10.1016/B978-0-12-411544-6.00007-8
http://dx.doi.org/10.1016/B978-0-12-411544-6.00007-8
http://dx.doi.org/10.1016/B978-0-12-411544-6.00007-8
http://dx.doi.org/10.1016/B978-0-12-411544-6.00007-8
http://dx.doi.org/10.1088/1742-6596/601/1/012004
http://dx.doi.org/10.1088/1742-6596/601/1/012004
http://dx.doi.org/10.1088/1742-6596/601/1/012004
http://dx.doi.org/10.1088/1742-6596/601/1/012004
http://dx.doi.org/10.1016/j.physrep.2012.07.002
http://dx.doi.org/10.1016/j.physrep.2012.07.002
http://dx.doi.org/10.1016/j.physrep.2012.07.002
http://dx.doi.org/10.1016/j.physrep.2012.07.002
http://dx.doi.org/10.1103/PhysRevA.46.6995
http://dx.doi.org/10.1103/PhysRevA.46.6995
http://dx.doi.org/10.1103/PhysRevA.46.6995
http://dx.doi.org/10.1103/PhysRevA.46.6995
http://dx.doi.org/10.1103/PhysRevA.67.060704
http://dx.doi.org/10.1103/PhysRevA.67.060704
http://dx.doi.org/10.1103/PhysRevA.67.060704
http://dx.doi.org/10.1103/PhysRevA.67.060704
http://dx.doi.org/10.1103/PhysRevLett.78.4721
http://dx.doi.org/10.1103/PhysRevLett.78.4721
http://dx.doi.org/10.1103/PhysRevLett.78.4721
http://dx.doi.org/10.1103/PhysRevLett.78.4721
http://dx.doi.org/10.1088/0953-4075/35/15/201
http://dx.doi.org/10.1088/0953-4075/35/15/201
http://dx.doi.org/10.1088/0953-4075/35/15/201
http://dx.doi.org/10.1088/0953-4075/35/15/201
http://dx.doi.org/10.1103/PhysRevA.60.5118
http://dx.doi.org/10.1103/PhysRevA.60.5118
http://dx.doi.org/10.1103/PhysRevA.60.5118
http://dx.doi.org/10.1103/PhysRevA.60.5118
http://dx.doi.org/10.1103/PhysRevA.62.062718
http://dx.doi.org/10.1103/PhysRevA.62.062718
http://dx.doi.org/10.1103/PhysRevA.62.062718
http://dx.doi.org/10.1103/PhysRevA.62.062718
http://dx.doi.org/10.1103/PhysRevA.65.062715
http://dx.doi.org/10.1103/PhysRevA.65.062715
http://dx.doi.org/10.1103/PhysRevA.65.062715
http://dx.doi.org/10.1103/PhysRevA.65.062715
http://dx.doi.org/10.1103/PhysRev.126.130
http://dx.doi.org/10.1103/PhysRev.126.130
http://dx.doi.org/10.1103/PhysRev.126.130
http://dx.doi.org/10.1103/PhysRev.126.130
http://dx.doi.org/10.1088/0022-3700/11/17/019
http://dx.doi.org/10.1088/0022-3700/11/17/019
http://dx.doi.org/10.1088/0022-3700/11/17/019
http://dx.doi.org/10.1088/0022-3700/11/17/019
http://dx.doi.org/10.1103/PhysRevLett.69.53
http://dx.doi.org/10.1103/PhysRevLett.69.53
http://dx.doi.org/10.1103/PhysRevLett.69.53
http://dx.doi.org/10.1103/PhysRevLett.69.53
http://dx.doi.org/10.1103/PhysRevA.54.R995
http://dx.doi.org/10.1103/PhysRevA.54.R995
http://dx.doi.org/10.1103/PhysRevA.54.R995
http://dx.doi.org/10.1103/PhysRevA.54.R995
http://dx.doi.org/10.1088/0953-4075/43/10/101001
http://dx.doi.org/10.1088/0953-4075/43/10/101001
http://dx.doi.org/10.1088/0953-4075/43/10/101001
http://dx.doi.org/10.1088/0953-4075/43/10/101001
http://dx.doi.org/10.1103/PhysRevA.84.052715
http://dx.doi.org/10.1103/PhysRevA.84.052715
http://dx.doi.org/10.1103/PhysRevA.84.052715
http://dx.doi.org/10.1103/PhysRevA.84.052715
http://dx.doi.org/10.1016/j.cpc.2011.01.016
http://dx.doi.org/10.1016/j.cpc.2011.01.016
http://dx.doi.org/10.1016/j.cpc.2011.01.016
http://dx.doi.org/10.1016/j.cpc.2011.01.016
http://dx.doi.org/10.1103/PhysRevA.89.012713
http://dx.doi.org/10.1103/PhysRevA.89.012713
http://dx.doi.org/10.1103/PhysRevA.89.012713
http://dx.doi.org/10.1103/PhysRevA.89.012713
http://dx.doi.org/10.1103/PhysRevA.68.022703
http://dx.doi.org/10.1103/PhysRevA.68.022703
http://dx.doi.org/10.1103/PhysRevA.68.022703
http://dx.doi.org/10.1103/PhysRevA.68.022703
http://dx.doi.org/10.1103/PhysRevA.70.062703
http://dx.doi.org/10.1103/PhysRevA.70.062703
http://dx.doi.org/10.1103/PhysRevA.70.062703
http://dx.doi.org/10.1103/PhysRevA.70.062703
http://dx.doi.org/10.1021/jp9040869
http://dx.doi.org/10.1021/jp9040869
http://dx.doi.org/10.1021/jp9040869
http://dx.doi.org/10.1021/jp9040869
http://dx.doi.org/10.1088/1742-6596/488/1/012049
http://dx.doi.org/10.1088/1742-6596/488/1/012049
http://dx.doi.org/10.1088/1742-6596/488/1/012049
http://dx.doi.org/10.1088/1742-6596/488/1/012049
http://www.netlib.org/lapack/



