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Abstract. A programme is outlined for the assembly of a comprehensive dielectronic recombination database within the gen-
eralized collisional–radiative (GCR) framework. It is valid for modelling ions of elements in dynamic finite-density plasmas
such as occur in transient astrophysical plasmas such as solar flares and in the divertors and high transport regions of magnetic
fusion devices. The resolution and precision of the data are tuned to spectral analysis and so are sufficient for prediction of
the dielectronic recombination contributions to individual spectral line emissivities. The fundamental data are structured ac-
cording to the format prescriptions of the Atomic Data and Analysis Structure (ADAS) and the production of relevant GCR
derived data for application is described and implemented following ADAS. The requirements on the dielectronic recombina-
tion database are reviewed and the new data are placed in context and evaluated with respect to older and more approximate
treatments. Illustrative results validate the new high-resolution zero-density dielectronic recombination data in comparison with
measurements made in heavy-ion storage rings utilizing an electron cooler. We also exemplify the role of the dielectronic data
on GCR coefficient behaviour for some representative light and medium weight elements.
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1. Introduction

Dielectronic recombination (DR) is the dominant electron–ion
recombination process in many astrophysical and laboratory
plasmas. It plays an important role in determining both the level
populations and the ionization balance of both high- and low-
temperature non-LTE plasmas over a wide range of electron
densities and its accurate description is key to spectral analysis
(e.g. Judge et al. 1997; Lanzafame et al. 2002). Dielectronic
recombination can be viewed as a two-step process. Firstly,
a free electron excites an electron in an ionX+z, say, and in
the process transfers sufficient of its energy that it is captured
into an autoionizing state of the ionX+z−1. The process is re-
versible since the total energy of the system remains conserved.
However, if an electron (either the captured electron or an elec-
tron in the parent core) then makes a spontaneous radiative
transition that leaves the ion in a non-autoionizing (bound) state
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then the recombination can be viewed as complete, at least
in the low-density (coronal) limit. Dielectronic recombination
can take place via many intermediate autoionizing states – in-
deed, entire Rydberg series. It was the significance of the ef-
fective statistical weight of so many available states that led
Burgess (1964) to recognize the importance of dielectronic re-
combination in the first instance. A consequence of this is that
a huge population structure model is required in principle for
further progress. In astrophysics and fusion, the problem has
usually been made manageable by simply summing over all fi-
nal states so as to produce a total dielectronic recombination
rate coefficient. In combination with radiative recombination,
this is the effective recombination coefficient from the point
of view of an ionization state only – the so-called “coronal
picture”. In this picture, excited-state populations are depleted
exclusively by spontaneous radiative transitions and are small
compared to those of ground states – with which they are in
quasi-static equilibrium. Collisional processes are negligible,
except with ground state targets. In turn, the ionization state
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is determined by balancing the effective recombination rate of
(the ground state of)X+z against the collisional ionization rate
of (the ground state of)X+z−1.

For dynamic finite-density plasmas, there are therefore two
critical limitations to the coronal approximation which must
be addressed. Both require a re-appraisal of the strategy for
computing dielectronic recombination, which is the objective
of this paper. Firstly, from the atomic point of view, a dynamic
plasma is one for which the timescale of change in plasma
parameters (especially electron temperature,Te, and electron
density,Ne) is comparable with the lifetime of the metastable
populations of its constituent ions. This situation is a concern,
for example, for impurities near plasma contacted surfaces in
fusion (Summers et al. 2002) and for active solar events (Lanza
et al. 2001). The population of an ionization stage may no
longer be assumed to be concentrated in the ground state of
each ion. A significant population is found in the metastables,
and they may not be in quasi-static equilibrium with the ground
state. This means that such metastables are the starting point for
recombination events, and so the time-evolution of their popu-
lations must be tracked in the same manner as for the ground
states. We call this the generalized collisional–radiative (GCR)
picture (Summers & Hooper 1983). Even if the metastable
populations are in quasi-static equilibrium with the ground
state, they are significant and so are still a source term for
dielectronic recombination which cannot be ignored.

The second issue is that of finite-density effects. The coro-
nal (zero-density limit) picture assumes that, following the two-
step dielectronic recombination process, the resultant (non-
autoionizing) excited-state (electron) radiatively cascades back
down to the ground state without collisional disruption. At fi-
nite electron densities, this radiative cascade can be interrupted
by further electron collisions which redistribute the population
– in particular, ionization (possibly stepwise) out of excited
states, which reduces the effective dielectronic recombination
rate. Collisional–radiative modelling removes the limitations
of the coronal model, but at the cost of much more elabo-
rate excited-state population calculations. These in turn require
much more detailed dielectronic recombination data, and in an
easily accessible form. The onset of these density effects on
the “post-DR” population structure depends markedly on ion
charge, but can be significant even at electron densities as low
asNe >∼ 108 cm−3 typical of the solar corona. At much higher
densities,Ne ∼ 1014 cm−3, redistributive collisions can inter-
rupt the two-step dielectronic process itself.

Therefore, we require dielectronic recombination from the
metastable states as well as the ground. Secondly, we require
final-state resolved data, i.e. we need to know the specific
level that each two-step recombination ends-up in – the gen-
eralized collisional–radiative population rate equations govern
the subsequent time-evolution of these states. (Incidentally, the
first requirement imposes an additional requirement on the sec-
ond, namely, that we now require dielectronic recombination
into metastable parent final-states that lie above the ioniza-
tion limit so that the collisional–radiative modelling recovers
the Saha–Boltzman populations and ionization fractions in the
high-density limit.) As we have already indicated, there are
very many possible final states accessible to the dielectronic

recombination process which would seem to make for unac-
ceptably large tabulations. However, it is not only impractica-
ble, but unnecessary, to treat each final state in the same manner
for the purposes of collisional–radiative modelling. The tech-
niques of matrix condensation and projection reduce the effec-
tive number of high-lying states by the progressive bundling of
representative states and project the full influence of the high-
lying states down onto a fully-resolved low-lying set. (It is the
low-level set which is the focus of detailed spectral analysis.)
With this in mind, we can tailor our dielectronic recombination
tabulations to reflect this situation.

Of course, many people have calculated both partial and to-
tal dielectronic recombination rate coefficients and it is imprac-
tical to list them all here. A useful starting point is the compila-
tion of total recombination rate coefficients from the literature
by Mazzotta et al. (1998) who then used this data to compute
the coronal ionization balance for all elements up to Ni. When
the results of ab initio calculations are not available then much
use, and abuse, is made of the General Formula of Burgess
(1965). Partial dielectronic recombination rate coefficients also
abound in the literature in connection with the study of par-
ticular physical problems: for example, at low temperatures,
where only a few autoionizing states contribute significantly
(Nussbaumer & Storey 1983); satellite lines (e.g. Bely-Dubau
et al. 1979); laser produced plasmas, where the electron den-
sity and/or charge state is high enough that the non-LTE popu-
lations are concentrated in a limited number of low-lying states
(see e.g. Abdallah & Clark 1994).

We have found it helpful for application to prepare and han-
dle dielectronic recombination data in a hierarchy of increas-
ing sophistication which we callbaseline, level 1and level 2.
Baselinedata are those produced using the Burgess general for-
mula (GF), or with the techniques and state-selective programs
associated with it. The generality of dielectronic data in use
today are still from the GF. The background codes to the GF
have a capability significantly beyond that of the GF, but are
less well known. We return to these in more detail in Sect. 2.3.
The level 1approach was introduced in the early “ninties” to
support the GCR modelling of light elements such as Be, B
and C. These species are used in “light-element strategies” for
plasma facing wall components in fusion technology. For such
elements, it is sufficient to use LS-coupled atomic structure
and term population modelling. The relevant metastable popu-
lations in this case are terms such as C2+(2s2p3P). Thelevel 2
approach, which is the main purpose of the present paper series,
is concerned with the need to handle medium and heavy species
in both fusion and astrophysics and to handle more extreme en-
vironments. In this approach, we aim to work with levels rather
than terms and to use an intermediate coupling scheme, based-
on the use of the Breit–Pauli Hamiltonian (Badnell 1997).

There are several reasons why thelevel 2approach is now
necessary: astrophysical spectral diagnostics tend to be based
on levels rather than terms and the competition between au-
toionization and radiation makes it difficult to partition term-
resolved dielectronic recombination data over levels; nuclear
spin–orbit mixing is important even for low-Z ions, e.g. carbon,
because only a weak mixing of LS-forbidden autoionization
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rates with LS-allowed can give rise to “forbidden” autoioniza-
tion rates that are comparable with the dominant radiative rates
(see Nussbaumer & Storey 1984; Badnell 1988); asZ increases
further then LS-forbidden radiative rates start to become sig-
nificant; finally, dielectronic recombination via fine-structure
transitions is completely absent in LS-coupling, giving rise to a
large underestimate of the low-temperature dielectronic recom-
bination rate coefficient in some iso-electronic sequences (see
Savin et al. 1997).

The goal of this work is to calculate multi-configuration
intermediate coupling dielectronic recombination rate coeffi-
cients from the (ground plus) metastable levels of an ion to all
possible final states, resolved by level, and/or bundling, appro-
priate for generalized collisional–radiative modelling. We will
cover elements applicable to astrophysics and magnetic fusion
viz. He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl,
Ar, Ca, Ti, Cr, Fe, Ni, Zn, Kr, Mo and Xe. The first phase of
the work will be the H- through Ne-like sequences.Level 1LS-
coupling data for many elements of these sequences was cal-
culated by Badnell (1991–92, unpublished) and incorporated
into the atomic database part of the Atomic Data and Analysis
Structure (ADAS) and is routinely drawn into the generalized
collisional–radiative part of ADAS (see Summers 2003). So,
we already have a clear pathway through to the complete uti-
lization of the detailedlevel 2data that we will produce.

The second phase of the work will cover the Na-like
through Ar-like sequences, piloted initially by further (level 1)
LS-coupling calculations to extend the 1991–92 data. Note that
ADAS uses year numbers for the introduction of new approxi-
mations bringing substantive contributions to the database. The
LS-coupled work of Badnell above has the year number “93”.
The third phase will focus on the remaining sequences of par-
ticular elements of interest, e.g. Fe. Even with the compactifi-
cation of the partial dielectronic recombination data, along the
lines already indicated, full publication in a paper journal is
impractical, and not especially useful. So, the entire data will
be made available via the World Wide Web (see Sect. 5). The
organization of the dielectronic data product follows the data
format specifications of the ADAS Project. Dielectronic data
are assigned to the data formatadf09(Summers 2003).

The plan for the remainder of the paper is as follows: in
Sect. 2.1 we review the generalized collisional–radiative ap-
proach encapsulated in ADAS and which influences our ap-
proach to handling dielectronic recombination data. In Sect. 2.2
we describe and justify the theoretical approach that we take to
calculatelevel 2data. In Sect. 2.3 we review in some detail the
essence of the Burgess approach. It will be shown that this re-
mains of importance for a full exploitation of the new work,
for example, as applied to thel-redistribution of autoionizing
states. Also, it is necessary to assess the progress in the pre-
cision of new dielectronic data in comparison with thebase-
line data. In Sect. 3 we discuss the experimental situation for
verifying dielectronic recombination data and the role of ex-
ternal fields. Some comparisons of results of our theoretical
approach with high-resolution experimental results from stor-
age rings are given. In Sect. 4 we address derived data and we
present some illustrative comparisons of GCR effective coeffi-
cients obtained usingbaseline, level 1 and level 2 data from

dielectronic calculations. Also, we illustrate metastable-
resolved ionization fractions. In Sect. 5 we give more detail of
the organization of the database and the computational imple-
mentation of its production. We finish with a short summary.

2. Theory

2.1. Generalized collisional–radiative modelling

Consider ionsX+z of elementX of charge statez. We sepa-
rate the levels ofX+z into metastable levelsX+z

ρ , indexed by
Greek indices, and excited levels, indexed by Roman indices.
The metastable levels include the ground level. We assume
that the excited levelsX+z

i are populated by excitation from
all levels,ρ and j, of X+z, by ionization from the metastable
levels ofX+z−1

µ and recombination from the metastable levels
of X+z+1

ν . The dominant population densities of these ions in
the plasma are denoted byNz

ρ, Nz−1
µ andNz+1

ν . The excited-state
population densities,Nz

i , are assumed to be in quasi-static equi-
librium with respect to the metastable populations. Thus,

0 =
∑
σ

Cz
iσNz

σ +
∑

j

Cz
i j N

z
j +

∑
µ

Sz−1
iµ Nz−1

µ +
∑
ν

Rz+1
iν Nz+1

ν , (1)

whereCz
i j are elements of the collisional–radiative matrix de-

fined by

NeC
z
i j = Ar

j→i + Neq
e
j→i , j > i , (2)

whereNe is the electron density,qe
j→i is the electron-impact de-

excitation rate coefficient andAr
j→i is the spontaneous radiative

rate, both for thej → i transition in the ionX+z. The equivalent
expressions for upward transitions (j < i) and for i and/or j
replaced by a metastable index follow trivially. The diagonal
elementCz

ii denotes the loss rate coefficient from the excited
statei and is given by

Cz
ii = −

∑
j,i

Cz
ji − Sz

i , (3)

where

Sz
i =

∑
j

Sz
ji (4)

is the total ionization rate coefficient out ofi. Finally,Sz−1
iµ is the

partial ionization rate coefficient out of metastableµ andRz+1
iν

is the partial recombination rate coefficient out of metastable
levelν, both into leveli of the ionX+z. Sz−1

iµ includes contribu-
tions from both direct ionization and excitation-autoionization.
Rz+1

iν includes contributions from three-body, radiative and di-
electronic recombination.

Solving forNz
j , we have

Nz
j = −

∑
σ,i

(Cz)−1
ji Cz

iσNz
σ −

∑
µ,i

(Cz)−1
ji Sz−1

iµ Nz−1
µ

−
∑
ν,i

(Cz)−1
ji Rz+1

iν Nz+1
ν

≡
∑
σ

Ne
XF z

jσNz
σ +

∑
µ

Ne
IF z

jµN
z−1
µ +

∑
ν

Ne
RF z

jνN
z+1
ν

≡
∑
σ

XNz
jσ +

∑
µ

INz
jµ +

∑
ν

RNz
jν, (5)
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whereXNz
jσ, INz

jµ andRNz
jν are the effective populations ofj due

to excitation, ionization and recombination from their respec-
tive metastables, andX,I,RF z

jβ the corresponding coefficients. It
is here that the connection with spectral analysis is made. The
total emissivity in the linej → k is given by

εzj→k = Nz
j A

r
j→k, (6)

with the populationsNz
j given by Eq. (5). The corresponding

photon emissivity coefficients are defined by

X,I,RPECz
β, j→k ≡ X,I,RF z

jβA
r
j→k, (7)

respectively. Thus, the contributions to the totalj → k emissiv-
ity from excitation, ionization and recombination are given by

X,I,Rεzj→k = Ne

∑
β

X,I,RPECz
β, j→kN

z, z−1, z+1
β , (8)

respectively.
The dynamic metastable populationsNz

ρ of Xz satisfy

1
Ne

dNz
ρ

dt
=

∑
σ

Cz
ρσNz

σ +
∑

j

Cz
ρ j

XNz
jσ


−

∑
σ

Cz
σρN

z
ρ +

∑
j

Cz
σ j

XNz
jρ


+

∑
µ

Sz−1
ρµ Nz−1

µ +
∑

m

Sz−1
ρm

XNz−1
mµ



−
∑
ν

Sz
νρN

z
ρ +

∑
j

Sz
ν j

XNz
jρ


+

∑
ν

Rz+1
ρν Nz+1

ν +
∑

j

Cz
ρ j

RNz
jν


−

∑
µ

Rz
µρN

z
ρ +

∑
m

Cz−1
µm

RNz−1
mρ


+

∑
σ

Qz
ρσNz

σ +
∑

m

Sz−1
ρm

RNz−1
mσ


−

∑
σ

Qz
σρN

z
ρ +

∑
m

Sz−1
σm

RNz−1
mρ


≡

∑
σ

Xz→z
CD:σ→ρN

z
σ −

∑
σ

Xz→z
CD:ρ→σNz

ρ

+
∑
µ

Sz−1→z
CD:µ→ρN

z−1
µ −

∑
ν

Sz→z+1
CD:ρ→νN

z
ρ

+
∑
ν

αz+1→z
CD:ν→ρN

z+1
ν −

∑
µ

αz→z−1
CD:ρ→µN

z
ρ

+
∑
µ

Qz→z
CD:σ→ρN

z
σ −

∑
σ

Qz→z
CD:ρ→σNz

ρ , (9)

which defines the generalized collisional–radiative excita-
tion (XCD), ionization (SCD), recombination (RCD) and parent
metastable cross-coupling (QCD) rate coefficients. (We note
that Qz

ρσ ≡ 0 initially, by definition, then see Eq. (14) below.)
This set of equations, together with those forNz

j , are sufficient

to solve the low-level problem – those levels with principal
quantum numbern ≤ nc, say. In the absence of dielectronic
recombination, or at sufficiently high electron densities (e.g.
>∼1018 cm−3, say, as found in laser-produced plasmas) thennc

can be small enough for this to be a complete solution since all
higher levels are in collisional LTE, with a Boltzman popula-
tion distribution. However, the presence of dielectronic recom-
bination in low- to medium-density plasmas means thatnc can
be prohibitively large (≈500, say).

We now consider a projection-condensation approach that
allows for the effect of the high-level populations (n ≡ n > nc)
on the low-level populations (n ≤ nc) – see Summers &
Hooper (1983) and Burgess & Summers (1969). We work in
the bundled-n picture. Here the populations are grouped ac-
cording to their parent level and principal quantum number.
We assume that the high-level populations are in quasi-static
equilibrium with the low-level populations and adjacent stage
metastables. Thus, for each parentτ, the high-level populations
(denoted byτn) satisfy

0 =
∑

n

Cz
τn,τnNz

τn +
∑
n′

Cz
τn,τn′N

z
τn′

+
∑
µ

Sz−1
τn,µN

z−1
µ +

∑
ν

Rz+1
τn,νN

z+1
ν , (10)

which is of the same form as Eq. (1) for the low-level excited-
states. Thus, the low-level populations satisfy equations of the
same form as Eq. (9). This is a full solution for all levels, in
the bundled-n picture. It includes direct couplings between the
low-level populations (e.g.n→ n′) and indirect couplings via
the high-level populations (e.g.n→ n→ n′). However, we al-
ready have a description of the low-level problem in the fully-
resolved picture, given by Eqs. (1) and (9). We can supplement
these equations with the indirect couplings of the bundled-n
picture, expanded over the low-level set using level weighting
factors,ωi j . This projection corresponds to solving Eqs. (1)
and (9) withC, S, R and Q (including their appearance in
Eq. (5)) replaced byC, S, R andQ whereC = C + indC,
S = S + indS, R = R+ indRandQ = Q+ indQ, where

indCz
ρσ = ωρ,τnωτn′,σ

∑
n,n′

Cz
τn,τn′ (C

z)−1
τn′ ,τn Cz

τn,τn′ , (11)

indSz
ν′i = ωνn,i

∑
n,n′

Sz
ν′ ,νn′ (C

z)−1
νn′,νn Cz

νn,νn, (12)

indRz+1
iν′ = ωi,νn

∑
n,n′

Cz
νn,νn′ (C

z)−1
νn′,νn Rz+1

νn,ν′ (13)

and

indQz
ρσ = ωρ,τnωτn′,σ

∑
n,n′

Sz−1
ρ,τn′

(
Cz−1

)−1

τn′,τn
Rz
τn,σ. (14)

Although we now have a complete solution in terms of the
fully-resolved low-level and bundled-n high-level picture, one
further step is of practical significance. In order to span a wide
range of electron densities it is necessary to treat very large
principal quantum numbers in order to reach the collision limit
at low densities. It is not necessary to treat eachn individually.
Rather, a set of representativen-values can be used instead.
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If Nn denotes the bundled-n populations forn = nc + 1, nc +

2, . . ., andNn denotes a subset of them, then the two are related
via Nn = ωnnNn, whereωnn are the interpolation coefficients.
Substituting forNn into Eqs. (1) and (9) yields a condensed
set of equations forNn and theC, S, R andQ obtained from
the condensed set of equations are identical in form to those
obtained from the full set of equations.

We note here that we have made an assumption viz. that,
following dielectronic capture, the autoionizing state is not per-
turbed by a further collision before it either autoionizes or ra-
diates. This is not due to a limitation of ADAS but rather a
choice that we have made (and defined within theadf09specifi-
cation) so as to make the general collisional–radiative problem
tractable over a wide range of electron densities. Working ex-
plicitly with autoionization and radiative rates and bound and
non-bound states rather than partial dielectronic recombina-
tion rate coefficients and (mostly) bound states vastly increases
the data requirements, in general. Although our collisional–
radiative model goes over to the correct LTE limit at high elec-
tron densities, there is a density range (>∼1016 cm−3, found in
laser-produced plasmas) where the levels of spectroscopic in-
terest have non-LTE populations that are influenced by non-
LTE populations of autoionizing levels that are themselves col-
lisionally redistributed. We describe an approximate solution in
Sect. 2.3 below.

We are now in a position to spell out our requirements of
recombination data:
(i) we require recombination data from all metastable levels,
not just the ground;
(ii) we require recombination data into particular final states;
(iii) we require the final-state to be level-resolved forn ≤ nc

and parent-level-resolved bundled-n for n > nc;
(iv) parent metastable cross-coupling means that we require re-
combination into metastable autoionizing final states;
(v) we need only produce data for a representative set ofn.
The ADAS adf09data specification incorporates all of these
requirements.

Finally, we note that use of total zero-density ground-state
recombination rate coefficients is, in principle, quite unsafe for
the collisional–radiative modelling of dynamic finite-density
plasmas – see Burgess & Summers (1969), Summers & Hooper
(1983), Badnell et al. (1993) and Sect. 4 below.

2.2. Dielectronic recombination rate coefficient
modelling

We have already noted that the partial recombination rate coef-
ficient (Rz+1

iν ) includes contributions from three-body, radiative
and dielectronic recombination. In ADAS, three-body recom-
bination rate coefficients are obtained from electron-impact
ionization rate coefficients, via detailed balance. This also en-
sures that the correct Saha–Boltzman limit is reached at high
electron densities. Since three-body recombination is separate
from dielectronic and radiative recombination, it is not nec-
essary to consider it further. However, quantum mechanically,
dielectronic and radiative recombination are indistinguishable
processes which interfere with each other. In practice (see
Pindzola et al. 1992), this interference is a very small effect

and can safely be neglected for our purposes. This is the inde-
pendent processes approximation whereby dielectronic and ra-
diative recombination can be considered separately and is the
approach taken by the database aspect of ADAS. Separate data
files exist for dielectronic (adf09) and radiative recombination
(adf08) and they can be updated independently. Our focus is di-
electronic recombination. Details of the ADAS data status for
radiative recombination can be found in Summers (2003).

In the isolated resonance approximation, the partial di-
electronic recombination rate coefficient αz+1

iν from an initial
metastable stateν of an ionX+z+1 into a resolved final statei of
an ionX+z is given by (Burgess 1964)

αz+1
iν =

4πa2
0IH

kBTe


3/2 ∑

j

ω j

2ων
e−Ec/(kBTe)

×
∑

l Aa
j→ν,Ecl

Ar
j→i∑

h Ar
j→h +

∑
m,l Aa

j→m,Ecl

, (15)

whereω j is the statistical weight of the (N+1)-electron doubly-
excited resonance statej, ων is the statistical weight of the
N-electron target state (so,z = Z − N − 1) and the autoion-
ization (Aa) and radiative (Ar) rates are in inverse seconds.
Here, Ec is the energy of the continuum electron (with or-
bital angular momentuml), which is fixed by the position of
the resonances, andIH is the ionization potential energy of the
hydrogen atom (both in the same units of energy),kB is the
Boltzman constant,Te the electron temperature and (4πa2

0)
3/2 =

6.6011× 10−24 cm3.
The effect of interacting resonances on dielectronic recom-

bination has been investigated by Pindzola et al. (1992) and
can safely be neglected, at least in the absence of external
electric and magnetic fields (see Sect. 3 below). While au-
toionization rates can be determined (within the isolated res-
onance approximation) via the fitting of resonances calculated
in a close-coupling approximation, or via the extrapolation of
threshold close-coupling collision strengths using the corre-
spondence principle, it is usual now to introduce a further ap-
proximation – that of using distorted waves, i.e. the autoion-
ization rates are calculated via perturbation theory using the
Golden Rule (Dirac 1930). This is the only approximation that
we have made so far that may need to be reconsidered in certain
cases. In low-charge ions, a perturbative distorted wave cal-
culation may give inaccurate autoionization rates compared to
those calculated in a close-coupling approximation. However,
this only has a direct effect on the partial dielectronic recom-
bination rate if the autoionization rates do not “cancel-out” be-
tween the numerator and denominator of (15) – typically, au-
toionization rates are orders of magnitude larger than radiative
rates.

One could obtain (some) partial dielectronic recombination
data from anR-matrix photoionization calculation, on making
use of detailed balance, either in the absence of radiation damp-
ing (Nahar & Pradhan 1994) or with its inclusion (Robicheaux
et al. 1995; Zhang et al. 1999). (One must take care not to dou-
ble count the radiative recombination contribution in the mod-
elling now.) However, this cannot provide us with a complete
set of partial recombination rate coefficients since it is only
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practicable to compute photoionization from (i.e. photorecom-
bination to) a relatively low-lying set of states – up ton ' 10,
say. Total recombination rates are obtained by supplementing
the photorecombination data with high-n “close-coupling” di-
electronic recombination rate coefficients calculated using Bell
& Seaton (1985) or Hickman’s (1984) approach. This is based
on the radiative-loss term from a unitary S-matrix and does not,
and cannot, resolve recombination into a particular final state,
which is essential for collisional–radiative modelling. Indeed,
even when summed-over all final states, errors can still re-
sult. This has been demonstrated explicitly by Gorczyca et al.
(2002) in the case of Fe17+. They found that only the IPIRDW
approach could reproduce the measured dielectronic recom-
bination cross section of Savin et al. (1997, 1999) for high
Rydberg states.

Thus, our initial goal is to generate complete data sets
within the independent processes and isolated resonance us-
ing distorted waves (IPIRDW) approximation. Subsequently,
selective upgrades fromR-matrix data may be made via, for
example, the RmaX network which can be viewed as a pro-
gression of the Iron Project (Hummer et al. 1993) and which
is focusing on X-ray transitions – see, for example, Ballance
et al. (2001). We note that while the Opacity Project (Seaton
1987) calculated a large amount of photoionization data, which
in principle could be used for recombination (via detailed bal-
ance), unfortunately, only total photoionization cross sections
were archived, i.e. summed-over the final electron continuum,
and so it is impossible to apply detailed balance and so it cannot
be used as a source of recombination data.

We use the code (Badnell 1986, 1997;
Badnell & Pindzola 1989) to calculate multi-configuration
intermediate coupling energy levels and rates within the
IPIRDW approximation. The code can make use both of non-
relativistic and semi-relativistic wavefunctions (Pindzola &
Badnell 1990). The low-n problem is no different from the one
of computing atomic structure. The high-n problem requires
some discussion. The mean radius of a Rydberg orbital scales
asn2 and so it rapidly becomes impossible to calculate an ex-
plicit bound orbital (forn > 20, say) and some approximation
must be made. We note that (Seaton 1983)

lim
n→∞

(
πn3

2z2

)3/2

Pnl(r) = Fkl(r)|k=0 , (16)

where the bound orbitals (Pnl) are normalized to unity and the
continuum orbitals (Fkl) to πδ(k − k′), herek2 = Ec(Ry). The
approach taken in is to make use of (16) at
finite n, i.e. to approximate the bound orbital by a suitably
normalized zero-energy continuum orbital, forn > 15+ l2/4
(evaluated in integer arithmetic). A further refinement is to
evaluate the (true) continuum orbital for the incident electron
at Ec + z2/n2 Rydbergs (instead ofEc) so as to maintain the
same transition energy. (In the Bethe approximation, the free–
free dipole acceleration integral is proportional to∆ε2 times
a slowly-varying-with-energy dipole-length integral, where∆ε
is the transition energy.) Actually, the true continuum orbital
is calculated at about 15 energies perl and the one- and two-
body bound–free integrals are interpolated at the required en-
ergy, which is given by energy conservation. (The use of a

zero-energy continuum orbital means that long-range free–
free integrals arise and these are treated using the techniques
of distorted wave scattering theory, see Badnell 1983.) For
eachnl,  reforms both theN- and (N + 1)-
electron Hamiltonians and diagonalizes them (separately) to
reform the rates. Only for H-like ions have we found it nec-
essary to treat alll at the same time, and treat only eachn sep-
arately. Typically, eachn is calculated explicitly until no new
continua can open-up and then only a representative set ofn, up
to n = 999, is used. This approach avoids the extrapolation of
low-n autoionization rates or, even worse, partial dielectronic
recombination rate coefficients to high-n. Use of (16) is, in ef-
fect, an interpolation since it is exact in the limitn → ∞ and
any error is bounded at the lowest-n by knowledge of the “ex-
act” result obtained from usingPnl directly, rather thanFkl.

 is implemented within ADAS as
ADAS701. It produces the raw autoionization and radiative
rates. To produce partial dielectronic recombination rate co-
efficients, according to the prescription of Sect. 2.1, requires
further non-trivial organization of the raw data. In particu-
lar, radiative transitions between highly-excited Rydberg states
are computed hydrogenically and added-in during a “post-
processing” exercise with the code, which is imple-
mented with ADAS as ADAS702. Also, observed energies
for the core and parent levels are used at this stage to ensure
accurate positioning of the resonances and, hence, accurate
low-temperature rate coefficients. outputs directly the
adf09file for use by ADAS. Separateadf09files are produced
for different “core-excitations” (n → n′), e.g. 1→ 2, 2→ 2
and 2→ 3 for Li-like ions. This enables selective upgrades of
theadf09database.

2.3. Exploitation of the Burgess–Bethe approach

We are concerned with how the precise calculations de-
scribed above relate to other calculations and, in particular,
to those commonly used in astrophysics. Ourbaselinecalcu-
lation is based on the methodologies of Burgess, which rep-
resent what can be achieved without recourse to the detail
of the above sections. The Burgess GF itself was in fact a
functional fit to extended numerical calculations. The associ-
ated code, with extensions, we call the “Burgess–Bethe gen-
eral program” (BBGP). It will be shown in this sub-section
how the BBGP can be used to obtain a working model for the
l-redistribution of doubly-excited states and, hence, provide a
correction to accurate, but unredistributed, dielectronic data so
as to model the dynamic part of the plasma microfield. Also,
our baseline, calculated using the BBGP, will allow an assess-
ment of the typical error that is present in the general dielec-
tronic modelling in astrophysics to date.

In the LS-coupled term picture, introduce a setP of par-
ent termsγp

2Sp+1Lp of energyEp relative to the ground parent
term, indexed byp. Suppose that the excited parents are those
with pmin ≤ p ≤ P. The metastable parents, which are the
initial metastables for recombination and the final parents on
which the recombining excitednl-electron is built, are the sub-
set 1≤ p < pmin = M. Let p′ denote an initial parent with the
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incident electron denoted byk′l′. We wish to re-establish the
expressions used by Burgess in his development and it is help-
ful to work in z-scaled dimensionless coordinates. Then, intro-
ducingz1 = z+1, the effective charge, the collision strength for
a dipole excitation ofγp

2Sp+1Lp to γ′p 2Sp+1L′p, evaluated in the
Bethe approximation, is given by

Ω
((

SpL′p
)
k′l′,

(
SpLp

)
klS L

)
= 48

(
(z1 + 1)2 /z4

1

)

×
(

IH

∆εpp′

)  (2S + 1) (2L + 1)

2
(
2Sp + 1

)
 l>

{
L′p Lp 1
l l ′ L

}2

×
(
2Sp + 1

) (
2L′p + 1

)
fSpL′p→SpLp

∣∣∣∣〈Fk′l′
∣∣∣ρ−2

∣∣∣ Fkl

〉∣∣∣∣2 (17)

in terms of the parent oscillator strengthf , where l> =
max(l, l′). For dielectronic recombination, it is convenient to
express this in terms of the Einstein A-coefficient for the parent
transition and to analytically continue the collision strength to
negative energies for thekl electron, that is asκ = k/z1 → i/n.
Formally, we identify a band of free-electron energies dE/IH =

z2
1dε/IH, with the separation betweenn-shells 2z2

1IH/n3, and let
∣∣∣∣〈Fk′ l′

∣∣∣ρ−2
∣∣∣ Fkl

〉∣∣∣∣2 d(ε/IH)→ (π/16)(ε/IH)4 |〈Fk′l′ |ρ|Pnl〉|2 . (18)

Then, the (dielectronic) resonance-capture cross section is
given by

Qc
((

SpL′p
)
k′l′,

(
SpLp

)
klS L

)
d(E/IH)→

 (z1 + 1)2

z4
1



×
6π2a3

0

α4c


(
∆εpp′

IH

) ( IH

ε

)  (2S + 1) (2L + 1)

2
(
2Sp + 1

)
 l>

×
{

L′p Lp 1
l l ′ L

}2

Ar

(
SpLp → SpL′p

)
(z1 + 1)4

 |〈Fk′l′ |ρ|Pnl〉|2 . (19)

The inverse (Auger) rate coefficient is obtained by invoking
detailed balance as

Aa
((

SpLp

)
nlS L→

(
SpL′p

)
k′l′

)
=

 (z1 + 1)2

z2
1


(

3
2α3

)

×
(
∆εpp′

IH

) (
2L′p + 1

)
l>

{
L′p Lp 1
l l ′ L

}2

Ar

(
SpLp → SpL′p

)
(z1 + 1)4


× |〈Fk′l′ |ρ|Pnl〉|2 . (20)

For the generalized collisional–radiative modelling of light el-
ement ions, it is convenient to useL-averaged doubly-excited
levels, but still resolved by spinS, whereas the BBGP treat-
ment usesS L-averaged levels. The corresponding Auger rates
are then

Aa
((

SpLp

)
nlS→

(
SpL′p

)
k′l′

)
=

 (z1 + 1)2

z2
1


(

1
2α3

) (
∆εpp′

IH

)

×
(

l>
(2l + 1)

) 
Ar

(
SpLp → SpL′p

)
(z1 + 1)4

 |〈Fk′l′ |ρ|Pnl〉|2 , (21)

in both cases. The matching resonance-capture coefficients are
obtained by detailed balance, or by summing and averaging
over the resolved expression forQc given above.

Turning to the radiative decay of the doubly-excited reso-
nant states in theLS-resolved picture: the spontaneous emis-
sion coefficient, with a passive spectator in thenl shell, is
given by

Ar
((

SpLp

)
nlS L→

(
SpL′p

)
nlS L′

)
=

(
2Lp + 1

) (
2L′ + 1

)

×
{

L′p Lp 1
L L′ l

}2

Ar
(
SpLp → SpL′p

)
, (22)

whereAr(SpLp → SpL′p) is the parent-core spontaneous transi-
tion probability. TheL- andLS-averaged probabilities are both
simply equal toAr(SpLp→ SpL′p). The BBGP method exploits
the fact that, in the dipole case,

Aa

Ar
=

l> |〈Fk′l′ |ρ|Pnl〉|2
2α3(2l + 1)(z1 + 1)2z2

1

, (23)

and efficient recurrence relations are available for the genera-
tion of hydrogenic bound–free radial integrals for all parameter
values. It is clear that the Bethe approximation for the partial
collision strengths can be substantially in error for 0≤ l <∼ 2.
Burgess introduced correction factors for the lowest partial col-
lision strengths, based-on a comparison with more sophisti-
cated collision calculation results that were available at the
time. More precisely, introduce

corl =
∑

l′
Ω

((
SpL′p

)
k′l′,

(
SpLp

)
k|=0l

) /
∑

l′
ΩBethe

((
SpL′p

)
k′l′,

(
SpLp

)
k|=0l

)
. (24)

The general formula for zero-density total dielectronic recom-
bination rate coefficients used a fixed-set ofcorl for all par-
ent transitions. These were based-on parent 1s→ 2p tran-
sitions and it is the case that the inclusion of corrections is
most significant for parent∆n ≥ 1 transitions. To exploit the
BBGP method beyond its use for the general formula, we must
establish the population equations of the doubly-excited lev-
els. ForLS-averaged levels, the number densities expressed in
terms of their deviations,bp,nl, from Saha–Boltzmann, and re-
ferred to the initial parentp′, are given by

Np,nl = NeN+p′8

πa
2
0IH

kBTe


3/2
ωp,nl

ω′p
e−E/(kBTe)bp,nl. (25)

Then, in the BBGPbaselinezero-density limit, with only res-
onant capture from thep′ parent balanced by Auger breakup
and radiative stabilization back to the same parent, we have

bp,nl =

( ∑
l′ A

a (p, nl→ p′k′l′)∑
l′ Aa (p, nl→ p′k′l′) + Ar (p, nl→ p′, nl)

)
· (26)

In the extended BBGP program, we can also include resonant-
capture from initial metastables other than the ground, dipole-
allowed collisional redistribution between adjacent doubly-
excitedl-substates by secondary ion- and electron-impact, and
losses by “alternate” Auger break-up and parent radiative
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transition pathways. The population equations for thel-
substates of a doubly-excitedn-shell become

−
(
Neq

e
nl−1→nl + Nz1qz1

nl−1→nl

)
Np,nl−1

+


∑

l′=l±1

Neq
e
nl→nl′ +

∑
l′=l±1

Nz1qz1
nl→nl′

+

p−1∑
p1=1

l+1∑
l′=l−1

Aa
p,nl→p1,κl′ +

p−1∑
p1=1

Ar
p,nl→p1,nl

 Np,nl

−
(
Neq

e
nl+1→nl + Nz1q

z1
nl+1→nl

)
Np,nl+1

= Ne

M∑
p2=1

l+1∑
l′=l−1

qc
p2,κl′→p,nlNp2 +

P∑
p1=p+1

Ar
p1,nl→p,nlNp1,nl. (27)

These equations may be solved progressively downwards
through the levels built on excited parents, terminating with
levels built on the “final” ground and metastable parents. The
calculations yield state-selective dielectronic recombination
coefficients to levels built on each metastable parent, together
with Auger rates, from levels built on metastables above the
ground parent, to lower metastable parents. The results from
the above solution, at zero density, we callbaselinedata.
We note some details of the implementation:

2.3.1. Collisional rates

Ion and electronl-redistributive cross sections are evaluated
following the method of Pengelly & Seaton (1964). This is to
be viewed as a very simplified treatment of the dynamic part of
the plasma microfield associated with ions which move closer
than their neighbours to the target. The quasi-static part of the
ion microfield, which is approximately 1/3 of the total, is ig-
nored at this level of analysis (see Sect. 3 for further discussion
of field effects in an experimental context).

2.3.2. Energy levels

The energy differencesEp,nl S − Ep,nl±1 S are critical to the
problem of doubly-excited-state redistribution. They are small,
tending to zero at largel. Thus, the redistributive cross-sections
are very large, remaining finite in the degenerate level limit
only because of the finite radiative lifetime of the target (which
is short for resonant states) or through screening of the projec-
tile by nearest neighbours. For thel = 0, 1, 2 waves of then-
shell spectator electron, quantum defect expansions of the form
µp,nl S = a0+a1/n2 are usually available. For the higherl (> 2),
the large number of energies required can be estimated more
economically from the dipole polarizabilities,αpol

p , of the par-
ents, following Edlen (1964), as

Ep,nl = (z1/n)2[1 + 5.23504−4(z1/n)2(n/(l + 1/2)

+3/4)] + αpol
p (z1/n)4(3n2 − l(l + 1))/

(2n(l − 1/2)l(l + 1/2)(l + 1)(l + 3/2)). (28)

Small-scale runs have been used to prepare
these data for thebaseline. We use two-term quantum defect
expansions fitted atn→ ∞ andn = 10.

2.3.3. Bethe correction factors and radiative transition
probabilities

For our comparisons, it is important that the inputs for
the BBGPbaselinecalculations are consistent with the-
 calculations for thelevel 1and level 2results.
Small-scale runs have been used to pre-
pare these inputs for thebaseline. Low partial-wave collision
strengths are now widely available (e.g. from-
), such that thecorl can be prepared fairly easily. Within
the ADAS Project, efficient subroutines for bound–free inte-
grals and complete BBGP calculations are available together
with sets ofcorl for the principal types of transitions. They are
available to those for whom direct utilization oflevel 1 and
level 2data in full GCR modelling is not an option.

The results presented in this overview paper are illustra-
tive only. Figure 1 contrasts zero-density total dielectronic re-
combination coefficients (αtot

d ) calculated in the GF and the
BBGP baselineapproximations with those of thelevel 1and
level 2computations reported here. In particular, we note that
level 1and 2 data are required to describe the recombination
at low temperatures and that thelevel 2 data provides a no-
ticeable refinement over thelevel 1results. Figures 2a,b illus-
trate the partial recombination inton-shells and the population
structure of thel-subshells of a representative doubly-excited
n-shell. Figure 2a shows the very good convergence of BBGP
to level 1data with increasing completeness of alternate Auger
pathways. Figure 2b shows the effects of collisional redistri-
bution at finite-density. A ratio of the sum overl-substates at
a given density to that at zero density yields a BBGP finite-
density adjustment factor of the totaln-shell capture at zero
density. The consistency between the BBGP,level 1, andlevel 2
approaches allows us to use this adjustment factor on thelevel 1
andlevel 2data. In advanced generalized collisional–radiative
modelling, the BBGP finite-density redistributive code acts
as an interface between the extraction of state-selective zero-
density dielectronic data from the ADASadf09database and
its entry into the GCR population codes, corrected for finite-
density doubly-excited state redistribution. Note also that rou-
tine semi-automatic comparisons as, illustrated here, provide
the theoretical uncertainty estimate with which we can tag each
dielectronic datum.

3. Experimental validation of dielectronic
recombination data and the role of fields

The last decade has seen an enormous amount of experimental
activity in the area of dielectronic recombination. In particu-
lar, heavy-ion storage rings coupled with electron-coolers have
provided a wealth of data for partial dielectronic recombina-
tion. (The partial here is by the intermediate resonance state
rather than the final state.) Most data is of the “bundled-n”
form, but somel-resolution is possible for very low-lying
states. The iso-electronic sequences studied range almost ex-
clusively from H-like through to Na-like and nuclear charges
have ranged betweenZ = 2 and 92. In all cases, in the absence
of external fields, there is rarely any significant disagreement
with theory, i.e. outside of the experimental uncertainty. A few
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pρ = 1S; pσ = 1S : doublet
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Fig. 1. The graphs contrastα(tot)
d (pρ → pi → pσ) vs. Te for the di-

electronic recombination of O4+ ions in various approximations at
zero density.a) pρ= O4+(2s2 1S), pσ = O3+(2s22p 2P): ∆n = 0 and
∆n = 1 intermediate parents included. The Burgess GF includes only
the dipole 2s2 1S−2s2p1P and 2s2 1S−2s3p1P transitions. BBGP in-
corporates specificcorl correction factors, energies which differ from
those implicit in the GF, and the 3p− 3s alternative Auger channel.
The level 1 and level 2 results include all allowed and non-allowed
parent transitions within then = 2 andn = 3 complexes. Note the
low temperature extension which cannot be modelled with the GF
and BBGP. The correct distinction and positioning of the key low-
est resonances are possible only atlevel 2. b) pρ = O4+(2s2 1S) and
O4+(2s2p3P), pσ = O3+(2s22p 2P) and O3+(2s2p2 4P): level 1results
separated by spin-system and final parent. Recombination from-and-
to metastables cannot be handled by the GF. Excited-states built on
the 2s2p3P parent have a spin-change autoionization pathway. The
level 1metastable-resolved totals do not include this loss. Within an
LS-coupled GCR picture usinglevel 1 data, spin-breakdown Auger
data is included explicitly in the GCR calculations for the correct
linking of systems built on the 2s2 1S and 2s2p3P parents. The rel-
evant final-parent-changing Auger data is included in theadf09data
file specification. For comparison with simpler treatments, totals in-
cluding quenching ofn-shells> 4 built on the 2s2p3P parent are also
shown.
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Fig. 2. O4+ recombination.a) Partial n-shell recombination coeffi-
cients: initial recombining metastable 2s2 1S, intermediate excited
parent pi , final states (2s2 1S)n with pi = 2s2p 1P and 2s3p1P.
Te = 1.6 × 106 K, Ne = Np = 0. BBGP(gf) indicates use of standard
corl matching the GF, BBGP(exact) indicates use of specificcorl . For
the∆n = 0 case, BBGP(gf) and BBGP(exact) are superposed.∆n = 1
cases: 1. no alternative Auger channels, GFcorl ; 2. no alternative
Auger channels, specificcorl ; 3. 2s3p1P – 2s3s1S alternative Auger
channel, specificcorl ; 4. as before and 2s3p1P – 2s2p1P alternative
Auger channel, specificcorl . b) bpi ,nl factors for doubly-excited states
of O3+ relative to O4+ 2s2 1S for pi = 2s2p1P and 2s3p1P, n = 20,
Te = 106 K, Ne = Np, plasmaZeff = 1 . Cases: 1.Ne = 1010 cm−3;
2. Ne = 1012 cm−3; 3. Ne = 1013 cm−3; 4. Ne = 1014 cm−3; 5.
Ne = 1015 cm−3. Note the alternative Auger channel reduction for
the pi = 2s3p1P graphs.

of the more recent, typical, comparisons between experiment
and the results of IPIRDW calculations include: B¨ohm et al.
(2002), Savin et al. (2002a,b), Brandau et al. (2002). In Fig. 3,
we show representative comparisons of dielectronic recombi-
nation data for O5+ + e− →O4+ and Fe18+ + e− →Fe17+, cal-
culated in the IPIRDW approximation with
and which illustrates the level of accuracy that can be expected
of the theoretical data.

One major area of uncertainty is the role of external fields
on dielectronic recombination, and it is this more than anything
that renders pointless efforts to compute (zero-density) field-
free data to an accuracy of better than'20%, say. It has long
been known that the high Rydberg states that frequently
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Fig. 3. a)A theoretical reconstruction is shown of the observed dielec-
tronic recombination resonances for the light ion O5+ +e− →O4+. The
measurement is from the CRYRING heavy-ion storage ring (B¨ohm
et al. 2002). Note that the dielectronic recombination data from the
methods described in Sect. 2.2 have been convoluted with the experi-
mental velocity distribution, which has the units of a rate coefficient.
The three pairs of curves correspond to three different beam ener-
gies which results-in three different cut-offs in the maximum princi-
pal quantum number detected. The experimental and theoretical data
agree quite nicely.b) The Maxwellian dielectronic recombination rate
coefficient for Fe18+ + e− → Fe17+ is shown. The measurement (solid
curve) is from the Heidelberg storage ring (Savin et al. 2002a) with an
experimental error assessed as<∼20%. The theoretical IPIRDW results
include the 1→ 2, 2→ 2 and 2→ 3 core excitations in the multi-
configuration Breit–Pauli (MCBP, dotted curve) and Dirac–Fock data
(MCDF, dashed curve) withnmax = ∞. The worst deviation from ex-
periments is<∼30% (for the 3l3l′ resonances) with a typical uncer-
tainty <∼20% for the direct state-selective coefficients to individual
levels and for the total dielectronic rate coefficient. There is excel-
lent agreement between the Breit–Pauli and Dirac–Fock results. The
Breit–Pauli approach is used for our mass data production.

dominate the dielectronic recombination process can be Stark-
mixed by weak electric fields (Burgess & Summers 1969), in
particular the plasma microfield (Jacobs et al. 1976), and so
increase the partial rate coefficients by factors of 2, or 3, or
more, over a wide range ofn. Recently, the picture has been
further complicated by the discovery that magnetic fields, when
crossed with an electric field, strongly affect the electric field

enhancement – by reducing it in most cases(see Robicheaux
et al. 1997; Bartsch et al. 1999; Schippers et al. 2000; B¨ohm
et al. 2001). While this suppression of the electric field en-
hancement is advantageous towards the use of field-free dielec-
tronic recombination data, it is disadvantageous in terms of try-
ing to compute field-dependent data for plasma modelling.

Previously, it appeared that a reasonable approach would
be to use the values of the plasma microfield (which in turn
depends on the plasma density) for the electric field strength
for use in the generation of field dependent (i.e. density depen-
dent) data as input to collisional–radiative modelling. This in it-
self ignored any further (e.g. external) electric fields that might
be present in the plasma environment, beyond the plasma mi-
crofield. The recognition of the importance of magnetic fields
as well makes a comprehensive solution to dielectronic recom-
bination in a plasma a distant goal and partial data accurate
to '20% as meaningful as necessary. Furthermore, field en-
hancement is sensitive to interacting resonances as well (see
Robicheaux et al. 1998) unlike the field-free case. We do note
again that high Rydberg states in a finite density plasma are
brought into LTE by (electron) collisions. A preliminary study
by Badnell et al. (1993) showed that the effect of the plasma mi-
crofield on the density-dependent effective recombination rate
coefficient was suppressed by collisions driving high Rydberg
states into LTE – larger values for the microfield, which lead to
larger enhancements of the zero-density rate coefficient, corre-
sponds to denser plasmas for which collisions drive more states
into LTE.

4. Comparisons and assessments of the derived
data

As described in Sect. 2.1, the emissivity and generalized
collisional–radiative (GCR) coefficients depend inter alia on
the fundamental dielectronic cross section data. There are two
issues of concern in assessing these derived theoretical data,
viz. the relative contributions to the effective coefficients com-
ing from many different direct and indirect pathways and, sec-
ondly, estimation of the uncertainty in the theoretical data,
which may be treated as a “working error” in the interpreta-
tion of spectral observations from plasmas.

For the effective photon emissivity coefficients (PECs), it
is firstly to be noted that the relative importance of the contri-
bution from excitation (XPEC) and recombination (RPEC) is
directly proportional to the ionization balance fractional abun-
dances of the (metastable) “driver” populations. The recom-
bination part is most significant in transiently recombining
plasmas and it is on this part only that we focus here. The
partitioning of the collisional–radiative matrix described in
Sect. 2.1 allows us to contrast the direct capture, capture com-
ing via the complete set of resolved low-levels and capture
via the high bundled-n quantum shells, which are treated by
projection. The relative contributions depend differentially on
density since the projection part is suppressed selectively at
higher densities. Also, electron temperature and the recom-
bining ion charge influence the relative importance of the di-
electronic and radiative recombination contributions and the
role of the more highly-excited levels. In Fig. 4, we show the
main effects with some illustrative results from ADAS for
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Fig. 4. a) Temperature and density dependence of the GCRRPECz

for the C  2s2p3P − 2s3d3D multiplet at 459.6 Å driven by the
C3+(2s2S) recombining ion.b) RPECz for the C 2s2p3P− 2s3d3D
multiplet at 459.6 Å and Ne 2s2p3P−2s3d3D multiplet at 106.1 Å,
respectively. Additional curves contrast the correspondingXPECzs
driven by the ground states of the recombined ions atρ = 1012 cm−3.
For comparison between isoelectronic systems, it is convenient to use
the scaled electron temperatureθ = Te/z2

1 and scaled electron density
ρ = Ne/z7

1, wherez1 is the recombining ion charge (=3 and 7, respec-
tively). Since the upper level is in the excitedn = 3 shell, the cascading
(projected) influence of higher levels is larger than for spectrum lines
originating in then = 2 shell. The low temperature behaviour is that
of the radiative recombination process at low density, but rises to that
of the collective three-body process at high density.

the C 2s2p3P− 2s3d3D multiplet at 459.6 Å and the Ne
2s2p3P− 2s3d3D multiplet at 106.1 Å.

Figure 5 illustrates the main features of the gener-
alized collisional–radiative recombination coefficients for

(a)

(b)

Fig. 5. a) O4+ + e− →O3+ term-resolved GCR recombination coeffi-
cients that are driven from the 2s2 1S ground metastable of the O4+

ion as a function of electron temperature for a number of electron
densities. The scaled electron temperature,θ, and scaled electron den-
sity, ρ, are used.b) O4+ + e− →O3+ term-resolved GCR recombina-
tion coefficient driven from the 2s2p3P metastable of O4+. The sup-
pression of the coefficients compared with those of (a) is due to spin-
breakdown alternative Auger channels. These must be included even
in term-resolved GCR modelling.

O4+ + e− → O3+. In the GCR term-resolved picture for light
elements, there are four coefficients which are associated
with the pairings of the 2s2 1S & 2s2p 1S and 2s22p 2P &
2s2p2 4P metastable terms in the recombining and recom-
bined systems, respectively. As the radiative and three-body
processes are included, the low temperature and high den-
sity behaviours reflect these contributions. The finite-density
suppression of the coefficient for the ground parent case and
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the effect of alternative Auger channels are both pronounced
and also depend on the ion charge. These effects require
GCR modelling. The simpler stage-to-stage picture introduces
a significant and, generally, unquantifiable error. It is to be
noted that the intermediate-coupled dielectronic recombination
data of this project also sustains production of fine-structure-
resolved metastable GCR coefficients appropriate to medium-
and heavy-weight elements.

The present paper’s main concern is with ensuring the qual-
ity and completeness of dielectronic data for plasma modelling
and not with all the consequential modelling of populations and
ion distributions in plasmas. There are, however, two points
to draw attention to. Firstly, it is well known that dielectronic
recombination shifts equilibrium ionization balance fraction
curves to higher temperatures. This is most pronounced for
the ions with one or two electrons outside of closed shells
and produces a characteristic “piling-up” of these stages. It
is also these ion fractions which show most markedly the ef-
fect of finite density reduction of the collisional–radiative co-
efficients. This cannot be ignored for moderately ionized sys-
tems in plasmas withNe >∼ 1010 cm−3. These effects are shown
in Fig. 6 for oxygen. Secondly, most plasma transport models
work only with whole ionization stage populations. The present
work, however, sustains the metastable-resolved GCR picture.
GCR coefficients and ionization balance fractional abundances
must be bundled back to the ionization stage for such models,
at the expense of precision. Figure 6b illustrates the resolved
picture for the beryllium-like ionization stage of oxygen. The
simplest bundling strategy imposes equilibrium fractions on the
metastable populations relative to the ground, as is used for the
stage-to-stage fractional abundances in Fig. 6a.

Modern good practice requires an estimate of uncertainty
in derived theoretical data so that meaningful deductions can
be drawn from the comparison with observations. It is unfor-
tunately the case that most theoretical dielectronic data has no
error associated with it. Because of the relative complexity of
dielectronic recombination and the many contributions, agree-
ments between different theories and with observations some-
times appear fortuitously and do not reflect the underlying re-
liability (see Savin et al. 2002a). For the present derived GCR
coefficients andRPEC, we outline our approach to procuring a
relevant “working error”.

In the ADAS project (Summers et al. 2002), a distinction is
made between “locked” parameters, as distinct from “search”
parameters, in the optimized fitting of models to observations.
Search parameters return a fit uncertainty or confidence level,
the locked parameters must carry an error with them. An effec-
tive rate coefficient is such a locked parameter. Its uncertainty,
called the cumulative statistical error, is computed from the er-
rors of the fundamental reaction rates as follows: Monte Carlo
samples are made of all the individual reaction coefficients,
within their (assumed) independent Gaussian uncertainty dis-
tributions, and the derived coefficient calculated. The process
is repeated many times until statistics are built up. The accu-
mulated results are fitted with a Gaussian variance.

The key issue then is the starting point of uncertainties
in the fundamental component dielectronic coefficients. The
BBGP codes described in Sect. 2.3 have been arranged
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Fig. 6. a) Behaviour of the ionization balance fractional abundances
for oxygen as a function of electron temperature and density. The bal-
ance is also shown using the GF for the dielectronic contributions.
The same effective ionization rate coefficients were used in all three
curve sets, but are not considered further here. The (level 1) GCR re-
sults are shown as a stage-to-stage balance, but originating from a
true GCR metastable-resolved calculation. The metastable fractions
are combined by weighting with their equilibrium fractions as deter-
mined by a low-level population balance. Note the potential confusion
between differences due to the use of a low precision zero-density di-
electronic calculation, such as the GF, and those due to finite-density
effects. A more complete and sophisticated approach to such metasta-
bles (extended also to ionization stages) is called “flexible partition-
ing” and will be the subject of a separate work.b) Beryllium-like
ionization stage, O4+, fractional abundances in the metastable term-
resolved GCR picture. Curves are shown, therefore, for both the 2s2 1S
and 2s2p3P ground and metastable terms. (The metastable curves are
completely suppressed at the lowest two densities.)
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Fig. 7. Upper and lower cumulative statistical (±1 standard deviation)
surfaces for theRPECz for the O  2s2p2 2P − 2s22p 2P multiplet
at 554.4 Å. Note that projection has a substantial influence on the line
emissivity and so its influence on the cumulative propagated error is
significant. Projection and its error contribution is not included in the
graph shown.PECz data are archived in ADAS data formatadf15.
The propagated “locked parameter” errors are available in.err files
paralleling the.datfiles for use in plasma modelling.

to generateadf09 baselinefiles. Such a file is differenced with
the matchinglevel 1 file to provide an error estimate for the
baselinevalues and may be stored in a.err file exactly par-
alleling the naming of the actual.dat file. In like manner, the
level 1file may be differenced with thelevel 2file (averaged-
over fine-structure) to provide the.err file for level 1. We treat
this also as a conservative error forlevel 2. It is emphasized that
this is not a confident absolute error, but a (hopefully) helpful
appraisal of the theoretical data. It is most appropriate for the
n- andnl- shell bundled data. The experimental comparisons
of the type discussed in Sect. 3 indicate that a minimum un-
certainty'20% is appropriate for the term- and level-selective
dielectronic data. Use of such.err files is not yet a common
practice and its handling within a projection matrix framework
is complex.RPECz error surfaces are shown in Fig. 7 using the
ADAS procedure, but propagating error only from the state-
selective part. The full handling of error will be treated in a
separate paper.

5. Structure and access to the database

The complete set of dielectronic recombination data (both
“partial” and “total”) will be publically available asadf09
files from the Controlled Fusion Atomic Data Center at
the Oak Ridge National Laboratory, USA (http://www-
cfadc.phys.ornl.gov/data and codes). These data files

Specify 
element ion and coupling

Recombining ion: 
level indexing and energies

Recombined ion:
resolved level indexing and energies

Recombined ion: 
nl-shell indexing and Auger rates

Recombined ion:
n-shell indexing and Auger rates

Cycle over initial parent levels

Resolved level DR coeffts. Vs Te

Cycle over final parent levels

nl-shell DR coeffts.  Vs Te

n-shell DR coeffts. Vs Te

Fig. 8. Organization of data within theadf09 format. adf09 speci-
fies both LS- and intermediate-coupled data organizations. In the LS-
coupled case, the coefficients span resolved terms with valence elec-
tron up ton = 7; ≈40 representativen-shells up ton = 999. In the
intermediate-coupled case, the coefficients span resolved levels with
valence electron up ton = 7; all nl-shells up ton = 10;≈40 represen-
tativen-shells up ton = 999. The coefficients are tabulated at 19 scaled
temperatures spanning from 10–107 K. Auger rates for ionization to
alternate metastable parents for the set ofnl-shell andn-shell specta-
tors built on each parent-metastable are included for model complete-
ness. The detailed specification is in Appendix A of the ADAS User’s
Manual (Summers 2003).

are simple ascii text in a formatted organization. The lay-
out differs slightly between thelevel 1 LS-coupled and
level 2 intermediate-coupled forms. Figure 8 summarizes
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Fig. 9. ADAS code organization for production of the complete set
of dielectronic data. ADAS701 is the code. The
 post-processor code, ADAS702, prepares the level-resolved,
bundled-nl and bundled-n partial recombination coefficient data ac-
cording to theadf09format specification (Summers 2003). The code
ADAS212 maps the level-resolved data onto the specific ion file
classadf04. ADAS703 is an additional post-processor for dielectronic
satellite line modelling and will be the subject of a separate paper.
In a separate code chain (not shown here), ADAS807 prepares cross-
referencing files to the bundled-nl and bundled-n data which are re-
quired for the very high-level population calculations and the evalu-
ation of the projection matrices by ADAS204. The fully-configured
adf04 files, together with the projection matrices, are processed by
ADAS208 which delivers the final generalized collisional–radiative
(GCR) coefficients and effective emission coefficients.

the intermediate-coupled form. The documentappxa09.pdf
of Appendix A of the ADAS user manual (available at:
http://adas.phys.strath.ac.uk) provides the detailed
description. This includes a summary of the sub-libraries
and their current status, content of the data lines and the
meanings of all parameters, together with some samples
of the format. An example of a pathway to a member
is /../adf09/jc00#li/jc00#li ne7ic23.datwhich distinguishes the
producer initials “jc”, year number “00”, recombining ion iso-
electronic sequence “li ”, element “ne”, coupling “ic” and par-
entn = 2→ n = 3 transition group “23”.

We have found it convenient to archive also the driver
data sets, which initiate thelevel 1 and level 2 calculations,
as other ADAS data formats (adf27 and adf28). These have

pathways which paralleladf09. Various ADAS codes exe-
cute the primary calculations and the subsequent collisional–
radiative modelling. The flow of calculation is summarized in
Fig. 9.

6. Summary

We have described the goals and methodology behind a pro-
gramme to calculate a comprehensive database of dielectronic
recombination data for the collisional–radiative modelling of
dynamic finite-density plasmas and illustrated its use in such
environments. The first phase of the program covering H-
through Ne-like sequences is under way and illustrative results,
comparisons, and total (zero-density) rates will be the subject
of a series of papers to follow in this journal: e.g., O-like ions,
Zatsarinny et al. (2003) and Be-like ions, Colgan et al. (2003).
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Böhm, S., Schippers, S., Shi, W., et al. 2002, Phys. Rev. A, 65, 052728
Brandau, C., Bartsch, T., Hoffknecht, A., et al. 2002, Phys. Rev. Lett.,

89, 053201
Burgess, A. 1964, ApJ, 139, 776
Burgess, A. 1965, ApJ, 141, 1588
Burgess, A., & Summers, H. P. 1969, ApJ, 157, 1007
Colgan, J., Pindzola, M. S., Whiteford, A. D., & Badnell, N. R. 2003,

A&A, submitted (Paper III)
Dirac, P. A. M. 1930, Principles of Quantum Mechanics (OUP)
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