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Abstract
This work presents exchange potentials for specific orbitals calculated by inverting Hartree–Fock

wavefunctions. This was achieved by using a Depurated Inversion Method. The basic idea of the

method relies on the substitution of Hartree–Fock orbitals and eigenvalues into the Kohn–Sham

equation. Through inversion, the corresponding effective potentials were obtained. Further treat-

ment of the inverted potential should be carried on. The depuration is a careful optimization

which eliminates the poles and also ensures the fullfilment of the appropriate boundary conditions.

The procedure developed here is not restricted to the ground state or to a nodeless orbital and is

applicable to all kinds of atoms. As an example, exchange potentials for noble gases and term-

dependent orbitals of the lower configuration of Nitrogen are calculated. The method allows to

reproduce the input energies and wavefunctions with a remarkable degree of accuracy.
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1 | INTRODUCTION

The successful idea of replacing a many-body, nonlocal interaction by

an effective one-electron equation opened up the possibility of study-

ing extremely complex systems with high accuracy. In this context, the

success of the Kohn–Sham density-functional theory[1,2] (DFT) began

when crucial developments in its exchange-correlation terms gave the

theory predictive power to compete with well-developed wavefunction

methods.[3] The importance of the exchange-correlation potentials in

chemical physics has been emphasized by Bartlett.[4,5] Exchange poten-

tials are in general constructed by local approximations to the nonlocal

Hartree–Fock exchange operator (i.e., the Slater potential,[6] the opti-

mized effective potential,[7–9] the Krieger–Li–Iafrate,[10] and several

others[11–14]).

The atomic collision community, on the other hand, is also eager

to accurately determine effective one-electron local potentials which

would allow to generate in a simpler way the wavefunctions of the par-

ticles interacting in a scattering process. In particular, one need to rep-

resent an orthonormal set of bound and continuum states to calculate

the transition probabilities. This should include detailed nl-orbital

potentials, a feature missing in most of the standard density functional

methods. Soft pseudopotentials like ABINIT[15] or USPP[16] cannot be

used because they overlook the information of the internal region of

the wavefunctions. The features of this region can play a very impor-

tant role, such as the cusp conditions in the processes of electron cap-

ture and ionization. In an attempt to meet the needs of both chemist

and collisionist communities, we strove to obtain accurate and simple

specific nl-orbital local potentials.

How to determine central potentials from known electron wave-

functions and densities is a well-studied subject in the DFT

community.[17–19] The extraction of the true Kohn–Sham exchange-

correlation potential from near-exact electronic densities has been

demonstrated, with particular reference to two-electron systems like

He,[20] He-isoelectronic ions,[21] and H2
[20,22] as well as exact soluble

models (e.g., an external harmonic potential as in Filippi et al.[23]).

Some other works start with a particular Kohn–Sham potential and

solve the corresponding equations, obtaining the KS orbitals.[24–26]

Through inversion, they obtain a reconstructed KS potential, which

agrees almost everywhere with the original one, except in some

regions where huge oscillations arise. In some cases, the reconstructed

potential may be distorted beyond recognition.[20,27] The same type of

procedure was suggested many years ago by Hilton et al., in applica-

tions circumscribed to the calculation of photoionization processes of

atoms,[28,29] water,[30] and other molecules.[31,32] These papers, in turn,
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refer to the earlier work in atomic polarizability carried out by Stern-

heimer[33] and Dalgarno and Parkinson.[34] However, they focused on

the final photoionization cross section results, and did not provide

details about the quality of the potentials and the wavefunctions they

generated.

Assuming the validity of the separation between exchange and

correlation functionals, we will focus here only on the calculation of

the exchange contribution to the potential. Since Hartree–Fock does

not include the correlations, our approach allows to obtain the “exact”

one-electron local potential representing the exchange interactions.

Strictly speaking, the method does not rely on the KS inversion formula

since the Hartree–Fock solutions were the ones used for the inversion.

That is, we solved a KS-type equation, but rather than having KS-

orbitals, we operated directly with the Hartree–Fock wavefunctions.

For open-shell atoms, we were able to find orbital spin-polarized

exchange potentials, this being crucial, for instance, to find the hyper-

fine coupling constants.[35,36]

However, this is not a simple task, and probably that is why the

method presented here has not been widely applied in the past. If the

wavefunction has nodes, it will produce huge poles in the potential.

Moreover, even for nodeless states, the asymptotic decaying behavior

of the bound wavefunctions produces severe numerical difficulties,

making the inversion operation intractable sometimes. In our method, a

depuration procedure follows the inversion. This depuration implies,

first, the annihilation of the poles. Then, a careful optimization of the

potential which ensures the fulfillment of the appropriate boundary

conditions.

The work is organized as follows. Section 2 describes the method,

which includes the inversion procedure (2.1), the potential depuration

(2.2) and its further optimization (2.3). Section 3 presents the resulting

effective potentials for the orbitals corresponding to the ground states

of different noble gases, including a thorough examination of the wave-

functions generated by these potentials (3.1). The corresponding

exchange potentials are discussed in (3.2), comparing the potentials for

specific-nl orbitals with averaged potentials. Results of the same calcu-

lations for the Nitrogen atom are provided in (3.3). Atomic units are

used unless otherwise specified.

2 | THEORY

2.1 | The direct inversion method

The radial part of the Schr€odinger equation for an electron in a local

and central potential is

2
1
2
d2

dr2
1
lðl11Þ
2r2

1VnlðrÞ
� �

unlðrÞ5Enl unlðrÞ : (1)

We assume the following hypothesis: If the wavefunctions unl are

replaced by the solutions of an Hartree–Fock calculation uHFnl , then, the

corresponding effective local potentials VHF
nl that generate such wave-

functions should exist. Based on this we converted the HF method

into a set of Kohn–Sham equations, whose solutions are the Hartree–

Fock wavefunctions:

2
1
2
d2

dr2
1
lðl11Þ
2r2

1VHF
nl ðrÞ

� �
uHF
nl ðrÞ5EHF

nl uHF
nl ðrÞ : (2)

The effective potentials given by,

VHF
nl ðrÞ5VCðrÞ1VdirðrÞ1Vx

nlðrÞ ; (3)

are composed of the external potential VC (the Coulomb field of the

nucleus), the direct (or Hartree) potential Vdir (the electrostatic electron

repulsion), and the orbital exchange potentials Vx
nl. We have ignored

the correlation term since the HF solutions do not include it.

Since the solutions uHFnl are known (calculated numerically with the

HF code by C. F. Fischer,[37] and the NRHF code by W. Johnson[38])

we proceeded to directly invert the Kohn–Sham–type equations:

VHF
nl ðrÞ5

1
2

1

uHF
nl ðrÞ

d2

dr2
uHF
nl ðrÞ2

lðl11Þ
2r2

1EHF
nl ; (4)

obtaining the HF inverted potential VHF
nl ðrÞ. Assuming a Coulombic-type

shape, it is convenient to define an HF inverted charge

ZHF
nl ðrÞ � 2r VHF

nl ðrÞ : (5)

The direct computation of (4) is known to pose serious numerical

problems.[20] First, the presence of (genuine) nodes in the wave func-

tion to be inverted produces poles and unrealistic features around

them. This has led to the general consensus that the inversion method

can only be used for nodeless orbitals.[26] Second, numerical rounding

up of the exponential decay of the bound states hinders the corre-

sponding inverted potential from having the physically desired asymp-

totic form. Moreover, there is a third problem at the very heart of the

Hartree–Fock method: the exact solutions may have oscillations (and

therefore, spurious nodes) in the large-r or “tail” region of the func-

tions. The existence of these spurious nodes in Hartree–Fock was

already suggested by Fischer.[37] This failure is not caused by the

numerical scheme but it is inherent to the method. Probably, these

nodes are surviving long-range exchange effects due to the nonlocal

character of the Hartree–Fock wavefunctions: the behavior of a partic-

ular orbital depends on all others. We have found the same spurious

nodes at the same places even using different numerical codes. As a

general rule, the spurious nodes appear at very long distances, in

regions where the amplitude of the wavefunction is very small. There-

fore, their existence has no practical consequences, and they can be

ignored in any general Hartree–Fock calculation. However, this is not

true as far as the inversion procedure is concerned, as we will discuss

in the next section. Other examples where the presence of orbital

nodes (both formal and those in the tail region) can be problematic in

inversion procedures can be found in the literature (see for instance

Peach et al.[39]).

2.2 | The depurated inversion method

The difficulties mentioned above make it very hard to obtain the cor-

rect VHF
nl ðrÞ potentials using the simple inversion formula given by

Equation 4. To overcome these troubles we have developed a depu-

rated inversion method (DIM) which optimizes the effective charges
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rather than the effective potentials. We managed to constrain any

potential to have the right boundary conditions by enforcing the effec-

tive depurated inverted charge to behave as follows:

ZDIM
nl ðrÞ !

(
ZN as r ! 0

1 as r ! 1
(6)

where ZN is the nuclear charge. Once the charge is determined at

the boundaries, we can obtain a smooth analytic expression for

ZDIM
nl ðrÞ, fitting the ZHF

nl ðrÞ for the largest possible range, except in

the neighborhood of the nodes. All this can be accomplished by

imposing the effective DIM charge to fit the following analytical

expression:

ZDIM
nl ðrÞ5

X
j

aje
2bj r11 ; (7)

with Rjaj5ZN21.

As a clear instance of the numerical problems mentioned and the

way propose to solve them, we show, in Figure 1, the orbital uHF
2s ðrÞ of

the ground state of the Kr atom (part (a)), and its correspondent effec-

tive charge ZHF
2s ðrÞ (dashed line curve, in part (b)). First, note that the 2s

orbital has a genuine node at r � 0:06 a.u. which produces the first

pole in the effective charge, as shown in the lower graph. The node

appears at a relatively low-r value, so the corresponding charge (see

Equation 5) is not very sensitive to its presence. Therefore, it is very

easy to eliminate the pole from the effective charge (by just erasing a

few points around this radius).

All the bound wavefunctions decay exponentially beyond the

last turning point rtp, defined as the position in which the energy

equals the effective potential. At first glance, it seems that the turn-

ing point of u2sðrÞ is located around rtp � 0:25, and from that point

on, the wavefunction should start to decay exponentially. From the

numerically point of view, r � 10 rtp is a good point to stop the

inversion, since beyond there, the effective charge could begin to

diverge. Thus, one might infer that by erasing the points belonging

to the neighborhood of the first node, and by stopping the inversion

about 10 rtp, the inversion procedure will work well. However, the

dashed curve in Figure 1(b) shows a completely unphysical ZHF
2s ðrÞ

resulting from the inversion. A very careful examination of the uHF2s ðrÞ
orbital function evidences the presence of a spurious node at r51.51

a.u., in a region where the amplitude of the wavefunction is less than

1024 times the maximum value (see the inset of Figure 1(a)). Even

though this node is completely innocuous for practical matters, it pro-

duces devastating effects in the inversion procedure, evidenced by

the second huge peak in the ZHF
2s ðrÞ curve (see Figure 1(b)). This pole

is so big that it affects a broad vicinity and causes the abrupt rising of

the effective charge for r>0.5 a.u. This is really a surprising result

since a priory there is no reason to suspect that a negligible oscillation

in the tail of the wavefunction would produce such a big drawback at

small distances. Care must be taken then to discard these kind of

undesired effects.

2.3 | Optimization

The adjustment of the parameters aj and bj also requires carefull

work. The key issue in the successful approximation is the region

chosen for the fitting: it has to be as large as possible, in such a

way that ZDIM
nl ðrÞ overlaps the inverted ZHF

nl ðrÞ across a broad range,

allowing an accurate fitting procedure, but discarding the points

surrounding the nodes. Also, the inversion must be halted at a par-

ticular (as large as possible) r value, as soon as the amplitude of

the function is too small. Further on, the inversion procedure

diverges. Another issue to consider is the self-consistency within

the computer codes used in the calculations and the particular

code used to generate the input wavefunctions. To that end, we

make sure that the same specific numerical grid is used, including

the derivatives and integrals at the same pivots. The optimization

procedure is completed by a number of iteration steps, in which

the parameters are optimized to give accurate energies and

wavefuntions.

Most density functional approximation methods are based on a

variational principle, minimizing the density functionals according to

energy (others are defined by density). Without underestimating its

importance, energy is only one of the many parameters that character-

izes a quantum state. Different trial functions (having different forms)

can produce, through a variational procedure, the same final energy. A

simple example is given by Bartschat[40,41] in which two different

potentials (one having exchange, the other omitting it) led to producing

very similar and accurate energies of the Rydberg series in several

quasi-one electron systems. However, a further examination of these

potentials shows large discrepancies in scattering calculations.[42]

Therefore, in addition to the energy criterion, we have included in

our optimization method a variational procedure to reproduce

accurately the wavefunctions. This is achieved by optimizing the mean

values h1=ri (which characterize the quality of the wavefunction near

FIGURE 1 (a) Hartree–Fock orbital uHF
2s corresponding to the

ground state of the Kr atom. It presents two nodes, a genuine
one at r � 0:06 a.u., and a spurious one at 1.51 a.u. (shown
in the inset). (b) Dashed line: The corresponding inverted
effective charge ZHF

2s ðrÞ, spoiled by the presence of poles. Solid
line: Depurated ZDIM

2s ðrÞ effective charge
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the origin), and hri (probing it at longer distances). Furthermore, we

defined the quantity

d512

Ð
uHF
nl ðrÞuDIM

nl ðrÞ drÐ
qHF
nl ðrÞ dr

: (8)

to determine the accuracy of the orbitals generated by the diagonaliza-

tion of the DIM potentials and the original HF orbitals.

The effective depurated inversion charge ZDIM
2s ðrÞ corresponding to

the 2s orbital of the Kr atom resulting from the optimization is shown

—solid curve—in Figure 1(b). As seen in the figure, both boundary con-

ditions are fulfilled (at the origin, Z2s ! 36, and asymptotically Z2s ! 1,

as stated in Equation 6).

3 | RESULTS

3.1 | DIM potentials, energies, and mean values

The fitting parameters aj and bj defining the effective charges ZDIM
nl ðrÞ

in Equation 7 for the noble gases Helium, Neon, Argon, and Krypton,

are given in Table 1. We have limited the aj and bj to six (about two

per shell). For Kr, we would probably need two more since there are

four shells involved. Having these effective charges, we built the

corresponding DIM potentials VDIM
nl ðrÞ. By solving the Schr€odinger

equation (Equation 1), we obtained the solutions uDIM
nl ðrÞ and the corre-

sponding energies EDIM
nl . The comparison between the results

obtained from the diagonalization of the Hamiltonian with the VDIM
nl ðrÞ

effective potential and the original Hartree–Fock orbitals are presented

in Table 2. It is remarkable that with such simple analytical expressions

for the potentials we were able to reproduce exactly the same energies

as the HF method. The only exception is the 4p orbital of Kr, in which

both calculations agree up to the fifth significant figure. The fitting pro-

cedure also allows to reproduce the original HF wavefunctions with an

outstanding degree of accuracy. The agreement between the HF orbi-

tals uHFnl ðrÞ and the solutions uDIMnl ðrÞ can be tested through the compari-

son of the mean values hri and h1=ri, and the computation of quantity d

defined by Equation 8. The mean values agree in about 0.1% while the

values of d are about 1025.

TABLE 1 Fitting parameters for the effective charge ZDIM
nl ðrÞ for He, Ne, Ar, and Kr, applying Equation 7

nl a b nl a b

He 1s 20.31745 5.04372 Kr 1s 5.49263 0.884768

1.31745 2.50032 3.94437 16.8769

- - 25.5630 3.10032

Ne 1s 7.367687 2.417275 2s 9.63120 0.575832

1.300360 0.126396 1.84650 25.53280

0.331953 13.15820 23.5223 4.543350

2s 0.297739 17.99390 2p 3.20530 20.83535

0.668081 0.067288 23.6172 3.928520

8.03418 2.47221 8.17750 0.636486

2p 1.353049 8.56948 3s 6.52203 0.547357

0.335881 0.464942 24.4475 3.657030

7.311070 2.090634 4.03047 16.61770

Ar 1s 6.727570 6.177720 3p 23.13135 4.010523

4.751090 1.343560 3.325360 20.41890

5.521340 0.859981 8.543290 0.821218

2s 8.90271 1.09779 3d 10.05320 1.04843

2.36850 2.93144 21.81544 4.25746

5.72879 6.95913 3.131360 20.6087

2p 4.96956 6.14455 4s 3.65988 0.49000

1.48464 10.86843 26.4565 3.17799

10.5458 1.30005 4.88362 15.2031

3s 10.3202 2.33169 4p 7.35713 1.00142

4.27115 7.33678 24.2321 3.7309

2.40865 0.407463 3.41077 22.5680

3p 8.43753 3.49259

2.18200 10.8595

6.38047 1.07080
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Finally, we calculated the total energy for the ground state of each

atom, by using the following expression:

EDIM5
X
nl

EDIM
nl 2

1
2

ð
qDIM
nl ðrÞ VDIM

nl ðrÞ1 ZN
r

� �
dr

� �
; (9)

where the density qDIMnl ðrÞ5juDIMnl ðrÞj2. The calculated energies EDIM are

given in Table 2, together with the total energies obtained by the Har-

tree–Fock calculations. The comparison shows a notable agreement

between both calculations, of about 0.02%.

3.2 | The exchange potential

Orbital-specific exchange potentials can be obtained accurately by

computing the nonlocal Fock exchange operator. A first local

approximation can be computed with the average exchange charge

density proposed by Slater.[6] Another approximation, proposed by

Sharp and Horton,[7] consists in attaining a local potential that

approximates the exchange operator through a variational

procedure that minimizes the energy. There are several other more

elaborated methods that allow us to obtain local exchange

TABLE 2 Total and orbital energies, mean and d values for He, Ne, Ar, and Kr atoms obtained from DIM effective potentials (upper rows)
compared with the original Hartree–Fock values (lower rows)

E nl � 〈r〉 〈1=r〉 d

He 22.8616 1s 20.917956 0.927313 1.687251 8310210

22.8617 20.917956 0.927273 1.687282

Ne 2128.4978 1s 232.772447 0.157491 9.621450 231026

2128.5475 232.772443 0.157631 9.618054

2s 21.930391 0.891336 1.640769 531026

21.930391 0.892113 1.632553

2p 20.850410 0.967755 1.430252 631026

20.850410 0.965274 1.435350

Ar 2526.8030 1s 2118.610352 0.086015 17.561606 231026

2526.8175 2118.610350 0.086104 17.553229

2s 212.322153 0.411857 3.562264 231026

212.322153 0.412280 3.555317

2p 29.571466 0.375269 3.449283 931027

29.571466 0.375330 3.449989

3s 21.277353 1.426944 0.967005 931025

21.277353 1.422172 0.961985

3p 20.591017 1.668648 0.817928 531025

20.591017 1.662959 0.814074

Kr 22752.5365 1s 2520.165467 0.042441 35.483699 531027

22752.0549 2520.165468 0.042441 35.498152

2s 269.903081 0.187181 7.924967 231026

269.903082 0.187256 7.918830

2p 263.009784 0.161695 7.874355 331026

263.009785 0.161876 7.868429

3s 210.849466 0.537875 2.644610 231026

210.849466 0.537802 2.637556

3p 28.331501 0.542133 2.530080 231026

28.331501 0.542627 2.522775

3d 23.825234 0.550922 2.276713 431026

23.825234 0.550880 2.276940

4s 21.152935 1.630081 0.808453 131024

21.152935 1.629391 0.804188

4p 20.524186 1.950193 0.675555 331025

20.524187 1.951611 0.669219
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potentials.[10–13] However, these potentials are rather difficult

to put in a simple and smooth analytical expression, such as

Equation 7.

Due to the fact that the Hartree–Fock method does not take

into account the correlations, our procedure allowed us to obtain in

a rather direct way “exact” local orbital-dependent exchange

potentials,

VDIMx
nl ðrÞ5VDIM

nl ðrÞ1 ZN
r
2

ð
qHFðr0Þ
jr2r0j dr

0 ; (10)

where qHFðrÞ is the total density calculated with the uHF
nl ðrÞ wave-

functions. Figure 2 shows the orbital-specific exchange potentials

VDIMx
nl ðrÞ for the ground states of the four noble gases He, Ne, Ar,

and Kr, calculated with the depurated inversion method DIM.

In order to discuss our results, in Figure 2 we plotted the optimized

effective potential Vx
OEPðrÞ developed by Talman[9] (black dotted lines)

for the noble gases. It is well known that the OEP method finds the

potential which yields eigenfunctions that minimize the expectation

value of the Hartree–Fock Hamiltonian. However, although very accu-

rate, it always yields an energy above the HF energy. For practical

applications the OEP potential works very well for the outer shell. At

longer distances, all the nl orbitals have a similar behavior accompany-

ing the OEP exchange potential. We noticed that the exchange poten-

tials of the orbitals having a common angular momentum l resemble to

each other (see Ar for instance). This was suggested in a work by Her-

man et al.[43] where an l-averaged exchange potential for each set of

electronic states was calculated as a modification of Slater’s average

exchange potential.

FIGURE 2 Orbital-specific exchange potentials VDIMx
nl ðrÞ and Vx

OEP, for the ground state of He, Ne, Ar, and Kr

TABLE 3 Orbital and total exchange energies for He, Ne, Ar, and Kr

n

l 1 2 3 4 Total EAHF

He 0 20.5129 21.0258 21.026

Ne 0 23.1106 20.8620 212.1080 212.11

1 20.6938

Ar 0 25.8760 21.9470 20.5742 230.1826 230.19

1 21.7974 20.4340

Kr 0 212.2258 24.5523 21.9972 20.5275 293.8525 293.89

1 24.4305 21.8401 20.3906

2 21.5280
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According to Equation 10 all orbital-specific potentials should

approach the same value at r50, since ZDIM
nl ðrÞ5rVDIM

nl ðrÞ approaches

ZN regardless of nl (the second and third term are the same for every

orbital). However, from Figure 2 it appears that the potentials for the

different orbitals approach different values at the origin. This is a con-

sequence of the fact that every DIM potential tends to ZN with differ-

ent behavior, determined by their fitting parameters. In fact, for very

low r values VDIM
nl ðrÞ � P

j ajbj2VdðrÞ, but they all have strictly the

same value at r50.

As a final test for our method, we calculated the total exchange

energy Ex as given by

Ex5
X
nl

Exnl5
X
nl

1
2

ð
qHF
nl ðrÞ VDIMx

nl ðrÞ dr
� �

(11)

Table 3 displays the orbital exchange energy as well as the total

exchange energy for He, Ne, Ar, and Kr. The total exchange energies

are compared with the exact atomic Hartree–Fock (EAHF) values given

by Becke,[44] with very good agreement.

3.3 | Nitrogen DIM and exchange potentials

The procedure developed here is not limited to noble gases or

closed shells. As an example we will apply the method to Nitrogen.

The lower configuration 2p3 of Nitrogen gives rise to three differ-

ent terms: 2 4S, 2 2D, 2 2P. Each of them is described by a different

electronic density. The fitting parameters that define the term-

dependent effective charges are given in Table 4 for each of the

terms. We built the corresponding DIM potentials from these

effective charges. By using these potentials we solved the

Schr€odinger equation (Equation 1) for every term, obtained the sol-

utions, the energies, and the corresponding mean values hri and

h1=ri. The comparison between the orbitals obtained from the

diagonalization of the Hamiltonian with the effective potentials

and the original Hartree–Fock orbitals are shown in Table 5. The

mean values hri obtained with the DIM effective potentials agree

with the HF values in about 0.1%, and the h1=ri mean values agree

in about 0.2%. The calculated total energies EDIM for each term of

the Nitrogen atom using Equation 11 are presented in Table 5. The

agreement between the DIM total energies and the original HF

total energies is excellent, of about 0.04%. Figure 3 shows the nl-

orbital exchange potentials for the 2 4S, 2 2D, and 2 2P terms, calcu-

lated with the depurated inversion method. Again, to compare our

results, the exchange potential given by Talman[9] (OEP) is pre-

sented in the figures in light grey. Figure 3(a) illustrates the

exchange potential for the 1s orbitals for the different terms,

showing an overall similarity. The OEP potential behaves like the

VxDIM
1s ðrÞ only at short and large distances. Figure 3(b) shows the

exchange potentials for the 2s orbitals. In this case, noticeable dif-

ferences between the term-potentials arise at low values of r. For r

higher than 0.5 a.u., all the term-potentials become

TABLE 4 Fitting parameters for the effective charge ZDIM
nl ðrÞ for 2 4S, 2 2D, and 2 2P terms of Nitrogen

2 4S 2 2D 2 2P

nl a b a b a b

1s 5.25634 1.26207 5.18635 1.22410 5.18635 1.21779

0.743660 8.02844 0.813650 7.56800 0.813650 7.56740

2s 2.45281 3.51271 0.398100 0.239738 0.890660 0.830615

0.833570 3.38654 1.85412 1.03105 3.66999 3.14946

2.71362 0.894699 3.74778 2.85313 1.43935 0.740427

2p 3.64345 1.24069 4.01052 1.28744 1.89769 1.16557

2.05501 5.35135 1.85517 5.70858 1.77430 5.68782

0.301540 0.286609 0.134310 0.267987 2.32801 1.40925

TABLE 5 Total and orbital energy and mean values for the 2 4S,
2 2D, and 2 2P terms of N obtained from the DIM effective potentials
(upper rows) compared with the Hartree–Fock values (lower rows)

E nl � 〈r〉 〈1=r〉

2 4S 254.37617 1s 215.62906 0.22830 6.64863

254.40093 215.62906 0.22830 6.65324

2s 20.94532 1.33448 1.08037

20.94532 1.33228 1.07818

2p 20.56759 1.41268 0.95498

20.56759 1.40963 0.95769

2 2D 254.27557 1s 215.66639 0.22829 6.64929

254.29617 215.66639 0.22826 6.65388

2s 20.96367 1.32917 1.08644

20.96367 1.32632 1.08318

2p 20.50866 1.44878 0.93882

20.50866 1.44662 0.94208

2 2P 254.20856 1s 215.69160 0.22824 6.65036

254.22810 215.69160 0.22824 6.65430

2s 20.97634 1.32562 1.08712

20.97634 1.32232 1.08656

2p 20.47130 1.47176 0.92982

20.47130 1.47301 0.93155
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indistinguishable and agree perfectly with the OEP potential. A

pecularity observed in the figure is that the OEP potential agrees

very well with the VxDIM
2s ðrÞ for the 2 2D term. Figure 3(c) displays

the 2p exchange potentials, which behave similarly for all the

terms. However, since the OEP potential is the same for all the

orbitals and terms, it disagrees completely with the Vx
2pðrÞ at short

distances.

Table 6 presents the total exchange energy and the nl-exchange

energies of the 2 4S, 2 2D, and 2 2P terms. The 1s-exchange energy

for all the terms are the same, as expected for a closed-shell orbital.

Similarly, the 2s-exchange energy varies slightly, with a difference of

0.08%. However, this is not the case for the 2p-exchange energy,

which varies significantly, having discrepancies of about 18%

between the different terms. The total exchange energy computed

with Equation 11 for the terms are compared with the exact atomic

Hartree–Fock (EAHF) exchange energy, with an agreement of about

0.1%.

4 | CONCLUSIONS

A crucial requirement of the density functional method is the accurate

representation of the exchange functional. On the other hand, the

atomic collision community needs accurate one-electron potentials in

order to generate the bound and continuum states on the same footing

for further calculations of collisional processes. These potentials need

to be worked out for any nl-specific orbital, a feature that in general is

not present in the chemistry community functionals. In the present

work, we devised and implemented a depurated inversion method,

which allows to obtain the intended potentials through a very simple

analytical expression of the effective charges. The method consists in

the inversion of a Kohn–Sham equation, in which the KS orbitals have

been replaced by the Hartree–Fock orbitals. By means of diagonaliza-

tion we have achieved accurate wavefunctions having almost perfect

agreement with the original Hartree–Fock wave functions. The quality

of the potentials obtained by the present method is remarkably good.

We applied the developed methodology to the calculation of the

ground state orbitals of noble gases and the Nitrogen atom. It is worth

mentioning that the same technique can be used for any other level,

that is, it is not limited to the ground state.
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TABLE 6 Orbital and total exchange energies for 2 4S, 2 2D, and
2 2P terms of Nitrogen

1s 2s 2p Total EAHF

2 4S 22.1175 20.4776 20.4711 26.6034 26.596

2 2D 22.1175 20.4777 20.4262 26.4688

2 2P 22.1175 20.4780 20.3973 26.3827

FIGURE 3 DIM exchange potential VDIMx
nl ðrÞ for the (a) 1s, (b) 2s and (c) 2p orbitals, for the 2 4S, 2 2D, and 2 2P terms of Nitrogen
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