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a b s t r a c t

Here we propose a semi-empirical approach to describe with good accuracy the electron momentum
densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we
use an experimental Compton profile to fit an analytical expression for the momentum densities of the
valence electrons. This expression is similar to a Fermi–Dirac distribution function with two parameters,
one of which coincides with the ground state kinetic energy of the free-electron gas and the other re-
sembles the electron–electron interaction energy. In the proposed scheme conduction electrons are
neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include
correlation effects.

We tested the approach for all metals with Z¼3–50 and showed the results for three representative
elements: Li, Be and Al from high-resolution experiments.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Compton profile (CP) spectroscopy is a widely used tool to
extract information about the electronic structure of crystalline
solids. It provides the electron momentum density (EMD), which,
in turn, allows the verification of the quality of the radial electron
wave functions, since they are related through Fourier transforms.
It is commonly accepted that many properties of the solids can be
well represented by dividing the electrons into two groups: inner-
core and conduction electrons. The former do not participate in
crystalline bonding in solids and can be treated as frozen orbitals.
Both bound and conduction electrons contribute to the total CP in
different ways according to their spatial localization. Since con-
duction electrons are less bound, they have largely spread radial
orbitals, and are therefore highly localized in momentum space.
Thus, they contribute to the CP with a sharp peak located at low
momentum transferred [1]. On the other hand, the electrons in the
inner shells are strongly bound and have spatial orbits circum-
scribed to relatively small distances to the atomic nucleus. Their
contribution to the CP takes place as a low-intensity broad tail at
high momentum transferred.
Historically, CPs obtained in experiments with high-resolution

(∼ 0.1–0.2 a.u.) X-ray have been successfully compared with those
obtained by different theoretical methods, such as Quantum
Monte Carlo [2,3], ab initio Green's function approximation [4],
and DFT calculations with different exchange-correlation func-
tionals [5–8]. The local density approximation (LDA) within the
density functional theory (DFT) has been widely used to predict
various bulk properties of different solids [9,10]. However, when
theoretical CPs obtained by LDA calculations are compared with
experimental ones, an overestimation at low momentum transfer
and underestimation at high momentum transfer are observed.
These discrepancies have been attributed to the incorrect ex-
change and correlation effects given by the LDA functional. Dif-
ferent methods based on Lam–Platzman correction [11–13] have
been proposed to remedy the LDA deficiencies in the CP estima-
tions. However, studies with high-resolution Compton scattering
experiments of Li have revealed an anomalous behavior when it is
compared with the theory [14–16], given that it has not been
possible to describe by means of free-electron or by Fermi-liquid
theory. Such deviations from the standard metallic picture can be
ascribed to the possible existence of significant pairing correla-
tions in the ground state identified in terms of electron transfers
from s-like to p-like character, constituting a possible explanation
for the breakdown of the Fermi-liquid picture [13,17].
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For metallic systems one can define the Fermi surface (FS) as
the break in the EMD whose presence reveals the existence of
quasi-particles and the validity of the Landau–Fermi liquid theory.
In this sense, the anti-symmetrized geminal product (AGP)
method has been successfully used for a wide range of materials.
This provides an orbital-dependent approach in which the elec-
tron momentum density is constructed using the natural orbitals,
and the corresponding occupation numbers are obtained through
a variational procedure [13,18].

In a recent work [19], high accuracy momentum densities and
Compton profiles of Be, Cu, Ni, Fe3Pt, and YBa2Cu4O8 were ob-
tained using ab initio calculations of the linear tetrahedron
method.

In this work, we propose a systematic approach to calculate the
CPs of several crystalline metals by using a simple analytical ex-
pression for the valence EMD able to reproduce the CP with very
high accuracy. The method allows including electron correlation
effects based on the joint use of Fermi liquid and Hartree–Fock
formalism. The formula proposed resembles the Fermi–Dirac dis-
tribution, but the thermodynamic constants are replaced by fitting
parameters. A thorough and systematic investigation, led us to
recognize that these fitting parameters are related to the Hartree–
Fock energy of the free-electron ground state. These energies can
be expressed either in terms of the Fermi momentum or, in terms
of the Wigner–Seitz radius.

The present approach allows to calculate the CPs of all the
metals with Z¼3–50. Comparison with the experimental results
showed good agreement in most of the cases. As an example, we
show three selected metals with different valence values.

The rest of the paper is arranged as follows. Sections 2 and 3
describe the theoretical methods, especially the connections be-
tween kinetic and exchange energy of electrons in solids with
thermodynamic distribution. Section 4 describes the comparison
between our semi-empirical calculations and the experimental
results for some representative elements. Finally, a brief summary
is given in Section 5.
2. Theory

In a nonrelativistic and high-energy transfer regime, theoretical
calculations for isotropic CPs are commonly performed under the
impulse approximation (IA). It is assumed that energy and mo-
mentum are conserved. Limitations to the IA validity in Compton
scattering have been widely discussed by [20]. This approach is
expected to be valid when the energy transferred in the scattering
process is much greater than the binding energy of the electron
orbital.

The isotropic valence CP is defined under the IA as

J q n p p dp( ) ( )
(1)val

q
val

1
2 ∫=

∞

being J q dq N( )val∫ = , where N is the number of valence electrons
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where I p dp( )r is the probability of an electron at position r to have
a momentum of magnitude between p and p dp+ . The Thomas–
Fermi theory states that, at zero temperature
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and rWS is the Wigner–Seitz radius of a sphere containing a single
electron [21]. Inserting Nn0 in place of nval in Eq. (1), the FEG CP is
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The CP given by Eq. (7) has the form of an inverted parabola for
q kF≤ and is zero for q kF> . The same profile is produced by
assuming a plane wave function e V/ik r− · for the free electrons.

It should be noted that the valence EMD obtained from the
non-interacting FEG CP (using Eq. (2)) coincides with the Fermi–
Dirac distribution function:
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where p /22 is the energy of the single-particle state, μ is the
chemical potential k( /2)F

2∼ , and K TB is the thermal energy of the
FEG [4]. Unfortunately, FEG model does not produce good results
due to the effects of interactions with the periodic lattice potential
and mutual electrons Coulomb interactions are neglected in these
simple approaches.
3. Semiempirical approach

To generate parametric valence EMDs that lead to the correct
CP values, we propose to use a modified Fermi–Dirac distribution
function. As pointed out in [22], we can modify the Fermi–Dirac
distribution with some broadening energy parameters. In our ap-
proach, we introduce μe and Te, called the electronic chemical po-
tential and the electronic Fermi temperature, respectively, in ana-
logy with the thermodynamic counterparts:
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For a systematic study, we took the data from several CPs of
pure crystalline metals (Z¼3–50) with the purpose to extract the
valence EMD, as stated in Eq. (2). The elements and references
used were: Li [14], Be [23], B [24], C (graphite) [25], Na [26,3], Mg
[27], Al [28], Si [29], K [30], Ca [31], Sc [32], Ti [33], V [34], Cr [35],
Mn [36], Fe [34], Co [37], Ni [34], Cu [38], Zn [39], Ga [40], Ge [29],
Se [41], Rb [30], Sr [30], Y [42], Zr [43], Nb [30], Mo [44], Ru [45],
Rh [46], Pd [47], Ag [48], Cd [39], In [30], and Sn [49].

To follow this approach, we rely on the fact that the derivative
of the valence EMD n p p( )/val∂ ∂ provides information about the two
required energies. This derivative function exhibits a peak at a
momentum value corresponding to the electronic chemical po-
tential μe, and the spread of this function corresponds to the
electronic Fermi energy k TB e . We must point out that these
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energies are used only as an approximation tool, and are not the μ
and T from the truly Fermi–Dirac distribution. We must also em-
phasize that these energies should be different for each element.

Thus, we propose that these energies should coincide with the
Hartree–Fock ground-state solution for free-electron plane waves
[51,50]:

E
N

E E k
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10
3

4 (10)k exc F
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2
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where the energies Ek and Eexc are the non-interacting kinetic and
exchange energy, respectively. Two remarkable results raised from
our research: First, the broadening energy K TB e adjusted notor-
iously with bEk, where the parameter b is 1/4, 1/2 or 1 according to
the Wigner–Seitz radius.
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Moreover, the electronic chemical potential can be approximated
with aEe excμ = , where a is 1 for monovalent metals including Mg,
Ca and Sr, and 2 otherwise. If we associate this to the periodic table
we can find some trends: b 1/4= for groups IA, IIIA and IVA, with
exception of Li, B, and C, for which b 1/2= . b 1/2= for groups IIA,
IB, IIB, IIIB, IVB, and part of VIIIB (Co, Ni, Rh and Pd), and b¼1 for
groups VB, VIB, VIIB and part of VIIIB (Fe, and Ru). The discrepant
behavior of Li, B, and C can be ascribed to the possible existence of
significant pairing correlations in the ground state identified in
terms of electron transfers from s-like to p-like character, con-
stituting a possible explanation for the breakdown of the Fermi-
liquid picture [13,17].

Taking into account the mentioned striking resemblance be-
tween the fitting parameters and those energies, we propose a
semi-empirical approach for the valence EMD, as
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Although this semi-empirical approach provides a good esti-
mation of valence EMD, we can improve our results by including
the effects of the atomic nucleus on the valence electrons. Hence, a
more realistic calculation can be performed if we consider that
conduction electrons are neither completely free nor completely
bound to the atomic nucleus. In other words, the valence atomic
electrons in a crystal lattice remain bound to the ion core while
the distances to the nucleus are less than the Wigner–Seitz radius
rWS, and can be considered free for higher distances. Thus, we can
include this effect in our approximation, by assuming that the
atomic Hartree–Fock (HF) wave functions are valid solutions for
small distances. Therefore, our final approximation formula for the
valence EMD is
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The second term p( )nl
HFWSχ refers to the nl valence orbitals in the

momentum space, obtained from the atomic Hartree–Fock radial
wave functions Rnl(r) truncated at the Wigner–Seitz radius
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being jl(x) the spherical Bessel functions of the first kind. The CPs
are obtained replacing the approximate valence EMD given by Eq.
(13) in Eq. (1), which gives
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where β is a normalization constant such as J q dq N( )val
app∫ = , and

where the semi-empirical CP is obtained replacing Eq. (12) in Eq.
(1)
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As stated in the previous section, the form of the free-electron
density is a plateau with a parabolic border that is a sharp cliff
producing a strong decrease in the corresponding CP. To connect
smoothly the Fermi region to the HF (bound contribution), we
weighed differently. For this purpose, we introduced a weight
function W(q), defined as

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥W q

q
k

( )
1
2

1 tanh 1 .
(17)F

2π= ± −±

Then, as a further improvements of Eqs. (13) and (15), changing

p( )nl nl
HFWS 2

χ∑ by n p( )val
HFWS , and J q( )nl nl

HFWS∑ by J q( )val
HFWS we pro-

pose our approximated valence EMD and CP formulas as
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4. Results

In Eq. (11) we have shown that the broadening parameter b can
have values of 1/4, 1/2 or 1 according toWigner–Seitz radius or the
type of metal, i.e. b 1/4= for free-electron-like metals (Na, Al, Si, K,
Ga, Ge, Rb and In). With respect to Al, Si, Ga, Ge and In

r(2 2.4)WS≤ < the Fermi region appears to be predominant and
the Hartree–Fock contribution will be less than that for other
elements, therefore a good approximation can be performed by
making n q( )val

HFWS1
2

and J q( )val
HFWS1

2
. This anomalous behavior may be

due to the fact that the electrons occupation number is largely
described by the Fermi liquid region minimizing the contribution
of bound electrons.

To demonstrate the applicability of our approach, the valence
EMDs and the CPs were calculated using Eqs. (18) and (19), re-
spectively, for three selected and representative metals. Compar-
isons with high-resolution (less than 0.15 a.u.) CPs values are
presented for Li, Be and Al [14,23,28].

The atomic Hartree–Fock wave functions have been obtained
by using the MCHF Fischer's code [52]. Additionally and for com-
parisons, we show the results obtained by using the LDA calcula-
tions [53] with Lam–Platzman correction [11].

4.1. Lithium

Directional average CP in a cubic crystal may be reasonably
obtained by [54]

⎡⎣ ⎤⎦J q J q J q J q( ) 10 ( ) 16 ( ) 9 ( ) . (20)av
1

35 100 110 111= + +

Results of the valence EMD for Li are presented in the left part
of Fig. 1. The solid curve shows the EMD n p( )val

app calculated using
our semi-empirical approach (Eq. (18)). For comparisons, the CP
experiment given by [14] was used to extract the EMD through Eq.



Fig. 1. Left: electron momentum density for Li, calculated with our semi-empirical approach (Eq. (18)) (black solid curve) and electron momentum density extracted from
the Compton profile experiment reported by [14] (red circles). Right: differences between the experimental data and our semi-empirical approach (black squares solid). For
comparison, the difference between experimental data and obtained data by local density approximation with Lam–Platzman correction is shown as red circles dashed. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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(2). This experimental result is shown with the red circles in the
same figure. The agreement between the EMD extracted from
experiment and those obtained with our approximation formula is
good for a wide range of momenta p.

The differences between the experimental and the theoretical
values J q J q J q J( ) ( ( ) ( ))/ (0)val val

exp
val
thΔ ≡ − as a function of the mo-

mentum transfer q are shown in the right part of Fig. 1. In this case,
the differences are less than 2.2%. In addition, in the same figure
we show the difference between the experiment and LDA calcu-
lation with Lam–Platzman correction. The LDA calculation was
performed assuming a solid bulk as body centered cubic (bcc) of
lattice constant 3.609 Å by minimizing the total energy; for com-
parison, the experimental lattice constant at room temperature is
3.5093 Å [55].

4.2. Beryllium

Directional average CP in a hexagonal close packed (hcp) crystal
structure was obtained by

⎡⎣ ⎤⎦J q J q J q J q( ) 3 ( ) 3 ( ) ( ) . (21)av
1
7 100 110 001= + +

Result of the valence EMD for Be is presented in the left part of
Fig. 2. Our semi-empirical approach is compared with the high-
resolution CP experiment given by [23] as shown in the right part
Fig. 2. Left: electron momentum density for Be, calculated with our semi-empirical appr
[23] (red circles). Right: differences between the experimental data and our theory (bl
obtained data by local density approximation with Lam–Platzman correction is shown
caption, the reader is referred to the web version of this paper.)
of Fig. 2. An excellent agreement is obtained for a large range of
momentum transfer. In this case, the differences are less than 1.5%.
For comparison, in Fig. 2 we show the difference between the
Compton profile experiment and LDA calculation with Lam–

Platzman correction. For LDA calculations, we assumed an hex-
agonal close packed (hcp) crystal structure with lattice constants
a¼2.239 Å and c¼3.515 Å by minimizing the total energy (the
experimental lattice constants at room temperature are a¼2.2859
and c¼3.5845 Å [55]).

4.3. Aluminium

Directional average CP in a face centered cubic (fcc) crystal was
obtained by Eq. (20). Result of the valence EMD for Al as a function
of the momentum is presented in the left part of Fig. 3. Our ap-
proach is compared with the high-resolution experimental data
given by [28]. An excellent agreement is obtained for a large range
of momentum transfer. In this case, the differences are less than
2%. For comparison, in Fig. 3 we show the difference between the
Compton profile experiment and LDA calculation with Lam–

Platzman correction. The LDA calculation was performed assuming
a face centered cubic (fcc) packed crystal structure with lattice
constant a¼3.969 Å by minimizing the total energy (the experi-
mental lattice constant at room temperature is a¼4.04958 Å [55]).
oach (Eq. (18)) (black solid curve) and extracted from experimental data reported by
ack squares solid). For comparison, the difference between experimental data and
as red circles dashed. (For interpretation of the references to color in this figure



Fig. 3. Left: electron momentum density of Al, calculated with our semi-empirical approach (Eq. (18)) (black solid curve) and extracted from the Compton profile result
reported by [28] (red circles). Right: differences between the experimental data and our semi-empirical approach (black squares solid). For comparison, the difference
between experimental data and obtained data by local density approximation with Lam–Platzman correction is shown as red circles dashed. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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5. Conclusions

Based on a modified Fermi–Dirac distribution function and
Hartree–Fock formalism, we demonstrated that Fermi break is of
the same order as exchange energy at an effective temperature.
Similar behaviors have been suggested by [13,17,18]. Therefore,
the present semi-empirical method captures pairing correlation
effects in the same way as the anti-symmetrized geminal product
theory. Furthermore, it reveals important correlation effects be-
yond the Landau–Fermi liquid picture.

Clearly, our general approach is in excellent agreement when is
compared with high-resolution Compton profile experiments, or
with LDA approximation plus Lam–Platzman correction.

On the other hand, valence Compton profiles using the scheme
presented here might be very useful e.g. for data reduction of in-
elastic x-ray scattering from bound electrons (x-ray Raman scat-
tering), in which absorption edge-like features can be super-
imposed by strong contribution of the valence electron Compton
profile [56–58]. Here valence Compton profiles can be used for
background subtraction. In addition, our method could explain
some anomalies observed in Al97Li3 alloys [59].

We compared the results of our approach with results from
other materials, such as LiF, NaCl, MgO, and BeO, and found good
agreement in most cases using the parameters a¼2 and

b1/2 3/2≤ < , however, these last issues are under investigation.
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