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Experimental analysis of isotropic Compton profiles for beryllium, aluminum and titanium was
performed to assess the radial core wavefunctions and pseudo-orbitals for valence electrons generated
using a generalized gradient approximation based on norm-conserving pseudo-potential calculations.
Compton profiles for the different core and valence electron shells are presented in tabulated electron
momentum transfer values from q¼0 to 9 a.u. Derivatives of the Compton profiles were also calculated to
identify the Fermi momenta. Comparison of our results to previous experimental and theoretical
calculations shows acceptable agreement in most cases. Our findings indicate that the Compton profiles
for Be, Al and Ti are reasonably well described within the generalized gradient approximation.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

The inelastic scattering of X-rays and γ-rays by electrons (Compton
scattering) is intrinsically linked to electron density distributions.
There is a strong relationship between the motion of the target
electrons and line-broadening of the Compton spectrum. This
Doppler-broadened line shape is known as the Compton profile (CP)
[1,2]. CP analysis is widely used as a tool to extract information about
ll rights reserved.

Nuclear, Av. Del Libertador
11 6323 1370;

hotmail.com (J.C. Aguiar).
the electronic structure of a target system, with several applications in
atomic and molecular physics, condensed matter physics and materi-
als science [3]. Since the information acquired resides in momentum
space, it can complement that obtained from other standard techni-
ques such as positron annihilation. Since the position and momentum
distributions are related by Fourier transforms, each electron orbital
contributes to the CP in a quite different way according to its spatial
localization. Consequently, the outermost valence electrons, which
have largely spread orbitals over the radial space, are highly localized
in momentum space and therefore contribute to CP with sharp peaks.
By contrast, the inner electrons have spatial orbits circumscribed by
small distances and produce broad lines that are generally spread out
to high momenta in CPs.
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Many experimental and theoretical studies have examined CPs
for different elements and molecules. Our aim here is not to
present an exhaustive list of established methods, but rather to
mention some experimental and theoretical results for compar-
ison with our findings. Biggs et al. performed Hartree–Fock (HF)
calculations for atomic orbital wavefunctions and published a CP
data table for all the orbitals of all free atoms up to Z¼102 [4]. CPs
have been largely studied for noble gases. CP experiments on He,
Ne, Ar, Kr gases have generally been in very good agreement with
HF calculations [5–8].

Density functional theory (DFT) is widely used as a theoretical
framework for calculating the electronic structure of solids. Many
studies have compared ab initio DFT calculations and experimental
CP measurements. Sakurai et al. performed synchrotron X-ray
experiments to study CPs for He, Ar and Xe and compared them to
DFT results [9]. Although DFT methods often give bulk properties
that are more accurate than HF results, many recent studies have
highlighted the failure of standard Kohn–Sham DFT in reproducing
fine aspects of the electron momentum distributions of molecules
and crystals. Thakkar and Hart calculated electron momentum
densities for many closed-shell molecules and found that DFT
methods give relatively poor results for these systems that were
often worse than the HF approach [10,11]. Recent comparisons of
experimental directional CPs for many crystals and DFT calcula-
tions with different exchange-correlation functionals were gener-
ally satisfactory [12–15]. However, some disagreement was
evident, which demonstrates the inability of standard DFT to
describe all correlations correctly.

The local-density approximation (LDA) [16,17] has proved to be
remarkably successful in predicting various bulk properties of
different solids. LDA is a powerful theoretical tool but it cannot
account for nonlocal contributions to exchange-correlation effects.
It is known that theoretical CPs obtained by LDA calculations are
overestimated at low transfer momenta and underestimated at
higher momenta. A widely used method that accounts for the
neglected exchange and correlation effects is the Lam–Platzman
correction [18–20], which substantially resolves the residual dis-
crepancies outlined above and facilitates a critical assessment of
CPs (and their respective derivatives) calculated within the LDA.

An improvement over LDA is the generalized gradient approx-
imation (GGA) [21], which modifies the LDA by adding gradient
corrections to the local density model. Different GGA functionals
have been successfully tested in calculations of equilibrium lattice
constants, bulk moduli, and the cohesive energy of solids [22–24].
Some researchers have reported CPs calculated under the GGA
approach and compared them with LDA results [12–15,25–28].

In this study we selected three representative metals with
relevant technological applications and belonging to different
groups of the periodic table for isotropic CP analysis: beryllium
(alkaline earth metal), aluminum (post-transition metal) and
titanium (transition metal).

Experimental directional CPs for Be have been reported [29–33]
and qualitative agreement with theoretical calculations was
obtained. Isotropic CP experiments have also been reported
[34,35].

There have been many theoretical and experimental CP inves-
tigations for Al [36–39,28] and these have been reviewed and
summarized by Berggren [40].

Transition metals are very difficult to treat theoretically.
Neither free-atom approximations nor the free electron model
has provided accurate descriptions of CPs for Ti. In particular, the
low-momentum transfer region, which corresponds to the valence
electrons, shows significant deviations from free-atom behavior.
Renormalized free-atom (RFA) model calculations are in good
agreement with experimental results [41,42]. Further references
on CP calculations for this element can be found in [43,44].
The aim of the present study was twofold. First, we were
interested in the capability of the functional GGA-PBE theory,
proposed by Perdew et al. [21], to describe the momentum-space
properties of solids and CPs in particular. The theoretical results
published here can be useful in evaluating the necessity of
considering additional corrections for the correlation terms. Sec-
ond, we constructed a low-intensity γ�ray Compton spectrometer.
An additional objective was to evaluate the performance of our
device and to compare experimental CPs with our GGA calcula-
tions and with other previous results.

The remainder of the paper is organized as follows. Section 2
outlines the main equations and the computational procedures
used in the calculations. Section 3 describes the experimental set-
up. The results are presented in Section 4 and conclusions are
drawn in Section 5.
2. Theory and computational procedures

We performed theoretical calculations for isotropic CPs of
solids within the impulse approximation for one-electron wave-
functions of the form

ψnlmðr; θ;ϕÞ ¼ RnlðrÞYm
l ðθ;ϕÞ: ð1Þ

The radial wavefunction Rnl(r) is Fourier transformed according to

χnlðpÞ ¼
2
π

� �1=2

ð−iÞl
Z ∞

0
RnlðrÞjlðp rÞr2 dr; ð2Þ

where jlðprÞ is the spherical Bessel function of the first type and p
is the electron momentum in the atom [45]. CP Jnl(q) for the nl
orbital is defined as

JnlðqÞ ¼
1
2

Z ∞

jqj

InlðpÞ
p

dp; ð3Þ

where Inl(p) is defined in terms of the electron momentum density
χnlðpÞ as
InlðpÞ ¼ jχnlðpÞj2p2 ð4Þ
and q is the projection of the momentum transfer k on the
electron momentum p before collision:

q¼−
k:p
k

: ð5Þ

Our computational procedures are based on the Hohenberg–
Kohn variational principle and the self-consistent Kohn–Sham
equations. The Hohenberg–Kohn theorem [46] states that the
energy of a condensed system is a functional of its electronic
density ρðrÞ, and the correct energy density is the one that
minimizes the total energy of the system. The Kohn–Sham self-
consistent radial single-particle equation is [47]

−
1
2
∂2

∂r2
þ lðlþ 1Þ

2r2
þ V sc½ρ; r�

� �
PnlðrÞ ¼ εnlPnlðrÞ; ð6Þ

where PnlðrÞ≡rRnlðrÞ is the reduced radial wavefunction and V sc½ρ; r�
is the self-consistent single-particle potential [48]. The electron
density is calculated by summing the electron densities of all the
occupied states:

ρðrÞ ¼∑
nl
jRnlðrÞj2: ð7Þ

The atomic radial wavefunctions Rnl(r) for core electrons, the
pseudopotentials (VPS), and the pseudo-atomic orbitals (PAOs) for
valence electrons are obtained using the ADPACK code [49]. All
VPS and PAOs are generated using Schrödinger–Kohn–Sham non-
relativistic equations under GGA, with a Troullier and Martins
(TM) scheme [50]. The norm-conserving pseudopotentials and
PAOs generated by this code are used as input data for the OPENMX
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program [51] for density functional calculations for molecules and
solids [52–55]. Associations between pseudo-wavefunctions and
valence electrons in the unit cell of crystalline solids were
calculated using OPENMX. Valence orbital calculations were per-
formed using GGA-PBE [21].

All our theoretical calculations for isotropic CPs were per-
formed under the impulse approximation (IA). Limitations to the
IA validity in Compton scattering have been widely discussed [56–
58]. This approach is expected to be valid when the energy
transferred in the scattering process is much greater than the
binding energy of the electron orbital. Since the energy transferred
in our case is of the order of hundreds of keV, the approximation is
suitable.
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Fig. 1. Energy spectrum (circles, raw data) for a Ti sample of 0.3 mm in thickness.
The solid line denotes the background intensity.
3. Experimental procedures

We measured CPs for high-purity (499:98%) Be, Al and Ti of
differing thickness (5.0, 1.0 and 0.3 mm) using a mono-energetic
137Cs (661.66 keV) γ source with activity of 1.5�1011 Bq (Comisión
Nacional de Energía Atómica of Argentina, CNEA). The cylindrical
source is 0.53 cm in diameter and 1.84 cm long and is sealed under
double encapsulation. The external encapsulation is 1.93 cm in
height and 1.28 cm in diameter and is made of type 304
stainless steel.

A high-purity p-type germanium (HPGe) detector (GX6020
model) is used to detect γ�rays scattered by different targets.
The device has a 600�μm�thick carbon fiber window with a
crystal volume of 250 cm3 and yields very efficient photon detec-
tion. The pre-amplifier is located outside the shield-detector
system for stable and noise-free measurements. The detector is
placed inside an ultra-low-background 15-cm-thick lead shield
(Canberra Model 777-1). The shield is covered with a 2-mm
copper sheet to absorb X-rays from lead in the energy range
75–85 keV. The instrumental resolution is determined using multi-
ple calibration sources of 210Pb, 241Am, 57Co, 137Cs and 54Mn, with
photopeaks at 46.5, 59.5, 122.1, 136.5, 661.6 and 834.8 keV,
respectively. The function is obtained by fitting these peaks to a
Gaussian curve. For the particular case of 206.1 keV (the Compton
peak), the full width at half-maximum (FWHM) is 0.9 keV.

Four lead plates (4.5 cm thick) with identical holes (ϕ¼ 0:5 cm)
are used as collimators. All measurements are performed at 1351.
The geometric divergence of the incident beam slits is 731. The
distance between the source and the sample is 42.4370.1 cm and
the distance between the sample and the detector is 4070.1 cm.
The instrumental resolution is estimated as 0.48 a.u. The absolute
detector efficiency at the energy corresponding to the Compton
peak (206.1 keV) at a sample-detector distance of 40 cm is
4:91� 10−5. Detector output spectra are acquired using commer-
cial software [59] and are preset at 8192 channels using a digital
spectrum analyzer (DSA2000). All of the subsystems required for
high-quality spectral acquisition are integrated into a single
physical unit, including a high-voltage power supply, a digital
stabilizer, MCA memory and an Ethernet network interface.

Double-scattering corrections at the Compton peak are taken
into account following a similar procedure to that described by
Fajardo et al. [60]. These corrections include analytical calculations
and Monte Carlo simulations [61]. Sample absorption corrections
are included using a relative absorption factor [3]. In our experi-
mental set-up, the incident photon energy is 661.66 keV and the
incoming photon angle is 451. In this case, the linear attenuation
coefficients, determined experimentally via a narrow beam
attenuation measurement, are 0.1282, 0.2045, and 0.3179 cm−1

for Be, Al, and Ti, respectively. Similarly, for the Compton peak at
206.1 keV and 01, the linear attenuation coefficients are 0.2016,
0.3269, and 0.5953 cm−1. Finally, the Compton peaks are corrected
with an absorption factor of 1.098, 1.031 and 1.016 for Be, Al and Ti,
respectively.

The source is located outside the shielding-detector system, so
air scattering is negligible. However, background radiation from
vacuum chamber scattering is subtracted from the Compton peak.
As an illustration of the importance of this radiation, Fig. 1 shows
the background intensity compared to the Compton scattering
spectrum using raw energy data for a 0.3-mm-thick Ti sample. The
Compton peak centered at channel number 2333 corresponds to
energy of 206.1 keV and the area under the peak comprises
200,000 counts. It is clear that the background corresponds to
approximately 10% of the CP intensity.

Once the background radiation is subtracted from the Compton
spectrum, double scattering and the absorption factor should be
included in the correction. Finally, the spectrum is deconvoluted
according to the instrumental response function. This deconvolu-
tion involves fast Fourier transforms applied by commercial soft-
ware [62]. The resulting curve is transformed from energy to
momentum transfer q to determine J(q) according to Eq. (3).
Finally, the normalization

R
JðqÞ dq¼ Z=2, where Z is the atomic

number of the element under study, is applied.
4. Results

To obtain theoretical results, we developed a FORTRAN code to
calculate CPs, starting from tabulated radial wavefunctions
obtained from several atomic structure programs. We calculated
CPs using electron orbitals obtained from GGA-PBE functionals.
We made a number of assumptions and set some parameters to
calculate the bulk structure using the OPENMX code. In some cases
the parameters are physical properties of the elements and in
others they are chosen as a tradeoff between computational
accuracy and efficiency. The OPENMX webpage [51] presents a
series of recommended input files for different atomic basis
orbitals. These orbitals are the product of a systematic study and
a comprehensive investigation of convergence properties for a
wide range of elements [52,53]. We tested these recommended
parameters and used them, with minor modifications, in our
calculations.

For comparison, theoretical results obtained using atomic HF
wavefunctions calculated using computer codes described by
Fischer [64] are presented. We also compare our findings to other
experimental and theoretical results. Fermi momenta were calcu-
lated using the reciprocal function and second derivatives of
the CPs.
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4.1. Beryllium

The ground state of Be is 1s22s2, among which the 2s electrons
are considered as valence electrons. We assumed that the solid
bulk has a face-centered cubic (fcc) structure with a lattice
constant of 3.158 Å. Atomic radial wavefunctions were calculated
up to a cutoff radius of 7.0 Å.

Comparisons between DFT and free-atom HF reduced wave-
functions are shown in Fig. 2. The latter were obtained using the
HF package described by Fischer [64]. It is evident that the radial
reduced wavefunctions for the inner electrons (P1s) are very
similar for both theories. However, the CPs for valence electrons
clearly reflect the fact that the free-atom HF does not take into
account any effect concerning the metallic structure (Fig. 3).

The GGA-PBE theoretical results for the Be CP are presented in
Table 1, where J1sðqÞ is the CP for internal electron orbitals and
J2sðqÞ is the CP for valence electrons. The total CP is JðqÞtot ¼ J1sðqÞ þ
J2sðqÞ and JðqÞexp denotes the experimental results.

The theoretical total (core plus valence) CP for Be is shown in
Fig. 4. Our experimental and theoretical results are compared in
terms of the difference ΔJðqÞ≡Jexp−Jth. We also compare our experi-
mental results with those obtained by Manninen and Suortti [34]. A
value for the Fermi momentum can be extracted from the CP curve
in different ways. Roughly, it is the momentum transfer value
corresponding to the greatest decrease in CP slope for valence
electrons. It is possible to overcome poor resolution by performing a
one-dimensional Fourier transform of the CP. For simple metallic
systems this yields information about the Fermi momentum pF by
searching for zero values of the autocorrelation function [65]:

BðzÞ ¼
ffiffiffiffiffiffi
1
2π

r Z ∞

−∞
JðqÞ expð−iqzÞ dq: ð8Þ

For a free-electron CP, the first zero for B(z) is located at a z value
for which pFz¼ 4:493. Fig. 5 shows the reciprocal B(z) function for
Be, calculated by Fourier transformation of both theoretical and
experimental CPs. For theoretical CP values for Be, the B(z) function
intersects the horizontal axis at z¼4.6 a.u., so pF¼0.98 a.u. An
alternative way to estimate the Fermi momentum is through CP
derivatives. The second derivative d2J=dq2 generally peaks at a
position corresponding to the principal Fermi surface radius, as
shown in Fig. 5 for Be. The second derivative of the theoretical CP
peaks at a value slightly greater than q¼1 a.u., which is quite
similar to the Fermi momentum value estimated using the B(z)
function. The second derivative of the experimental CP leads to a
higher value of q¼1.1 a.u. However, the number of data points is
Table 1
Compton profiles for Be.

q (a.u.) J1sðqÞ J2sðqÞ JðqÞtot JðqÞexp

0 4.916E−1 1.408E+0 1.899E+0 1.888E+0
0.1 4.903E−1 1.402E+0 1.892E+0 1.873E+0
0.2 4.863E−1 1.380E+0 1.866E+0 1.826E+0
0.3 4.798E−1 1.335E+0 1.815E+0 1.754E+0
0.4 4.710E−1 1.252E+0 1.723E+0 1.653E+0
0.5 4.599E−1 1.120E+0 1.580E+0 1.522E+0
0.6 4.469E−1 9.398E−1 1.386E+0 1.367E+0
0.7 4.322E−1 7.251E−1 1.157E+0 1.201E+0
0.8 4.161E−1 5.048E−1 9.209E−1 1.001E+0
0.9 3.988E−1 3.107E−1 7.095E−1 7.866E−1
1.0 3.807E−1 1.651E−1 5.458E−1 5.635E−1
1.1 3.621E−1 7.378E−2 4.358E−1 4.177E−1
1.2 3.431E−1 2.752E−2 3.706E−1 3.694E−1
1.3 3.240E−1 9.828E−3 3.339E−1 3.353E−1
1.4 3.051E−1 5.483E−3 3.106E−1 3.120E−1
1.5 2.865E−1 5.099E−3 2.916E−1 2.933E−1
1.6 2.683E−1 4.962E−3 2.733E−1 2.709E−1
insufficient for an accurate numerical derivative. Therefore, both
the first and second derivatives of the CP show considerable noise.
To reduce this noise, we applied a spline interpolation of the data
points, the corresponding derivative, and a further Gaussian con-
volution. The results are in reasonably good agreement with the
Fermi momentum reported by Chou et al. of pF¼1.03 a.u. [33].
q (a.u.) J1sðqÞ J2sðqÞ JðqÞtot JðqÞexp

1.7 2.507E−1 4.515E−3 2.552E−1 2.571E−1
1.8 2.338E−1 4.063E−3 2.378E−1 2.394E−1
1.9 2.176E−1 3.764E−3 2.213E−1 2.208E−1
2.0 2.022E−1 3.575E−3 2.057E−1 2.032E−1
2.2 1.738E−1 3.157E−3 1.770E−1 1.751E−1
2.4 1.488E−1 2.253E−3 1.510E−1 1.479E−1
2.6 1.269E−1 1.144E−3 1.281E−1 1.258E−1
2.8 1.080E−1 5.368E−4 1.086E−1 1.073E−1
3.0 9.184E−2 3.454E−4 9.219E−2 9.16E−2
3.5 6.108E−2 6.852E−5 6.115E−2 6.07E−2
4.0 4.077E−2 1.917E−5 4.078E−2 4.04E−2
4.5 2.744E−2 1.633E−5 2.746E−2 2.72E−2
5.0 1.868E−2 1.007E−5 1.872E−2 1.85E−2
6.0 9.007E−3 1.941E−6 9.009E−3 8.94E−3
7.0 4.580E−3 1.104E−6 4.581E−3 4.57E−3
8.0 2.449E−3 7.276E−7 2.450E−3 2.46E−3
9.0 1.371E−3 3.319E−7 1.371E−3 1.38E−3
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4.2. Aluminum

The Al solid bulk is represented as a face-centered cubic (fcc)
structure. We assumed a¼4.028 Å and a radial cutoff of 7.0 Å. The
3s2 and 3p electrons were considered as valence electrons.

DFT and HF wavefunction results for Al are shown in Fig. 6. The
core radial P1s, P2s and P2p wavefunctions are very similar for the
DFT and HF methods. By contrast, the P3s and P3p valence orbitals
differ significantly for the two approaches. The DFT theoretical CP
results for Al are presented in Table 2, where JðqÞcore ¼ J1sðqÞ þ
J2sðqÞ þ J2pðqÞ and JðqÞval ¼ J3sðqÞ þ J3pðqÞ.
0 1 2 3 4 5

q (a.u.)

0

0.5

Fig. 7. Compton profile for Al calculated using DFT (solid curves) and free-atom HF
wavefunctions (dashed curves).

1 2 3 4 5 6 7

r (a.u.)

P nl
 (r

)

-1

0

1

2

1s

2s

2p

3s

3p

Fig. 6. Radial reduced wavefunctions for Al calculated using DFT (solid curves) and
the free-atom HF method (dashed curves).
The Al CPs are displayed in Fig. 7 and the theoretical and
experimental total CPs in Fig. 8. The difference between our experi-
mental and theoretical results is less than 5% for the whole data range.
The difference between our experimental results and those obtained
by Halonen et al. [66] is approximately 5% and less than 10% over the
whole q range. Our results are in better agreement with those of Ahuja
and Sharma [39] and the maximum discrepancy (at the origin) is less
than 3%. The Fermi momentumwas calculated using the two methods
described above. The first zero passage of the reciprocal function B(z)
is located at z¼4.87, which corresponds to pF¼0.92 a.u. The second
derivative has a maximum at q¼0.99 a.u. The result reported by Das
and Chaddah [67] is pF¼0.926 a.u.
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Fig. 8. Left: Total Compton profile for Al calculated using DFT (solid curves). Experimental results are shown by circles and circle size denotes the experimental error limit.
Right: Comparison of our experimental Compton profiles for Al to our theoretical calculations and other experimental results. Solid squares denote the difference
ΔJðqÞ≡Jexp−Jth between experimental measurements and GGA-PBE theoretical calculations. Empty circles show differences between our experimental results and those
reported by Halonen et al. [66]. Solid triangles show differences between our experiments and those of Ahuja and Sharma [39].
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Fig. 9. Radial reduced wavefunctions for Ti, calculated by using DFT (solid curves)
and free-atom HF method (dashed curves).

Table 2
Compton profiles for Al.

q (a.u.) JcoreðqÞ JvalðqÞ JðqÞtot JðqÞexp q (a.u.) JcoreðqÞ JvalðqÞ JðqÞtot JðqÞexp

0 1.776E+0 2.247E+0 4.023E+0 3.936E+0 1.7 1.144E+0 1.072E−2 1.155E+0 1.184E+0
0.1 1.773E+0 2.224E+0 3.998E+0 3.877E+0 1.8 1.087E+0 9.755E−3 1.098E+0 1.135E+0
0.2 1.765E+0 2.154E+0 3.920E+0 3.798E+0 1.9 1.032E+0 8.483E−3 1.041E+0 1.072E+0
0.3 1.753E+0 2.027E+0 3.780E+0 3.649E+0 2.0 9.789E−1 7.350E−3 9.862E−1 1.022E+0
0.4 1.734E+0 1.840E+0 3.575E+0 3.452E+0 2.2 8.764E−1 4.633E−3 8.811E−1 9.012E−1
0.5 1.711E+0 1.593E+0 3.305E+0 3.175E+0 2.4 7.821E−1 2.608E−3 7.847E−1 8.051E−1
0.6 1.683E+0 1.303E+0 2.986E+0 2.908E+0 2.6 6.965E−1 1.245E−3 6.978E−1 7.136E−1
0.7 1.649E+0 9.950E−1 2.645E+0 2.612E+0 2.8 6.199E−1 5.362E−4 6.205E−1 6.272E−1
0.8 1.612E+0 7.017E−1 2.314E+0 2.314E+0 3.0 5.520E−1 2.621E−4 5.523E−1 5.580E−1
0.9 1.570E+0 4.515E−1 2.022E+0 1.982E+0 3.5 4.160E−1 1.362E−4 4.161E−1 4.284E−1
1.0 1.524E+0 2.618E−1 1.786E+0 1.820E+0 4.0 3.186E−1 1.120E−4 3.187E−1 3.241E−1
1.1 1.475E+0 1.358E−1 1.611E+0 1.649E+0 4.5 2.487E−1 6.419E−5 2.488E−1 2.545E−1
1.2 1.423E+0 6.284E−2 1.487E+0 1.538E+0 5.0 1.981E−1 1.957E−5 1.980E−1 1.97E−1
1.3 1.369E+0 2.806E−2 1.398E+0 1.444E+0 6.0 1.317E−1 3.211E−6 1.317E−1 1.35E−1
1.4 1.314E+0 1.502E−2 1.329E+0 1.377E+0 7.0 9.178E−2 2.029E−6 9.178E−2 9.6E−2
1.5 1.257E+0 1.168E−2 1.269E+0 1.299E+0 8.0 6.577E−2 3.305E−7 6.577E−2 7.1E−2
1.6 1.200E+0 1.117E−2 1.211E+0 1.247E+0 9.0 4.782E−2 1.875E−7 4.782E−2 5.6E−2
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4.3. Titanium

The Ti solid bulk is considered as a face-centered cubic (fcc)
structure and we assumed a¼4.10 Å and a radial cutoff of 7.0 Å.
The DFT and HF wavefunctions are compared in Fig. 9, where 1s,
2s, 2p, 3s and 3p are the core orbitals. The valence orbitals are 3d
and 4s. The DFT theoretical CP results for Ti are presented in
Table 3, where JðqÞcore ¼ J1sðqÞ þ J2sðqÞ þ J2pðqÞþ J3sðqÞ þ J3pðqÞ and
JðqÞval ¼ J3dðqÞ þ J4 sðqÞ.

The CPs for Ti are displayed in Fig. 10 and the theoretical and
experimental total CPs in Fig. 11. In contrast to the Be and Al cases,
for which the CP slope changes discontinuously at the Fermi
momentum, it is hard to estimate a slope value from the smooth
CP curve for Ti. We cannot use either of the methods described
above to calculate the Fermi momentum. The autocorrelation
function B(z) decreases too abruptly and does not show any
negative autocorrelation. The second derivative of the CP has
peaks at q¼0.67 and at q¼1.7. These values differ significantly
from the value of pF ¼ 1:0870:04 a:u: measured by Weiss [68].

In general, the ground state commonly assumed for metallic Ti is
3d2 4s2, which corresponds to the free-atom Ti case. This assumption
was made for CP RFA calculations by Felsteiner and Pattison [69] and
free-electron gas model calculations by Lasser et al. [70] and Weiss
[71], for example. However, for our calculations we assume a ground
state of 3d3 4 s for metallic Ti, in accordance with Berggren et al. [41],
Moruzzi et al. [17], and Raj et al. [72]. For comparison, CP results
obtained assuming a 3d2 4s2 configuration for the ground state are
plotted in Fig. 11. There is a notable discrepancy for both our
experimental values and our GGA-PBE calculations at low momentum
transfer values. Our theoretical and experimental values are also
compared in Fig. 11. There is a peak in the discrepancy curve at
q¼0.6 a.u., where the difference is approximately 7%. Comparison of
our experimental results to those reported by Felsteiner and Pattison
[69] reveals a difference of less than 2%.
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Fig. 11. Left: Total Compton profile for Ti calculated using DFT (solid curves) and assuming a 3d3 4 s configuration for the ground state. Experimental results are shown by
circles and circle size indicates the experimental error limit. For comparison, the dashed lines represent total CP results calculated assuming a 3d2 4s2 configuration for the
ground state. Right: Comparison of our experimental Compton profiles for Ti and our theoretical calculations and other experimental results. Solid squares denote the
difference ΔJðqÞ≡Jexp−Jth between experimental measurements and GGA-PBE theoretical calculations. Empty circles show differences between our experimental results and
those of Felsteiner and Pattison [69].

Table 3
Compton profiles for Ti.

q (a.u.) JcoreðqÞ JvalðqÞ JðqÞtot JðqÞexp q (a.u.) JcoreðqÞ JvalðqÞ JðqÞtot JðqÞexp

0 3.474E+0 1.961E+0 5.435E+0 5.506E+0 1.7 1.592E+0 3.597E−1 1.952E+0 1.907E+0
0.1 3.465E+0 1.914E+0 5.380E+0 5.433E+0 1.8 0.479E+0 3.209E−1 1.799E+0 1.769E+0
0.2 3.439E+0 1.785E+0 5.225E+0 5.336E+0 1.9 1.376E+0 2.877E−1 1.664E+0 1.651E+0
0.3 3.396E+0 1.599E+0 4.996E+0 5.176E+0 2.0 1.284E+0 2.587E−1 1.543E+0 1.533E+0
0.4 3.332E+0 1.391E+0 4.724E+0 4.996E+0 2.2 1.127E+0 2.099E−1 1.337E+0 1.346E+0
0.5 3.253E+0 1.194E+0 4.447E+0 4.740E+0 2.4 1.002E+0 1.697E−1 1.172E+0 1.181E+0
0.6 3.153E+0 1.032E+0 4.184E+0 4.482E+0 2.6 9.028E+0 1.370E−1 1.0640E+0 1.056E+0
0.7 3.035E+0 9.128E−1 3.948E+0 4.170E+0 2.8 8.237E−1 1.110E−1 9.347E−1 9.515E−1
0.8 2.903E+0 8.332E−1 3.737E+0 3.881E+0 3.0 7.597E−1 9.031E−2 8.500E−1 8.709E−1
0.9 2.759E+0 7.794E−1 3.539E+0 3.553E+0 3.5 6.413E+0 5.379E−2 6.951E−1 7.050E−1
1.0 2.607E+0 7.356E−1 3.343E+0 3.292E+0 4.0 5.547E−1 3.214E−2 5.869E−1 5.860E−1
1.1 2.451E+0 6.899E−1 3.141E+0 3.044E+0 4.5 4.829E−1 1.907E−2 5.019E−1 4.800E−1
1.2 2.294E+0 6.371E−1 2.931E+0 2.843E+0 5.0 4.197E−1 1.125E−2 4.309E−1 4.100E−1
1.3 2.139E+0 5.779E−1 2.717E+0 2.610E+0 6.0 3.135E−1 3.690E−3 3.172E−1 3.175E−1
1.4 1.990E+0 5.165E−1 2.506E+0 2.398E+0 7.0 2.323E−1 1.046E−3 2.333E−1 2.435E−1
1.5 1.848E+0 4.579E−1 2.306E+0 2.195E+0 8.0 1.720E−1 2.387E−4 1.723E−1 2.050E−1
1.6 1.715E+0 4.052E−1 2.120E+0 2.034E+0 9.0 1.280E−1 5.231E−5 1.281E−1 1.720E−1
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Fig. 10. Compton profile for Ti calculated using DFT (solid curves) and free-atom HF wavefunctions (dashed curves).
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5. Conclusions

CP measurement provides a good tool for verifying DFT quality.
We presented experimental and theoretical results for isotropic
CPs for Be, Al and Ti and tabulated electron momentum transfer
values from q¼0–9 a.u.

The similarity of our experimental CPs to other measurements
demonstrates that our spectrometer and the numerical methods
used for data analysis provide fairly accurate values. The agree-
ment between our GGA calculations and experimental results is
satisfactory for a wide range of q values.

Wavefunctions for the core orbitals of Be, Al and Ti are hardly
affected by the crystalline potential, as indicated by the agreement
between HF and DFT calculations. By contrast, valence electrons
require a more sophisticated theory for a realistic description of
the electronic properties in solids.
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CP experiments and GGA calculations for Be and Al depart
slightly around q¼0 and near the Fermi momentum. However,
comparisons between GGA-PBE and other DFT calculations show
that GGA-PBE provides results with the same order of accuracy as
the local density approximation plus additional corrections (e.g.,
Lam–Platzman correction). If higher accuracy is required, a theo-
retical procedure that includes virtual promotions produced by
correlation effects [73,74] must be developed. This issue is under
investigation.

It is widely assumed that the ground-state configuration of
metallic Ti is the same as the free-atom configuration. However,
we obtained better agreement with the experimental CP results
when the configuration assumed for the Ti ground state was 3d3

4s rather than 3d2 4s2.
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