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Abstract. In this review the optical and soft x-ray radiation emitted from an 
ionized gas is discussed. This radiation depends, not only on the atomic properties 
of the isolated radiating species, but also on the properties of the plasma in the 
immediate environment of the radiator. This dependence on the plasma pro- 
perties is almost exclusively a consequence of the fact that ions and electrons 
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interact with other species via the long-range Coulomb potential. The fact that an 
emitting atom or ion in a plasma is never isolated from the perturbing effects of 
neighbouring ions and electrons is reflected in the details of the radiation in many 
ways. The long-range interactions with the charged components of the plasma 
control the populations of bound states, shift and broaden bound energy levels, 
lower the ionization potentials of atomic species and are the cause of continuum 
radiation emission and the emission of normally forbidden lines. 

The distribution of particles in the possible quantum states is considered in a 
plasma, for which collisional excitation and de-excitation processes are controlled 
by the free electrons. In local thermodynamic equilibrium (L.T.E.), which 
corresponds to a collision-dominated plasma, the population densities can in 
principle be well described, but lowering of the ionization potential and partition 
function cut-offs become important. Conditions for the validity of L.T.E. are 
given. In non-L.T.E. situations the detailed processes of population and de- 
population have to be considered and a detailed knowledge of cross sections and 
rate coefficients is required. Calculations may be performed using the collisional- 
radiative decay model (or the simpler coronal model); but even then, for non- 
hydrogenic species, metastable levels and dielectronic recombination should be 
considered. 

The details of the emitted radiation (line radiation and line profiles, recombina- 
tion radiation and bremsstrahlung) and the possible effects of radiative transfer are 
considered. The theoretical assumptions are examined and stressed, and experi- 
ments are discussed only when they have a direct bearing on the theoretical 
predictions. In particular, a large section is devoted to line broadening theory. 
This is because it is in this field, especially through the generalized impact approxi- 
mation for electrons, that great improvements in theory have been made in recent 
years. 

Since it is necessary to know the properties of plasmas, both in fusion research 
and in experiments to measure atomic parameters of highly excited and highly 
ionized species, methods for measuring number densities and temperatures are 
described. In particular, methods are discussed which can be used in high 
temperature plasmas which are not in L.T.E. 

Radiation losses due to impurities of high electronic charge are shown to be 
an extremely important energy loss mechanism for the hydrogen (deuterium) 
plasmas studied in controlled fusion research. 

Finally, some of the outstanding problems in plasma spectroscopy are 
mentioned. 

1. Introduction 
For the purpose of this review, plasma spectroscopy can be said to be the study 

of electromagnetic radiation emitted from ionized media. The  plasma will be 
considered to have a temperature and degree of ionization sufficiently high so that 
the radiation is due to atomic rather than molecular processes, and in general 
highly excited and highly ionized species are of interest. However, in contrast to 
conventional spectroscopy where one is mainly interested in the atomic structure 
of an isolated atom, the radiation from a plasma depends, not only on the pro- 
perties of the isolated radiating species, but also on the properties of the plasma in the 
immediate enviyonment of the Yadiator. This dependence on the plasma properties 
is a consequence of the fact that ions and electrons interact with other species T-ia 
the long-range Coulomb potential. 

The  fact that an emitting atom or ion in a plasma is never isolated from the 
perturbing effects of other ions and electrons is reflected in the details of radiation 



Plasma spectroscopy 37 

in many ways: the long-range interactions with the charged components of the 
plasma control the population densities of bound states, shift and broaden energy 
levels (via the Stark effect), lower the ionization potentials of atomic species and 
are the cause of continuum radiation emission and the emission of normally for- 
bidden lines. For a plasma which is more than a few per cent ionized, collisional 
excitation and de-excitation processes are dominated by free electrons (rather than 
atoms or ions) because of their high mean velocity and the long-range nature of 
their interaction. Also, since ions and electrons do not move independently, 
correlation and shielding effects are very important. The  effective interaction is 
shielded out over a distance roughly equal to the Debye radius, and under many 
circumstances only those ions and electrons within this distance are involved in 
line broadening or lowering of the ionization potential. Owing to correlations, no 
electromagnetic radiation is propagated below the plasma frequency, and in the 
region just above this frequency the spectrum of continuous radiation is consider- 
ably modified by collective effects. 

In  the laboratory plasmas reabsorption of radiation is usually low so that the 
plasma is not in complete thermodynamic equilibrium with its surroundings. 
Energy must be supplied to keep the kinetic energy of the plasma particles high. 
This, of course, does not mean that the system cannot be in a quasi-steady state, 
and under certain circumstances the distribution of particles in the possible quantum 
states can be well defined (for instance, local thermodynamic equilibrium in a 
collision-dominated plasma). 

In  the past few years a large effort has been concentrated on controlled fusion 
experiments and plasma spectroscopy has been considerably developed in order 
to investigate the high temperature plasmas produced. Many of the techniques of 
astrophysics have been used; although the situation is somewhat easier for labora- 
tory plasmas because they are often optically thin and so radiative transfer is 
unimportant. 

In  this review the distribution of particles in the possible quantum states, the 
details of the emitted radiation (line radiation and line profiles, recombination 
radiation and bremsstrahlung) and the possible effects of radiative transfer are 
considered. Cyclotron radiation, due to charged particles gyrating in a magnetic 
field, will not be considered in detail. 

The  theoretical assumptions and predictions are examined and stressed, and 
experiments are discussed only when they have a direct bearing on the theoretical 
predictions. For details of the experiments, of the instrumentation, of intensity 
calibration and of light sources, reference is made to the original papers and other 
reviews. None the less, the importance of experiments should be emphasized. 
Only with good experimental evidence can theoretical predictions be adequately 
tested, and there are many parameters (such as energy levels and oscillator strengths) 
which have to be determined by expcriment because of the extreme difficulty of 
theoretical calculations. In  fact, it is wise to use theoretical predictions only when 
experimental results are unobtainable. One of the major problems of plasma 
spectroscopy is to obtain a light source whose properties are sufficiently well known 
to give quantitative information concerning highly excited and highly ionized 
atoms. For this reason, and because it is necessary to know the properties of 
plasmas used in fusion research, methods are indicated, based on the properties of 
4 
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the radiation, for determining important plasma parameters, such as electron 
number density and temperature. In  particular, methods are discussed which can 
be used with high temperature plasmas which are not necessarily in local thermo- 
dynamic equilibrium. 

Radiation losses due to impurities of high electronic charge are shown to be an 
extremely important energy loss mechanism for the hydrogen (deuterium) plasmas 
studied in controlled fusion research. 

Finally, some outstanding problems in plasma spectroscopy are mentioned. 
For the sake of convenience, wherever possible, books and more recent publica- 

tions are referred to, since these usually contain adequate reference to earlier work. 
In  particular, the book Plasma Spectroscopy by Griem (1964) contains much useful 
information. 

2. Types of radiation 
An atom or ion immersed in a plasma will emit radiation when radiative 

transitions between various quantum states occur. Since, in plasma spectroscopy, 

hvpg: Transition probability 
A ( P d  

I i € 2 4  (9) 

Ground state - E,, (1) 

Figure 1. Schematic energy level diagram for a hydrogenic species of charge 2- 1. 

the interaction of ions and electrons with the radiating species is important, the 
quantum states do not necessarily correspond exactly to those of the isolated atom 
or ion. However, a schematic energy level diagram (figure 1) may be drawn for a 
hydrogenic species (this being an atom or ion having a single bound electron). 

Bound, discrete, energy levels occur below the ionization limit E(m) and a 
continuum of levels above. 
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Line radiation occurs for electron transitions between bound levels, leading to 
line spectra. Thus, if vPn is the frequency of radiation when a transition from a 
level of principal quantum number p and energy E(p)  to a level of energy E(q)  
occurs, then 

For allowed transitions the usual selection rules of spectroscopy have to be obeyed 
(White 1934). 

Recombination (free-bound) radiation occurs when an electron in the continuum 
recombines with the ion. Since the upper level is continuous the radiation is 
continuous; however, there is some structure due to the discrete nature of the 
lower energy levels (absorption edges). 

For an electron of mass m and velocity U, recombination into state p gives 
hvCp = E(=) + $mv2 -E@). 

Free-free radiation occurs owing to transitions between two free energy levels. 
Classically this is because a moving charge radiates whenever it is accelerated or 
retarded. 

Bremsstrahlung is caused by the acceleration of charged particles in the Coulomb 
field of other charged particles. The  major part of the bremsstrahlung is due to 
electron-ion collisions and, since the initial and final states are continuous, the 
bremsstrahlung spectrum is also continuous. 

In  cyclotron (or synchrotron or betatron) radiation the acceleration is due to 
charged particles gyrating in a magnetic field. The  major contribution is due to 
electrons. Although the particles are free, the spectrum of radiation is a type of 
line spectrum composed of frequencies that are harmonics of the cyclotron fre- 
quency (Rose and Clark 1961). 

Finally, Cerenkov radiation can occur if the velocity of a particle is greater than 
the velocity of light in the plasma; however, this corresponds to temperatures too 
high to be important (Linhart 1960). 

For a plasma the relative amounts of line, recombination and continuum 
radiation depend on the populations of the various energy levels. For instance, a 
fully ionized plasma emits no line radiation since an ion, fully stripped of its 
electrons, has no populated bound states. The  degree of ionization, in general, 
depends on the intensive variables such as the kinetic temperatures and the number 
density, on the time history of the plasma, and even on its extent in space as this 
may decide whether reabsorption of radiation is important. Usually the degree of 
ionization is taken as a function of T, and ne. 

The situation becomes much more difficult to calculate in the case of an atom 
or ion with more than one orbital electron. Here, two electrons may be excited 
simultaneously and the doubly excited states may have energy above the first 
ionization potential. 

Figure 2 shows schematically one such doubly excited series of energy levels 
converging on the first excited state of the ion. 

Under certain conditions, a radiationless transition can occur, in which the 
doubly excited state S,-,** of the ion of charge 2-1 gives rise to an ion S, and 
an electron; the pair has the same energy as the original ion: 

Sz-l** + SE+ e. 

4 x 2  = E ( P )  - E(q)*  
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This process is known as autoionization. For example, if the doubly excited 
state of figure 2 with energy Ec above the first ionization potential of SZp1 auto- 
ionizes, the resultant state is the ion s, in its ground state and an electron of 
energy Ed.. The transition probability is often high ( -  1013-1014 sec-l). 

Ground stale 
of the ion Sz 

Doubly excited leveis Sz.y' I I I lIK 

i 
probability A ( d : p )  

Sinqly e cited 
loveists,., (p$- 

Ground state 
of atom Sz-t 

Figure 2. Schematic energy level diagram for a non-hydrogenic species of charge Z -  1 ( S Z - ~ )  
showing singly and doubly excited states ( S Z - ~ ( ~ )  and S Z - ~ * *  respectively). 

The  selection rules for the autoionization from a discrete doubly excited level 
lying above the ionization limit to a continuum level of the same energy require 
that the initial and final states have the same parity and total angular momentum 
quantum number J ,  and if Russell-Saunders coupling holds, then the orbital and 
spin quantum numbers L and S must also be conserved (Condon and Shortley 
1935). 

When considering the relative populations of the quantum states, these doubly 
excited levels should not be ignored and, in fact, dielectronic recombination 
(a process proceeding via the doubly excited states) may be of considerable 
importance (8 8). 

3. Equilibrium and temperatures 
Populations of the various species existing in the plasma and of their respective 

energy levels, as well as many other plasma properties, are often described in terms 
of the electron number density ne and electron temperature T,. These parameters 
are relevant because of the dominant role of electrons in collisional processes. 

Before proceeding, it is useful to ask under what conditions the term 'tempera- 
ture' has any significant meaning. In  the kinetic theory of gases the equilibrium 
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velocity distribution of particles is Maxwellian, from which the kinetic temperature 
is derived. In  order for the statistics of this process to be valid, the mean free path 
for particle collisions must be far smaller than the dimensions of the containing 
vessel and the time between collisions must be short compared with other charac- 
teristic times, such as those for particle heating and containment. 

Usually in laboratory plasmas the electron-electron mean free path and col- 
lisional relaxation times are such that the free electrons do have a Maxwellian 
velocity distribution to which an electron temperature T, can be ascribed ($9). 
This is often not the case for ions and then the ion kinetic temperature has no 
meaning. 

Besides the kinetic energy of the particles in a plasma there is energy in the 
radiation field. If the mean free path for absorption of radiation is less than the 
dimensions of the plasma, there is radiation equilibrium and a corresponding 
radiation temperature. Generally, in laboratory plasmas the optical mean free path 
greatly exceeds the extent of the plasma (and incidentally also the kinetic mean free 
path) and so complete radiation equilibrium is rarely obtained. I t  is usually possible 
to take the plasma as being optically thin, except, possibly, for the core of resonance 
lines (0 13). 

I n  order to ascertain the relative populations of the various quantum states, 
thermodynamic arguments are used if full thermodynamic equilibrium obtains. 
Otherwise, that is for non-thermal plasmas, it becomes necessary to consider the 
detailed atomic processes. These atomic processes have recently been considered 
by many authors ( $ 7 ) .  Here, with minor variations, the nomenclature of Bates, 
Kingston and McWhirter (1962 a) is used. 

The  physical processes, which occur in recombination of electrons e with bare 
nuclei S, of charge Ze to form hydrogen atoms or hydrogenic ions, will now be 
considered in detail. 

nz-,(p), t~,-~(q),  ... are the number densities of atoms or ions in the levels 
p ,  4, . . . (see figure 1) and ne and n, the number densities of free electrons and ions 
of charge Ze. 

For the reversible reaction represented by 

S, + e + SZp1 

the following competing processes have to be taken into account: 
( a )  Three-body recombination to state p of SZ-, (denoted by SZ-,(p)) 

S, + e + e +  S,-,(p) + e. 

The  rate coefficient K(c’,p), between all levels c’ of the continuum and p, is such 
that n,n,K(c’,p) is the number of three-body recombinations of the above type 
which occur per cubic centimetre per second. 

(b )  Collisional ionization (inverse of (a ) )  with rate coefficient K ( p ,  c‘) 

Sz-,(p) + e-+ S, + e + e. 

( c )  Radiative recombination with rate coefficient p(p) 

S, + e -+ S,-,(p) + hv. 
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( d )  Photoionization (inverse of (c)) 

S,_,(p) + hv -+ S, + e. 

(e) Collisional de-excitation with rate coefficient K(p,  q)  

S Z - d P )  + e -+ SZ-l(d + e. 

S,-l(d + e -+ SZ-dP) + e* 

(f) Collisional excitation with rate coefficient K(q,p) (inverse of ( e )  ) 

(g) Spontaneous and stimulated emission; A(p, q)  being the spontaneous 
transition probability 

s ~ - ~ ( P )  -+ s%-,(q) 4- hv. 
(h)  Photoexcitation (inverse of (g)) 

S Z - 4 2 )  + -+ S Z - d P ) .  

The  rate coefficients of processes (a ) ,  (b) ,  (c), ( e )  and (f) depend on the electron 
temperature T, of the plasma. 

Processes due to atom-atom, atom-ion and ion-ion collisions are not included 
since the relevant rates are much smaller than those for electron collisions, at least 
for plasmas having a degree of ionization exceeding a few per cent. 

When a non-hydrogenic species is considered the problem becomes much more 
complicated. With more than one electron in the atom, there is more than one 
ionization stage possible and the pairs of processes of the above type ( a )  to (h )  must 
be considered in and between the various ionization stages. I n  addition, these 
processes should be extended to include multiply excited states, and autoionization 
and dielectronic recombination must also be included. 

In  the general case, to obtain the populations of the various quantum states, 
rate equations are set up using the coefficients defined above; however, it is possible 
immediately to make some comments on these processes. In  complete thermo- 
dynamic equilibrium (with both kinetic and radiative equilibrium at the same 
temperature T )  the pairs of inverse processes ( a )  and (b),  ( c )  and ( d ) ,  (g) and (h) ,  
(e )  and (f) occur in detailed balance, i.e. the rate of occurrence of process ( a )  equals 
the rate of process (b) ,  etc. In  this case the distribution between ionization stages 
is given by Saha’s equation, the distribution amongst bound levels is governed by 
Maxwell-Boltzmann statistics, and the free electron velocity distribution is 
Maxwellian-all of these distributions being characterized by the same tempera- 
ture T.  

As already explained, in most laboratory plasmas radiative equilibrium does not 
obtain. However, there are two rCgimes for which useful approximations may be 
made. Firstly, for a high density plasma where collisional effects completely 
dominate radiative ones, there is the possibility of detailed balance between 
collisional processes alone. Thermodynamic arguments, which are independent of 
details of the rate coefficients, may then be applied in this rCgime, which is 
known as local thermodynamic equilibrium (L.T.E.). In  plasmas this equilibrium is 
characterized by the electron temperature T,, since electrons dominate the 
collisional processes. 
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The second rCgime is known as the coronal domain. Here, the plasma is con- 
sidered as optically thin so that radiation absorption and photoionization (pro- 
cesses (d) and ( A ) )  are unimportant; in addition the density is sufficiently low so 
that three-body recombination (process (a)) is also unimportant. Under these 
conditions ionization equilibrium is a balance between collisional ionization and 
radiative recombination, and the actual populations depend critically on the cross 
sections for the processes. 

In  fact, the assumption of optical thinness is often made even when the rate 
equations are to be solved ($7). The  photoexcitation (h)  and photoionization (d) 
processes, as well as the stimulated part of the emission (g) depend on the local 
intensity of the radiation field, so that when the radiation is important, the rate 
equations governing the development of the above processes with time must be 
solved simultaneously with the equation of radiative transfer ( 5  13). This is an 
extremely difficult problem. However, when the plasma is optically thin the terms 
in the rate equations dependent on the radiation intensity are negligible. Only in 
the case of local thermodynamic equilibrium, when populations of quantum states 
are completely determined by collisional effects, do the equation of radiative 
transfer and the population equations become uncoupled-at least in principle. 

4. Local thermodynamic equilibrium 
Thermodynamic arguments may be applied to reversible reactions in an 

isolated system. For a high density plasma, for which the radiative processes 
become negligible compared with the collisional ones, a detailed balance exists 
amongst the collisional processes alone. 

Thus, the equilibrium of each ionization stage can be represented as 
collisional events 

only 
S, + e. _1 SZ--1 -7- 

This is the equilibrium known as local thermodynamic equilibrium (L.T.E.) and 
“the population densities in the specific quantum states are those pertaining to a 
system in complete thermodynamic equilibrium, which has the same total (mass) 
density, temperature, and chemical composition as the actual system. ’’ (Griem 
1962 a). The  temperature used is the electron temperature since this describes the 
distribution function of the species (electrons) dominating the reaction rates. 

Thus the population of levels within a given species is described by Maxwell- 
Boltzmann statistics and the relative total populations of successive ionization 
stages are given by Saha equations, all in terms of the electron temperature T,. 

The population density of state p of (say) the species S,, nZ(p) is thus 

where gz(p) is the statistical weight of the pth state of S,, E,@) is the energy of 
the pth state measured from its ground state (i.e. E,(l) = 0), n, is the total number 
density of S, and B,(T,) is that part of the appropriate ionic partition function due 
to excitations. Thus 
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There is an equation of the type (4.1) for each species of ion or atom S,. Saha’s 
equation may easily be derived by calculating the extremum of the Helmholtz free 
energy of the system (see Ecker and Kroll 1963). 

Consider a plasma consisting of neutral atoms, ions of charge 1 to 2, and elec- 
trons. Let their number densities be no, E,, . . . , n,, n, respectively, and their total 
numbers be No, N,, ..., AL, Ne. 

The Helmholtz free energy F is given by 

F = - k T l n Q  (4.3) 
where Q is the partition function of the whole system and in the limit of no inter- 
actions between the particles of the plasma (when F is equal to F,) this equals the 
product of the partition functions of the individual species. 

with 

2 

where U, and U, are partition functions of an individual electron and an individual 
ion respectively. U, is purely translational, while U, = T,B, where T, is the 
translational and B, the internal or excitational part of the ionic partition function. 
For the reaction 

conservation of charge gives 

and for equilibrium 

SZ-,+ S,+e 

- SAVz-1 = SNZ = SiV, (4.7) 

As F does not contain the pressure P explicitly the condition for equilibrium 
becomes 

aF 8F i?F 
8AT. aN,-, aN, 

+- = 0. _ _ - ~  

Using Stirling’s formula (log n ! = n log n - n for n large) 

(4.9) 

(4.10) 

where the one-particle partition functions U are reckoned from the same energy zero. 
B,( T,) and Bz-l( T,) are written as the internal partition functions for the species 

S, and Sz-l with their energy levels referred to  the respective ground states of the 
individual species. 

Then 
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where, as before, E,-,(m) is the ionization energy of the species SZ-,. This 
equation, which gives the ratio at equilibrium of the total population densities of 
the ionic species S, to that of SZpl, is known as Saha’s equation. Consequently, the 
composition of a plasma with ions up to charge Z is described by Z Saha equations 
and the equation of charge neutrality 

2 

z=o 
ne = Zn,. (4.12) 

In order to write the partition function in the form given by equation (4.4) the 
interactions between the particles making up the plasma have been neglected, 
i.e. each atom is described as if it were isolated, This description immediately 
brings difficulties, even when the partition function B,(T,) (equation (4.2)) for an 
isolated atom is considered. Since the number of discrete levels of an isolated atom 
is infinite, while the energies approach the ionization limit (except for autoionizing 
levels), B,( T,) obviously diverges. This divergence is prevented when interactions 
between particles are included. This interaction also gives rise to a depression of 
the ionization potential from the value applicable to an isolated atom or ion. 

Thus, although Saha’s equations and Maxwell-Boltzmann statistics are valid 
for L.T.E., the actual evaluation of B,(T,) and the ionization potential is a more 
difficult matter. 

Tabulations of Saha’s equation, partition functions, continuum emission 
coefficients and many other properties of plasmas in L.T.E. are given by Drawin 
and Felenbok (1965) for many elements. 

5. The partition functions and the lowering of the ionization potential 
T o  transform an isolated atom Sz-l in its ground state into an electron and an 

unexcited ion, both at rest, the energy E,-,(co) is required, where Ez-l(co) is the 

Ez-,(-) _ _ _ _  - --- - - - - - - - - - - --- 

Figure 3. Representation of the potential distribution in the neighbourhood of an atomic 
nucleus, (a)  without and ( b )  with a constant electric field. 

ionization energy. The  same transformation in an external field requires less 
energy. This can be interpreted as a lowering AE,-l(co) of the ionization energy, 
and is illustrated in figure 3 for the case of a constant electric field. 
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In  a plasma an atom is exposed to the action of the Coulomb fields of the ions 
and electrons (the electric microfield). Therefore a lowering of the ionization 
potential is to be expected. Many attempts at the solution of this extremely com- 
plicated problem have been made recently (Unsold 1948, Ecker and Weizel 1956, 
Margenau and Lewis 1959, Duclos and Cambel 1961, Griem 1962 b, Ecker and 
Kroll 1963, 1965, and others) and many of the results of these papers have been 
summarized by McChesney (1964). One approach (Griem 1962 b, Ecker and Kroll 
1963) is to rederive Saha's equation, but now with an additional free-energy term 
Fe added to the Helmholtz free energy F, to represent interactions between the 
particles. Then, in equation (4.11) Ez-,(co) must be replaced by 

where 
Ez-dw) - AEz-dw) 

(5.1) 

For Coulomb interactions Fe may be calculated as in the Debye-Huckel theory of 
electrolytes (see Fowler and Guggenheim 1952) to be 

where pD is the Debye length given by the equation 

Substitution into (5.1) gives 
AEz-,(m) = Ze2/pD. (5.4) 

The  same result should be obtained if enthalpy is used instead of free energy, 
since the equilibrium cannot depend on the choice of thermodynamic function. 
Thus, the result of Traving (1960) of 3e2/2pD for the neutral atom (see Griem 
1962 b and Griem 1964, p. 140) appears to be in error. 

The  result (5.4) is expected to be valid for densities such that the Debye theory 
is still valid; a condition which is written by Duclos and Cambel (1961) as 

a, + nz (877p~')-'. (5.5) 
Z 

This criterion is obeyed for most laboratory plasmas; however, in cases where 
it is invalid, other theories have to be used. The  paper by Ecker and Kroll (1963) 
contains a critical review of earlier work, as well as careful consideration of the 
limits of validity of the above approach. Harris (1964) attempts, in calculating the 
free energy, to take into account perturbations of the bound electronic states by 
the plasma, as well as the Debye-Huckel free energy Fe. However, it has been 
suggested several times that the final result obtained by her is erroneous, possibly 
due to an incorrect choice of zero of energy (e.g. D. D. Burgess 1965, Ph.D. 
Thesis, University of London). 

When determining the partition function B,(T,), in order not to count a state 
twice, namely, once as a bound and once as a free state, the sum should be trun- 
cated to include only levels whose energies are below the reduced ionization 
limit, i.e. 

E,(P) E d a )  - AEz(m)* (5.6) 
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The usual procedure is to take unperturbed values of the energy levels, and 
Griem (1962 b) indicates that this should not be a bad approximation. A more 
consistent approach appears to be that of Ecker and Weizel(l956) and Smith (1964), 
who attempted to calculate the actual energy levels using Schrodinger’s equation 
with a screened (Debye-Huckel) potential of the form (for species SZ-, of charge 
2- 1) 

After various approximations the results are essentially the same as those obtained 
by using the straight cut-off procedure discussed above. They do, however, 
emphasize that the Debye potential has only a finite number of eigenstates. Recently 
a quantum-statistical-mechanical paper was published by DeWitt and Nakayama 
(1964) who use a fluctuating screened potential rather then the Debye potential 
(equation (5.7)) which is essentially time averaged. These authors obtain results 
which are very different from Ecker and Weizel (1956), although they can recover 
Ecker and Weizel’s values for the static limit. Their theory is difficult to under- 
stand, but, since a fluctuating microfield seems to be a better description of the 
actual plasma, their results cast some doubt on the previous treatments. 

Even with a straight cut-off, there exist certain inconsistencies in the calculation 
of the partition function. At low temperatures, owing to the smallness of the 
exponential terms in the summation for Bz(T,), it is usual only to consider the 
contribution of the ground state. However, once terms other than the ground state 
become important all levels up to the cut-off should be included. The  atomic 
energy level tables of Moore (1949-58) usually only list those energy levels with low 
orbital angular momentum. Various extrapolation procedures (Ritz formulae) have 
been used (Drellishak et al. 1963, Drawin and Felenbok 1965). Yet, in view of the 
other errors involved, it should be sufficient to treat the missing levels of higher 
orbital quantum number as ‘ hydrogenic’, in the sense that the excited electron will 
be moving in a virtually Coulombic (cc l / y )  field. Comparison with hydrogen gives 
the maximum principal quantum number in the partition function sum (equation 
(5.6)), for species of charge 2- 1, as 

where E,  is the ionization energy of hydrogen. 

of the ‘missing’ levels can easily be estimated: 
Then, Griem (1964) gives the following formula from which the contribution 
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where p ’  is the highest principal quantum number for which all the levels of the 
configuration whose outer electron has angular momentum I = p ‘ -  1 are included 
in the energy level tables, and S, and L, are the spin and orbital angular momentum 
quantum numbers of the parent configuration (i.e. the ground state of the next 
highest ionization stage). T o  obtain the second formula in equation (5.8), the 
second summation has been replaced by an integral, with all energies in the sum 
placed equal to the reduced ionization energy and the lower limit of the integral 
neglected. 

In  general, the possible existence of doubly excited and autoionizing levels has 
been overlooked in the partition function summation. 

NIcChesney and Jones (1964) choose to neglect them; yet, these are perfectly 
possible energy states of an atom, each series converging on its own (depressed) 
series limit which is an excited state of the ion. In  obtaining the equilibrium from 
quantum statistics all possible energy states should be included. Since these doubly 
and multiply excited states represent no extra mode of energy loss from the system, 
they too should be included in principle at least (D. D. Burgess 1965, Ph.D. Thesis, 
University of London). In  complete L.T.E. even the autoionizing states must obey 
Maxwell-Boltzmann statistics with respect to the ground state of the atom, with all 
possible levels of the atom included in the partition function; Saha’s equation 
is not completely valid until these levels do reach their Maxwell-Boltzmann 
populations with respect to the ground state. 

While considering partition functions, it should be stressed that the Inglis- 
Teller (1939) limit (the point in a spectral series where, owing to line-broadening 
effects, the lines appear to merge-see 9 11.3.4) should not be used for cutting off the 
summation, because bound states of the atom can exist above this limit. 

Finally, it should be noted that when doing composition calculations for L.T.E. 
(i.e. solving Saha’s equations (4.11) and the equation of charge neutrality (4.12)) 
it is most convenient to use as variables electron number density ne and temperature 
T, since these are independent of high density corrections, whereas the pressure P 
is a derived quantity. Thus 

a a P = - - (FV)  = -- f F +F,) v> aV avl( 0 

which gives in the Debye approximation 

rather than just the kinetic pressure P = (n,+C n ) kT,. Numerically, however, 
for most laboratory plasmas, this correction to the kinetic pressure does not amount 
to more than a few per cent. 

For performing L.T.E. calculations the tables of Drawin and Felenbok (1965) 
are possibly the most complete and the simplest to use. 

T o  a large extent the plasma composition (as a function of ne and T,) is very 
insensitive to the actual value of the depression of the ionization potential which 
is used. Slight experimental errors in ne and T, make it extremely difficult to 
distinguish between the various theories (Olsen 1961). Ecker and Kroll (1963) 
mention other experiments, but at present there is no satisfactory experimental 
verification of the Debye or any other approach. 

* z  
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6. Coronal approximation 
For a low density optically thin plasma, the photoexcitation processes are 

unimportant, and radiative decay rates predominate over collisional decay rates for 
both line radiation and free-bound radiation. This is the situation occurring in the 
solar corona (see Woolley and Allen 1948, Elwert 1952). The population of the 
pth level in equilibrium will, to a close approximation, be a balance between 
collisional excitation (process (f), 9 3) and spontaneous emission (process (g) ). 
Since the total transition probability A(p)  ( =  A(p, q ) )  from an excited level p 
is large, the populations of the excited states will be small, so that only collisional 
excitation from the ground state ( p  = 1) need be considered. Then, at equilibrium 

and therefore 
4 P )  A(P) = 4 1 )  ne K(1, P )  

The K(1,p) are in general strongly dependent on the electron temperature. Since 
for this coronal approximation it is necessary that n(p)  be much less than n( l), this 
must be checked by substituting typical values. Similarly, neglecting the popula- 
tion of the upper bound levels, the state of ionization can essentially be determined 
from the balance between collisional ionization (process ( b )  ) from the ground state 
and radiative recombination (process (c) ). Recombination to all levels p is included, 
since recombination to an excited state is followed immediately by spontaneous 
emission (although in practice P ( p )  decreases rapidly with increasing p ) .  

Then, at equilibrium 

where Xp P(p)  is the total radiative recombination coefficient for transition from 
species S, (not necessarily hydrogenic) to Sz-l, and K(1, c') is the total collisional 
ionization coefficient for the transition from the ground state of SzPl to species S, 
and an electron (with energies corresponding to all possible levels c' of the 
continuum). Thus 

This ratio is independent of the electron number density ne, in contrast to Saha's 
equation (equation (4.11)) which gives an n;l dependence. This is because both 
radiative recombination and collisional ionization are two-body processes with the 
same functional dependence on ne. The ratio nz/nz-l depends critically on the 
cross sections for the processes. 

The  results of Post (1961) can be used as an instructive, qualitative example. 
He  uses approximate cross sections for one-electron (hydrogenic) and three- 
electron (lithium-like) ions to calculate the relative abundances of some common 
impurity ions in a plasma. The  results indicate that in the coronal regime the 
predictions of Saha's equation are a long way out, and that heavy ions can exist at 
extremely high temperatures without being fully stripped of electrons (see figure 4). 
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A. Burgess (1964) has pointed out that, under certain circumstances, for non- 
hydrogenic ions, dielectronic recombination (a process via the autoionizing levels) 
can compete with radiative recombination Z p  P(p).  Further discussion of the 
solution of the rate equations and dielectronic recombination is included in $37 
and 8. 

3 O.Ol0 10 20 30 40 50 60 
Atomic number Z 

Figure 4. Equilibrium ionization : the curves indicate the temperature at which the abundance 
of a given ion is 5Oqb. (After Post 1961.) 

The  coronal type of argument has been applied with considerable success to 
problems of the solar corona (see Seaton 1964 for a review). 

7. General solution of the rate equations 
In  rkgimes where neither the L.T.E. nor the coronal approximations are valid, 

the problem is essentially to solve the differential equations describing the popula- 
tion and depopulation of levels by the processes described in 9 3 .  Considerable 
advances have been made in the last few years owing, partially, to the increasing 
knowledge of cross sections necessary for the rate coefficients and, partially, to the 
use of high-speed computers for the calculations. A considerable number of papers 
have been published dealing with this problem to a greater or lesser degree 
of sophistication. It is impossible to describe all these papers in detail but the 
principles involved are illustrated with reference to the article by Bates, Kingston 
and McWhirter (1962 a), which followed earlier work by Bates and Kingston 
(1961) and McWhirter (1961). 

An optically thin hydrogenic plasma is assumed. The  authors consider the 
process S,-,+S,+e, where S, is a bare nucleus. Then the rate of increase of 
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nz-,(p) with time is given by 

5 1  

where the first term is the rate for collisional processes from p to the continuum c’ 
and to all other levels q. The second term represents spontaneous emission from p 
to levels p with energy below that of p .  The third term represents collisional 
population of p fyom all other bound levels q. The fourth term is the population by 
spontaneous transitions from levels q above p ,  and, finally the last term represents 
collisional and radiative recombination from the continuum to level p .  There are no 
processes involving absorption since the plasma is assumed optically thin. 

For the purpose of computation, it was found convenient to normalize the 
population densities to the equilibrium population densities n,(p), as given by 
Maxwell-Boltzmann statistics and Saha’s equation. Thus 

where I ( p )  = Ez-l(m)-Ez-l(p) is the ionization potential of level p .  In  deriving 
this equation use has been made of the facts that BZ(T,) = 1 for a bare ion and that 
gz-,(p) = 2p2 for a hydrogenic ion. Ionization depression has been neglected in 
Saha’s equation. 

The  principle of detailed balancing then allows the coefficients for collisional 
events to be related; thus 

and 

Equation (7.1) is then rewritten as 

where 

and X = ne/nz. 
This infinite set of coupled differential equations describes the course of 

recombination with time. Examination of equation (7 .2)  shows that for a wide 
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range of plasmas the Saha equilibrium number densities of excited states {nE(p)} 
are much less than the number densities of free electrons and bare nuclei. It 
follows for a still wider range that 

n ~ - l ( P )  <ne ( P  f 1). (7.4) 
Bates, Kingston and McWhirter (1962 a) then show that if this condition (equation 
(7.4)) is satisfied and, in addition, if the mean thermal energy is much less than the 
first excitation energy (i.e. if n,-,(p) < nZP1( l), p # 1) once a steady state is reached, 
considerable simplifications can be made. In  such a plasma a quasi-equilibrium of 
number densities of excited states is established almost instantaneously without 
the number densities of free electrons and bare nuclei being appreciably altered 
(since the nZ_,(p) are very small). This is because the relaxation times for the 
excited levels are very much shorter than the relaxation times for the ground level 
or the free electrons. The collisional rate coefficients between excited levels are 
much greater than the rate coefficients to the ground level and, in addition, the 
ground state cannot decay by spontaneous transitions, so that the quasi-equilibrium 
is one in which the excited levels can be referred to a particular set of number 
densities of ions in the ground state, free electrons and bare nuclei. (An exception 
to the above occurs when metastable levels are possible, for, owing to their small 
spontaneous radiative decay rates, they are not necessarily in a quasi-equilibrium 
with the ground state.) In  consequence dn,-,(p)/dt can be put equal to zero, 
except for the ground state ( p  = l), without causing significant error. 

The  condition for n,_,(p)<n, is summarized by Bates et al. (1962 b) for the 
hydrogenic case as 

ne > 1014+2’ ~ m - ~  where 22‘ = T , / l O O O  for T, in O K .  

It is interesting to note that the above condition also happens to ensure that the life- 
time of an electron in any level of importance in recombination exceeds the time 
the electron takes to describe its orbit. If this were not true a collision could not 
be regarded as a distinct event. 

In  solving the equations (7.3) (now with dn,-,(p)/dt = O,p# 1) an infinite matrix 
was avoided by taking advantage of the fact that, when p is large enough, collisional 
processes are much more important than radiative processes, so that for values of p 
greater than some value (p’ ,  say) n,-,(p) satisfies Saha’s equation 

(i.e. n,-,(p) = n,(p) for p > p ‘ ) .  
Bates et al. (1962 a), using various approximations for the rate coefficients and 

cross sections, have carried out these computations to determine dn,-,( l ) / d t  (which 
is also the rate of disappearance of free charges), for a wide range of electron number 
density and temperature. Their results have been expressed by tabulating the 
quantities xCR and SCR where 

dn,-,( I ) / &  = - dn,/dt = ciCR n,n, - SCRnz-l( 1) ne. (7-5) 
The  quantity oCR was given the name collisional-radiative recombination coeficient 
and SCR the name collisional-radiative ionization coeficient ; these coefficients depend 
only on T,, ne and various atomic parameters. 

Bates et al. (1962 a) give the appropriate scaling laws with 2. Plots of uCR and 
SCR are given in figures 5 and 6 against ne for various values of T,. 
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Figure 7 shows the steady state ionization ratio nz/nzP1 for hydrogen (nZ-l being 
taken equal to nZV1(1)). This figure shows clearly the high density limit, where 
L.T.E.  is valid (nz/nz-l proportional to ne-1) and the low density limit where the 
coronal approximation is valid (nz/nz-l independent of ne). 
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Figure 5 .  Optically thin hydrogen ion plasma : Figure 6. Optically thin hydrogen ion plasma: 
collisional-radiative recombination co- collisional-radiative ionization co- 
efficient aCR. (After Bates et al. 1962 a.) efficient SCR. (After Bates et al. 1962 a.) 
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Figure 7. Optically thin hydrogen ion plasma: ionization ratio of number density in ground 
state (nz=,,(l)) to number of ions (nz=* = ne).  (After Bates el al. 1962 a.) 
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In  fact in steady state 

the equality occuring in a high density plasma for which L.T.E. is valid 

(I(1) = Ezp1(m) since Ez-l(l) = 0). 

Investigations by Byron, Stabler and Bortz (1962), Hinnov and Hirschberg 
(1962) and Makin and Keck (1963) have resulted in relatively simple analytic expres- 
sions for the collisional-radiative rate coefficients which are valid over certain ranges 
of conditions. An alternative approach is that of D’Angelo (1961). He  considered the 
complicated reaction paths followed by individual electrons, but his final results are 
essentially in agreement with those of Bates e t  al. (1962 a). 

Calculations using two simple physical models, one due to Wilson (1962) and the 
other to Griem (1964), are able to reproduce closely the results of Bates et al. (1962 a) 
and give some insight into the processes. 

It is known that the collisional cross sections between closely spaced levels 
increase with principal quantum number, whereas the corresponding radiative 
decay rates decrease. 

Owing to the very short electron-electron collision time, there is in general a 
Maxwellian velocity distribution for the free electrons ( 5  9). The  physical picture 
is that this thermal equilibrium in the continuum extends down to the upper 
bound levels owing to the high collisional rates between the upper bound levels and 
the continuum. Since this is imposed on the upper levels by the free electrons, the 
thermal equilibrium of the bound levels is linked to the continuum and their 
populations are given by the modified Saha equation (equation (7.2)). There is 
therefore some level in the ion, known as the ‘thermal limit’ (Wilson 1962), above 
which the distributions are thermal (and consequently the levels are called thermal) ; 
below the thermal limit the distributions can be approximated by a coronal dis- 
tribution linked to the ground state. 

For low electron densities, for which the coronal approximation is applicable, 
the thermal limit is close to the ionization limit. As ne increases, the thermal limit 
drops lower and lower until at sufficiently high densities it reaches the ground level 
and all levels have a thermal population (i.e. Maxwell-Boltzmann and Saha’s 
equations are valid). 

Wilson’s (1962) simplified picture is for what he calls the ‘semi-coronal’ 
regime. H e  defines the thermal limit p ,  as the level at which upward and downward 
transitions are equally probable (balancing collisional ionization and collisional 
excitation from that level with the total radiative decay and collisional de-excitation 
from that same level). He  then considers this thermal limit to be close to the 
ionization limit (hence the term ‘ semi-coronal’), so that, as in the coronal approxima- 
tion, all bound levels intermediate between the ground level and the thermal limit 
may be neglected. In  determining the ionization ratio, the only processes which 
need to be considered as contributing to ionization and recombination are the 
processes of radiative decay from thermal levels above the thermal limit and 
collisional excitation into thermal levels. When a transition from a thermal level 
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occurs, the level is immediately filled from the continuum, so maintaining a thermal 
population. 

Defining the coefficients at and S,, such that 

and 

the equation, similar to (6.2) for the ionization ratio, is, for the semi-coronal 
rCgime, - 

n, K(l ,c ’ )+S,  

c P(P)+% 
-- - 

Pt--l nz-1 (7.9) 

p=1 

Griem (1964) in his model considers p’ to be the lowest principal quantum number 
for which collisional excitation is still as probable as radiative decay. He then says 
that the effective ionization rate is approximately equal to the sum of the collisional 
rates for all levels less than p’ into all levels greater than p’,  because, once an electron 
gets into such states greater than p‘, it most likely becomes a free electron before 
cascading down again. This is because for almost all levels the cross sections for 
excitation from a given level are much larger than those for de-excitation from the 
same level. 

Similarly, the effective recombination rate is estimated by the sum of collisional 
and radiative rates from all levels greater than p‘ to all levels less than p ‘ .  Using 
approximations for the required cross sections in hydrogen, Griem obtains analytic 
expressions for aCR and SCR which are remarkably close to those of Bates et al. 
(1962 a). 

Recently many further calculations have been made using collisional-radiative 
decay models similar to that of Bates et al. (1962 a). 

The  instantaneous population densities of the excited levels of hydrogen-like 
ions in a plasma are calculated by McWhirter and Hearn (1963) and Bates and 
Kingston (1963), and results are obtained for the power lost by line radiation, 
radiative recombination and bremsstrahlung. 

Bates et al. (1962 b) discussed a relatively simple extension to optically thick 
plasmas. Detailed calculations were carried out on hydrogen-like plasmas, for the 
following cases: (i) plasmas optically thick towards lines of the Lyman series, 
(ii) plasmas thick towards lines of all series, and (iib) and (iic), plasmas as in cases 
(i) and (ii) but also optically thick towards the Lyman continuum. For instance, if 
the Lyman lines are completely absorbed the downward radiative transitions from 
levelp to level 1 are balanced by reverse upward transitions. It is therefore necessary 
to remove all terms involving the spontaneous transition probabilities A(p, 1) from 
the set of equations (7.3) governing the equilibrium. This effectively makes level 
2 stable with respect to radiative transitions, so that when the equations are solved 
the term in dnz-,(2)/dt is retained. The  authors find that self-absorption may 
reduce the recombination coefficient 09 considerably even in the low density limit. 
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The experimental results of Irons and Millar (1964) and Cooper and Kunkel(1965) 
are in agreement with the calculations of Bates et al. (1962 b) for a plasma opaque to 
Lyman radiation. 

In  two further papers by Bates and Kingston (1964 a, b) recombination and 
energy balance in a decaying magnetically confined plasma were considered : 
firstly for an H-HA-e plasma and then for a He-He+-e plasma. These take into 
account not only the possible differences between electron, ion and atom tempera- 
tures but also losses to the walls. The  quasi-equilibrium T, and Ti and corre- 
sponding collisional-radiative recombination coefficient aCR are calculated for a 
wide range of optically thin and optically thick plasmas. Comparison with the 
experimental data of Hinnov and Hirschberg (1962) and Motley and Kuckes (1962) 
shows quite good agreement. 

Drawin, in a series of papers, by solving the rate equations, has computed 
population densities and in some cases the relaxation times necessary to obtain a 
steady state. An optically thin hydrogen plasma is considered in Drawin (1964 a) 
and an optically thin helium-1 plasma in Drawin (1964 b). For helium I, col- 
lisional processes taking into account the metastable 2% state are included. 

Drawin (1965, Euratom-CEA Rep. FC 290) computes the populations of 
optically thin He 11, using older cross sections which are zero at threshold and new 
values which are finite at threshold. He finds that the populations of excited states 
do not depend so strongly on the analytical form of the excitation cross section as the 
pure coronal conditions suggest, owing to strong mutual coupling of excited states. 
Drawin (1965) considers modifications of the optically thin hydrogen results when a 
superposed diffusion current of neutral hydrogen atoms is included. Drawin (1965, 
Euratom-CEA Rep. FC 302) takes into account, for hydrogen, He I (including 
metastables) and He 11, the possibility of various amounts of resonance absorption 
by an appropriate multiplication coefficient for the spontaneous transition proba- 
bility A(2, l ) .  Good agreement has been found between these calculations and 
experiments carried out in a Penning discharge (Drawin et al. 1965). 

There are many more examples of the collisional-radiative or simpler coronal 
type models being applied to the analysis of radiation from high temperature 
plasmas, taking into account the transient nature of the plasma by solving the time- 
dependent equations. 

Perhaps the most detailed example is that of Kolb and McWhirter (1964), 
who carried out an analysis for theta-pinch discharges by coupling the coronal 
equations to the two-fluid hydromagnetic equations and took into account radiation 
losses from carbon, nitrogen, oxygen and neon impurities in a deuterium plasma. 
They showed in fact that a few per cent impurities have a drastic effect on the 
electron temperature (which is significant for the interpretation of many proposed 
thermonuclear discharges-see 3 18). Results of Bogen et al. (1964) show only 
qualitative agreement with the predicted time variation of T,, but quite good agree- 
ment for the maximum values. 

Other examples of calculations of the radiation from high temperature gas 
discharges and experimental comparisons are listed below, space being insufficient 
to comment on them in detail. 

Hobbs et al. (1962) and Burton and Wilson (1961) study ZETA, the latter paper 
taking into account both a loss rate and injection of neutral atoms. 
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Jahoda et al. (1963) analyse the 0 VIII spectrum from the SCYLLA I theta-pinch 
and obtain qualitative, although not quantitative, agreement. 

Hinnov (1964) interprets the observed impurity radiation in a discharge of the 
C-stellerator. 

Goldman and Kilb (1964) use the rate equations to determine the time of 
appearance of various impurity lines in a deuterium theta-pinch plasma, and from 
this infer an electron temperature. 

Oertel and Griem (1965) discuss the effects of spatial gradients and transient 
behaviour on spectral line radiation from impurities in a low energy theta-pinch 
plasma. 

Eckerle and McWhirter (1966) consider departures from L.T.E. in the plasma 
produced by a magnetically driven shock wave, and show that, under certain 
circumstances, L.T.E. relations cannot be used, but the plasma has to be described 
through aCR and SCR coefficients of Bates et al. (1962 a, b). 

Although quantitative comparison is often difficult, owing to uncertainties both 
in cross sections and in actual conditions of the discharges, most of these calculations 
predict at least the gross behaviour of the discharge. None of the above treatments 
takes into account the phenomenon of dielectronic recombination (in fact, most of 
the analyses apply to hydrogenic systems only). Owing to the possible importance 
of this process, especially in the coronal rCgime, it will be considered in the next 
section. Also the above treatments include absorption only in the crudest possible 
way; the far more difficult problem of solving the rate equations coupled to the 
radiative transfer equation is briefly discussed in § 13. 

8. Dielectronic recombination 
In  dielectronic recombination a radiationless, reversible transition (inverse 

autoionization) takes place between an ion S, and an electron to give a doubly 
excited bound level of SZ-,, denoted by S,-,**, followed subsequently by a 
radiative transition to a singly-excited state of SZpl, denoted by S,-,(p), below 
the ionization limit. 

Thus 
S, + e + SZ-,** + S,-,(p) + hv. 

For this process to occur S,-l must have at least two electrons, so that it is not 
possible in hydrogenic systems. 

The  corresponding recombination coefficient aD, via a particular state d”  (see 
figure 2), is given by Bates and Dalgarno (1962) as 

where A(d“,p) is the probability of the radiative transition between doubly excited 
level d” (  SZ-,**) and level p, A,(d”) is the probability of the autoionizing transition 
to level d ” ,  gZ-,(d”) is the statistical weight of S,-,**, gz(l) is the statistical weight 
of S, (assumed to be in its ground state) and E,. is the amount by which the energy 
of Sz-l** exceeds the ground state energy of S,. 
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At low temperatures, owing to the exponential factor, only a few states con- 
tribute (Bates 1962). Recently, however, A. Burgess (1964, 1965) has shown that at 
high temperatures a very large number of doubly excited states contribute, and the 
summation over states d” (and p )  to obtain aD (total) must take these into account. 
Calculations for He+ + e are shown in figure 8. Results of Burgess and Seaton (1964) 
for dielectronic recombination of Fe-lj go a long way towards explaining discrep- 
ancies between temperatures of the solar corona obtained from Doppler profiles and 
ionization equilibria. 

Figure 8. Dielectronic recombination coefficient olD(total), for He+ + e. (After Burgess 1964.) 

These results indicate that, in dealing with ions more complex than hydrogen, 
the effects of dielectronic recombination should be considered. 

The  importance of the overall effect for laboratory plasmas is still uncertain. 
Collisional processes involving the doubly excited states will have to be included in 
collisional-radiative decay models ; collisions will reduce the contribution of 
higher states, in the doubly excited series, to the summation involved in calculating 
ciD (total), since close to the series limit collisional ionization becomes more probable 
than radiative decay or autoionization. 

9. Validity of local thermodynamic equilibrium and coronal 
approximations 
This topic has been investigated by Griem (1963, 1964) and by Wilson (1962), 

For the L.T.E. approximation the following conditions must be satisfied : 
( U )  The electron velocity distribution at any place in the plasma is Maxwellian 

(with corresponding temperature c). 
(b )  Collisional rates are so high compared with radiative rates in any population 

or depopulation process that a pseudo-detailed balance holds for collisional events 
only. 

who have obtained various criteria. 
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(c) The  ions in the plasma do not move to regions of significantly different 
electron temperature in the relaxation time required for their level populations to 
come into equilibrium resulting from collisions with free electrons. 

( d )  In  transient plasmas the equilibrium times are sufficiently short compared 
with the times for a significant change in the electron temperature, so that at any 
time a quasi-stationary near-L.T.E. state may be established. 

Normally the electron Maxwellization time is quite short, but the time required 
for bound levels to equilibrate is much longer. Spitzer (1956) gives the electron- 
electron relaxation time as 

where T, is in O K  and 1nA is a slowly varying function of ne and T,, usually of the 
order of 10. 

For condition (a) to be satisfied for a plasma, it is necessary that tee be much 
shorter than both the heating time and the containment time. Applying condition (6) 
to free electrons, it is necessary that tee must be much less than radiative decay rates 
for free-free radiation (bremsstrahlung). Wilson (1962) showed that this particular 
criterion gives cs 5 x 1 0 1 l l n A o ~ ,  a condition which is completely satisfied at all 
feasible temperatures. 

Because, for almost all levels, cross sections for collisional excitation are much 
larger than those for de-excitation, near L.T.E., the population of a given level is 
mostly determined by a balance between collision-induced transitions from higher 
levels with collisional excitation into these higher levels. The condition (6) for a 
level to be in L.T.E. with respect to all higher levels is equivalent to saying that the 
total radiative decay rate should be much smaller ( <  1/10, say) than the total rate 
of excitation from this level to all higher levels, for in equilibrium this collisional 
excitation rate must equal the collisional population rate from higher levels. 

Griem (1963, 1964), using estimates for the cross sections involved in a hydro- 
genic system, showed that a level of principal quantum number p of Sz-l is in 
equilibrium with higher levels provided that 

where Z 2 E ,  = E,-,(co) is the ionization energy of a hydrogenic ion of charge 
2- 1. This result is in agreement with the more detailed calculations of McWhirter 
and Hearn (1963) and Bates and Kingston (1963). 

For complete L.T.E., Griem considers that the collisional population rate of 
the ground state should be ten times greater than the radiative population rate via 
the resonance transition from the first excited state, and obtains the criterion that 

where E,-,(2) is the energy of the first excited state with respect to the ground 
state (Ez--l(l) = 0). This derivation was for a hydrogen-like species where 
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but it was pointed out that the oscillator strength of the resonance transition cancels 
out, and that the approximation should be reasonable for other species. However, 
it should be applied with care to systems with low-lying resonance levels (e.g. 
lithium-like) where there is the possibility of ground and first excited states being 
in equilibrium without complete L.T.E. Wilson (1962) considers the position of 
the thermal limit ($6) and then derives a condition for the electron density to be 
so large that this limit reaches to the ground state. 

This condition can be written as 

Apart from the difference in the numerical constant, Griem’s condition uses the 
energy of the first excited state whereas Wilson uses the ionization energy. Wilson’s 
condition is more stringent and should be used when low excited states exist. 
These conditions for complete L.T.E. may be relaxed if the resonance transitions 
are self-absorbed and become optically thick, because this effectively reduces the 
radiative population rate of the ground state. 

The  relaxation distances and times of conditions (c) and ( d )  for which the 
electron temperature should not change appreciably are also given by Griem. 
These criteria are very important. Eckerle and McWhirter (1966) have shown that, 
for a T tube, under certain conditions, the state of the plasma lags behind the 
rapidly varying electron temperature owing to the slow ionization and recombina- 
tion rates, although the electron density is quite high enough to satisfy equations 
(9.2) or (9.3). 

For the coronal domain Wilson (1962) gives the condition that his coefficients 
at and S, (equations (7.8) and ( 7 . 7 ) )  should be less than 10% of the corresponding 
coefficients Xp/3(p)  and K(1, c’) used in the coronal equations. 

This can be written for species Sz-l as 

Calculations show that many high temperature laboratory plasmas fall into the 
coronal (or at least semi-coronal) rCgime. 

In  order to apply the coronal equations and the results of Bates et al. (1962 a) 
it is also necessary that the plasma be optically thin-this is discussed in $13. 

10. Line radiation 
In  the preceding sections, especially $34 and 7 ,  it has been indicated how the 

population densities may be found in principle. 
In  this and the following sections the details of the radiation are considered, 

that is, the intensity and wavelength distribution of line radiation and of con- 
tinuum and recombination radiation. 

Before accurate predictions concerning line radiation can be made it is usually 
necessary to classify the transitions involved (see, for example, EdlCn 1964), i.e. if 
Russell-Saunders coupling is applicable, it is necessary to know the quantum 
numbers L,  S and J of both states involved in the transition. 
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Moore’s tables (1949-58) are quite complete for neutral atoms and for species 
of low stages of ionization; however, for transitions involving the highly ionized 
species often encountered in high temperature gas discharges, the classification of 
even the strong lines is not always complete. Various authors have in fact used high 
temperature discharges specifically for classification purposes. These discharges 
have distinct advantages for the excitation of gaseous elements, such as the rare 
gases (see, for example, Fawcett et al. 1961, Bochasten et al. 1963, Fawcett et al. 
1964, Peacock 1964, House and Sawyer 1964, Fawcett and Gabriel 1965). 

There is a most interesting example of how high temperature gas discharges can 
reproduce the conditions of the solar corona. An intense set of emission lines in the 
vacuum ultra-violet between 167 A and 220 A has been observed in the spectrum of 
the solar corona (Tousey 1964, Hinteregger et al. 1964). These emission lines were 
first produced in the laboratory by the toroidal discharge ZETA (Fawcett et al. 1963), 
and later in theta-pinch discharges (Elton et al. 1964, House 1964, House et al. 1964). 
The transitions were ascribed to the element iron, and in further work Fawcett and 
Gabriel (1965) found similar systems of lines for the elements calcium to nickel 
inclusive. Several attempts at classification were made (Alexander et al. 1965, Zirin 
1964) and recently Gabriel et al. (1965) assigned them to various 3p-3d transitions 
in Fe VIII to XII. 

The radiation is described in terms of the Einstein A and B coefficients. Con- 
sider an atom or ion which has quantum states p of higher and q of lower energy. 
The  probability per unit time that an atom in statep emits a photon hv ( = hv,, = hvgP) 
is written as A(p, q ) .  The  induced emission and absorption depend on the intensity 
of radiation I ( v ) ,  and coefficients B(p,q) and B(q,p) are defined such that 
B(p, q )  I ( v )  is the probability per unit time that an atom in state p is induced to 
emit a photon hv. Similarly, B(q,p)I(v) is the probability per unit time that 
an atom in state q absorbs a photon hv. The  total emission probability is 
{A@, 4) + B(p, q )  I (v)} .  In  equilibrium, the total rates in the two directions p -+ q 
and q+p must balance. Thus, if n(p)  and n ( q )  are the population densities of 
atoms in states p and q respectively, then the principle of detailed balancing yields 

n(Q) B(q,P) I (v )  = {A(A 4 )  + B(P, Q) I (v) ln(p) .  
But, in complete thermodynamic equilibrium at temperature T ,  Maxwell- 
Boltzmann statistics must apply, i.e. 

and I ( v )  is given by Planck’s radiation law as 

This leads immediately to 

and 
B(P, 4 )  = g(q)  B(q,P) (10.1) 

(10.2) 
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These coefficients, defined in terms of the intensity, are sometimes known as the 
Milne coefficients. 

Quantum mechanics (Dirac 1958) gives the total rate of emission of energy 
between states Ip’) and I q’), in the electric dipole approximation, as 

(10.3) 

and the absorption cross section a,,,,(v) (the probability per unit time of absorption 
of a photon taking place with an incident photon crossing unit area per unit time 
per unit frequency range) as 

(10.4) 8Tr3 
aQ’,‘(v) = I ( P ’  I 4’) 1’ 

where the factor 
In  the case considered here, the upper and lower states are degenerate with 

statistical weights g ( p )  and g ( q ) ,  so that, dividing (10.3) by hv and summing 0~7er 
states. 

is introduced by averaging over all orientations of the atom. 

(10.5) 

X,,,, I ( p ’  I ex I q’)  1 2 ,  with summation over all components of the upper and lower 
states, is known as the line strength (Condon and Shortley 1935, p. 98). 

The  spontaneous transition probability is often written in terms of the absorp- 
tion oscillator strength fQp, such that 

(10.6) 

These f values may be computed exactly for hydrogen by quantum mechanics. 
They are given by the formula 

(10.7) 

where g(q)  = 2q2 is the statistical weight of the lower level, and g,, is the Gaunt 
(1929) factor tabulated by Menzel and Pekeris (1936). T h e  individual oscillator 
strengths are tabulated for the most important transitions in hydrogen by Green 
et al. (1957). 

Owing to the finite lifetime of the atomic states the transition will not be 
infinitely sharp, Also the plasma will perturb the eigenstates of emitting atoms 
and ions so that the transitions will be both broadened and shifted from their 
unperturbed values (v,,). This gives rise to the line profile +(v) defined so that the 
probability of emission in the interval v, v + dv is +(v) dv. For this to be meaningful 
the width of the profile should be much less than vpp ,  and +(v) is normalized such 
that 

# ( v ) d v  = 1. s line 

The  line profile should not be confused with the actual observed intensity 
distribution since this may be distorted by radiative transfer effects ( 5  13). 
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The power radiated per unit volume per unit solid angle and per unit frequency 

(10.8) 

interval is 
hv 4.1 = d ( v )  A(P, 4) 4 P )  

and the total power radiated in the line per unit solid angle is 

(10.9) 

In  the optically thin case there is no interaction of the radiation with the plasma 
(B(p,  4 )  terms unimportant) and all the radiation escapes, so that, for a homogeneous 
layer of thickness D, the total emitted intensity is 

hv 

hv 
E t  = &A(P, 4 )  f l (P )*  

(10.10) It = I ( v )  dv = - A(p, 4 )  ~ ( p )  D. .r 471. 
The total number of photons absorbed per unit volume per second is 

n(4) B(4, P )  I(v)* 
But, for an isotropic intensity distribution, the photon flux per unit frequency 
range is 4nI(v)/hv, so that multiplying up33/pl(v) of equation (10.4) by this value gives 
the probability of absorption for an atom in sub-level 4’. The total number of 
absorptions per unit volume is found by multiplying by the number density of the 
sub-level (= n(q)/g(q) ) and summing over all the components of the initial and final 
states. Therefore 

and 

(10.11) 

Equations (10.11) and (10.5) are, of course, consistent with (10.1) and (10.2). 

of line radiation absorbed is 
In  terms of the absorption coefficient u,,(v) for all components, the total energy 

Thus, assuming the intensity remains constant over the line profile, comparison 
with the above gives 

(1 0.12) 
and 

(10.13) 
hv 

%,(V> = 47.r B(2, P )  d ( v )  

where now +(v)  refers to the profile for absorption. 
In  order to be able to measure the oscillator strength (or A(p ,g ) )  by emission 

measurements, not only must the total intensity be measured (equation (10.10) ), 
but also the population density n(p )  of the upper state must be known. This means 
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the use of a light source whose properties are accurately known. In  general this 
must be a plasma in local thermodynamic equilibrium, since only then do the 
population densities of the quantum states become independent of detailed rate 
coefficients. Arcs and shock tubes may often be used for neutral and singly ionized 
species, but it is extremely difficult to obtain highly ionized species in L.T.E. 

A detailed review of oscillator strength measurements has been given by 
Foster (1964) and of measurements and calculations by Nicholls and Stewart (1962). 
A bibliography of available results has been compiled by Glennon and Wiese 
(1962, 1963)f. Although much experimental work on neutral elements is available, 
in plasma spectroscopy ionized species are important and here, owing mainly to 
difficulties of obtaining L.T.E. plasmas, the available experimental measurements 
are very sparse. 

Mastrup and Wiese (1958) have made measurements on 0 11 and N 11, Olsen 
(1963) on Ar 11, Koopman (1964) on Ne 11 and Berg et al. (1964) on 0 11 and 
0 111; the first two sets of authors used stabilized arcs and the last two shock tubes. 
Although relative oscillator strengths for a given species may be fairly accurate, 
the absolute values of oscillator strengths for ionized species are not much better 
than about 20 to 30%. 

Often, therefore, experimental results for a particular transition are not avail- 
able, and one has to resort to calculation. The electronic wave functions (Ip) and 
19)) are written in terms of sums of products of single-particle wave functions which 
are themselves products of angular and radial parts. The  angular part of the wave 
function can be handled by methods due to Racah (1942, 1943, 1949) (see Edmonds 
1957), and the resulting formulae for transition probabilities in LS coupling are 
given by Rohrlich (1959) and Kelly (1964 a). 

These results are expressed in terms of the square of the radial matrix element, 
which for a transitionp’l’-tp”l” ( p  and 1 are principal and orbital quantum numbers 
of the ‘jumping’ electron) is 

(1 0.14) 

where I ,  is the larger of I’ and I” and RPz(r) are normalized radial wave functions 
of the jumping electron multiplied by Y. The problem is to calculate the Rpl(r) ,  
because exact solutions only exist for hydrogen and other one-electron systems. 
Since it is necessary to integrate over the product of two different wave functions, 
it is easy to show that the determination of u2 is much less accurate than the deter- 
mination of energy eigenvalues, which involve only the square of one wave function. 

Various methods for obtaining the RPz(r) exist. Probably the most accurate 
method to obtain these wave functions is via the Hartree-Fock self-consistent field 
(Hartree 1957) and in certain cases the results obtained by this method may be 
accurate to better than 10% (i.e. see Trefftz et al. 1957, Kelly 1964 b, and Pfennig 
e t  al. 1965). Also used are variational calculations, in which wave functions are 
found by minimizing the energy matrix elements (see Salpeter and Zaidi 1962) and 
numerical solutions of Schrodinger’s equation with a potential chosen to give 

For further reference see W. L. Wiese, M. W. Smith and B. M. Glennon, A Critical Data 
Compilation of Atomic Transition Pifobabilities for  Hydrogen through Neon, NSRDS-NBS 4, 
Vol. 1. 
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correct energy values (see Stone 1962), but these, as with the Hartree-Fock method, 
involve a considerable amount of computation. 

Much simpler, and in many cases equally accurate, is the Coulomb approxima- 
tion of Bates and Damgaard (1949) (see also Seaton 1958). This makes use of the 
fact that often the major contribution to the integral for u2 (equation (10.14)) is from 
a region of large Y where the potential is closely Coulombic (i.e. -Ze/r). Hydro- 
genic wave functions with an effective principal quantum number are then used. 
The  Coulomb approximation is not valid for transitions whose wave functions 
strongly overlap with the core (mainly s electrons and to some extent p electrons), 
but for outer electrons the accuracy can be taken as about 20%. A tabulation of 
oscillator strengths in the Coulombic approximation with LS coupling is given by 
Griem (1964). For simple atoms, i.e. those with one electron outside a closed shell, 
agreement between this theory and experiment is usually better than 10%. This 
method is particularly useful for transitions between highly excited states. 

In  the screening approximation of Layzer (1959) and Varsavsky (1961), screened 
hydrogenic radial wave functions are obtained from an expansion of the wave 
function in inverse powers of the nuclear charge. This method should be suitable 
for highly ionized systems but, as yet, there is not always good agreement with 
results obtained by other methods. 

When LS coupling cannot be applied, other methods, such as the intermediate 
coupling approximation of Garstang (1954), have to be used. Quite good agreement 
between Garstang’s results and measurements by Olsen (1963) for Ar 11 have been 
found. 

Only allowed transitions have been considered here; for a review of forbidden 
transitions see Garstang (1962). However, in a plasma the perturbation due to 
surrounding particles often mixes the wave functions of an atom sufficiently to 
allow transitions which are forbidden if the atom is isolated. 

11. Line profiles 
The shape of a spectral line is important since it contains information con- 

cerning the environment of the emitting atom or ion in the plasma. The  profile of 
the actual line observed is modified by radiative transfer ($13), and there can be 
saturation at or below the black-body intensity (self-absorption) or absorption in 
colder boundary layers (self-reversal). However, when the plasma is optically thin 
the profile of the observed radiation will be the same as the emission line profile 
+(a) (which is, for a given atom, such that +(w)dw is the probability of emission 
between w and w+dw) .  

The  broadening mechanisms which may be important in a plasma are Doppler 
broadening, natural broadening and Stark (sometimes called pressure) broadening. 
Estimates for resonance broadening and van der Waals broadening (Griem 1964) 
show that these mechanisms can usually be neglected. In  the past few years, 
following the work of Baranger, Griem and their co-workers, the Stark broadening 
theory has been considerably improved. (Detailed reviews of this modern theory 
are given by Baranger (1962) and Griem (1964).) 

In  this section the broadening mechanisms are reviewed and the results of the 
modern theory are discussed at some length. 
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1 1.1. Natural line broadening 

dispersion profile (Lorentz profile) (see Heitler 1954) : 
This broadening is due to the finite lifetime of the excited states and yields a 

where 

(w - w )"-I +(U) = * 1 (1 + -;;zo-, 

/+(w)dw = 1 

(11.1) 

and wo is the frequency at the line centre. The  half half-width wN depends on the 
Einstein transition probabilities of all transitions originating from the upper and 
lower levels (principal quantum numbers u and 1 )  

(11.2) 

In  laboratory plasmas this is almost always negligible (except for autoionization 
broadening of doubly excited states). 

11.2. Doppler broadening 

(as seen by an observer at rest) is altered by the Doppler effect such that 
Owing to the motion of the emitting atom the frequency of the emitted radiation 

Aw 'U - 
w c  

(11.3) 

where the line of sight is parallel to the velocity 'U of the atom. 

line profile will have a Gaussian shape 
If the emitting atoms have a Maxwellian velocity distribution, the broadened 

(11.4) 

where p2 = 2kqwo2/Mc2,  M is the ion mass and 
half-width wD is given by 

the ion temperature. T h e  half 

(11.5) 

Apart from full kinetic equilibrium the ion temperature is not necessarily the 
same as T,. The  electrons and ions may have quite different kinetic temperatures, 
even though they both have very nearly Maxwellian distributions. This is because 
momentum transfer cross sections are small for particles of very different masses. 
I n  the general case the Doppler profile has to be related to the velocity distribution 
of the emitting species (see 8 15.6). 

1 1.3. Stark broadening or pressure broadening 
When the phenomenon responsible for line broadening consists of interactions 

between the radiating atoms or ions, the broadening is density dependent, in 
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contrast to that in the above mechanisms. Since the radiator is much more strongly 
perturbed by charged particles than by neutral ones, only electrons and ions need 
be considered as perturbers in a highly ionized plasma. The  interaction between 
the radiator and the perturber can usually be described by the first term in a 
multipole expansion of the interaction, i.e. as 

V( t )  = -d.E (11.6) 

where d is the dipole moment of the radiator and E is the electric field produced 
by the perturber at the centre of the radiator. 

In  line-broadening calculations it is generally a valid approximation to consider 
the perturber as a classical particle describing a classical path. (For a brief dis- 
cussion, see $11.3.3.) One can then consider the radiating atom to be perturbed 
during the duration of a collision defined as -ro~ppIIu where p is the impact para- 
meter and % the mean velocity of the perturber. Because of the usually large 
difference in electron and ion velocities, the two collision times are very different. 
Often for electrons, the duration of the collision T~ can be regarded as short com- 
pared with the time between collisions. This enables the electron broadening to be 
calculated on the basis of the impact approximation, for which the emitting system 
is virtually unperturbed most of the time and the broadening is described in terms 
of impacts which are well separated in time. For the long-range Coulomb inter- 
actions the collisions can never be separated in time; however, if the average inter- 
action is weak (in so far as the interactions cause only small perturbations of the 
radiator) the collisions may be considered to act separately. (This point is further 
discussed in $11.3.3.) T o  make this impact approximation the duration of the 
collision must obviously be less than the unperturbed lifetime of a state. 

For the slowly moving ions the perturbation is practically constant over the 
times of interest (which are, at most, of the order of the inverse of the linewidth 
in frequency units), so that their motion may be neglected completely. Their 
effect is calculated via the static Stark effect, taking into account the statistical 
distribution of the electric fields at the emitting atom or ion. This is known as the 
quasi-static approximation. 

A general procedure is firstly to determine the shifts and intensities of the 
various components of a given line (the Stark pattern) of the radiator for an arbitrary 
electric field E (see, for instance, Bethe and Salpeter 1957). The impact approxi- 
mation is then used to calculate the electron-broadened profiles of the components, 
and finally the whole broadened pattern is averaged over the statistical distribution 
of the ion field. 

In  order to illustrate the principles of the quasi-static and impact approxima- 
tions, very simple examples are considered. 

11.3.1. Quasi-static broadening. The simple theory of quasi-static (or statistical) 
broadening (Holtsmark 1919) has been well described by Margenau and Lewis 
( 1 95 9). 

In  the simplest form of this theory the emitter is assumed to be perturbed by the 
nearest ion only. (This form of binary interaction describes the line wings adequately, 
but breaks down at the line centre when the description should be in terms of many 
weak perturbations by distant ions.) 
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The probability of finding the nearest ion at a distance Y (and no ion any nearer) 
is, if interactions between the charged perturbers are neglected, 

(11.7) 

where pm is the average distance between perturbers given by 
+n-n = pm-3 

where n is the density of perturbers. Since the field at the emitter due to the 
nearest ion is E = Ze/r2,  the probability @(E)  of the emitter being subjected to an 
electric field E (normalized, such that 

JoE=%(E) = 1) 

is in this nearest-neighbour approximation 

(11.8) 

where E, is the value of E at pm. More generally, for no interaction between the 
perturbers 

where W,(P) is the Holtsmark ion field strength distribution function, and P = E/Eo. 
The shift of the energy levels in this static field is then calculated by the usual 

methods of quantum mechanics (see Bethe and Salpeter 1957). 
The  shift of one Stark component may be written as 

dP(P) = WXP) dP 

(11.9) 

where Y is the distance between the perturber and emitting atom and the coefficients 
C,, are constant. p = 2 for atoms subject to the linear Stark effect and p = 4 for 
quadratic Stark effect. Substitution in the distribution function gives the line 
profile. 

In  general 
d(Av)d(Av) = W(P)dP 

p = - = -  
Eo Avo 

giving (i) for linear Stark effect ( p  = 2) 
E AV 

and (ii) for quadratic Stark effect (,U = 4) 
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In  more detailed quasi-static theory the interactions between the perturbers 
have to be taken into account in the calculations of the ion field strength distribution 
function (similar to W,(P)). Mozer and Baranger (1960) have evaluated the 
distributions of the field at neutral atoms and singly charged ions, taking into 
account Debye shielding by electrons and pair interactions (ion-ion correlation) 
between the ions. Their results are likely to be accurate if R = pm/pn 6 1. 

The  AV in equation (1 1.9) is calculated quantum-mechanically on the assumption 
that the field at the emitter is uniform. However, for close perturbers there is a 
large field gradient, i.e. the quadrupole interaction has to be considered. Muller 
(1965) argues that for atoms having only a quadratic Stark effect (with frequency 
perturbation proportional to 1 / r4 )  the quadrupole interaction (proportional to l/r3) 
can be important for low densities. He in fact indicates that, within the quasi- 
static approximation for ions, this quadrupole term should dominate the quadratic 
Stark effect in neutral helium at densities less than about 1016-1017 particles per 
cubic centimetre. T o  explain asymmetries in the profile of La: observed by Boldt 
and Cooper (1964), Nguyen-Hoe, Drawin and Herman (1964) have calculated the 
quasi-static ion broadening taking into account both linear and quadratic Stark 
effect for an intermolecular ion field having both a dipole and a quadrupole 
component. More recent work by Griem (1965) is qualitatively in agreement with 
results of these calculations, but in detail there is strong disagreement. 

11.3.2. Impact approximation. The  features of the impact approximation are dis- 
cussed with reference to the theory of Lindholm (1941) using a quasi-classical 
approach (see Traving 1960 and Sobel’man 1957). 

In  the quasi-classical approximation the calculation of the intensity distribution 
I ( w )  in a line amounts to the Fourier analysis of the oscillations of the equivalent 
atomic oscillator. In  the general case the functionf(t) describing the dipole moment 
of a perturbed oscillator has the form 

= A(t) exp Cjwn t +jq(t)> (1 1.10) 

where un is the unperturbed frequency and q ( t )  is the sum of the phase changes in 
the interval 0 to t .  

The mean intensity radiated by the oscillator in a given frequency interval is 
proportional to the power spectrum off(t) (see, for instance, Freeman 1958). This 
can be shown to be equal to the time average of the square of the modulus of the 
Fourier component I F ( u )  I of the varying dipole moment of the oscillatorf(t). Thus 

= < I F(u) I >av2 (1 1-11) 

where ( ),, denotes a time average. 
By means of the Wiener-Khintchine theorem (Wiener 1930, Khintchine 1934), 

this is expressed in terms of the more convenient autocorrelation function (I)($). 
6 
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Thus 

where 

I ( u )  = /ym@(s) exp ( - j u s )  ds (11.12) 

= ( f * ( W t  + S)>av (1 1.13) 
( f * ( t )  is the complex conjugate off(t)). 

This autocorrelation function, or its quantum-mechanical equivalent, has been 
the starting point for many line-broadening calculations (see Margenau and Lewis 
1959, Traving 1960, Baranger 1962, Griem 1964). 

In  the Lindholm theory A(t) is put equal to 1 in equation (11.10) andf(t) is 
represented by 

f(t) = exp { . b o  t +.fdt)}* (1 1.14) 
The  amplitude of the oscillation stays constant, i.e. it is assumed that no transfer 
of energy from the perturber to the oscillator occurs. There is thus no mechanism 
in this particular theory for the perturbation to induce transitions to neighbouring 
levels, and the perturbation is said to be adiabatic. 

T o  calculate I ( u ) ,  and hence the line profile, it is necessary to calculate @(s). 
Put 

+(SI = @(s) exp ( - h J o  
(11.15) 

Now, to calculate the differential of +(s) note that 

exp [ M t  + s + As) - dt)I l  - exp [ j M t  + s) - T(t))l 

= exp [ M t  + s) - rl(t))l {exp (h’) - 1) (11.16) 

(11.17) 

where 7’  denotes the additional phase shift in time As ( = (87j2s) As). Thus 

*+(s) = +(s + As) - +(s) = ( ~ X P  [j{,(t + s) - dt ) ) l  { ~ X P  (1’7’) - l)>av 

where the time average has been taken. 
This expression for A+(s) can be simplified further if a time interval As can be 

found such that: 
(i) As is sufficiently large so that the phase changes during As are statistically 

independent of the instantaneous phase ~ ( s ) .  The mean value of the product may 
then be replaced by the product of the mean values of the factors. 

(ii) As is sufficiently small so that A+(s) can be replaced by a differential. Thus 

d+(s) = ( ~ X P  (h’) - 1>av* (1 1.18) 
Averaging these factors separately is the essential step in the impact approximation, 
since (i) above will be true if an impact occurs during As. (The validity of this 
approximation will be discussed later in this section, and in § 11.3.3.) 

By the ergodic hypothesis the time average of a quantity is the same as the 
statistical average of this quantity over the ensemble. In  this case the average has 
to be taken over all possible collisions which cause a phase change in the interval 
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As( = ds in differential form). If n is the perturber number density and 6 is the 
mean perturber velocity, the number of impacts with the oscillator with impact 
parameter between p and p + dp is 

nads 2xp dp.  (1 1.19) 

Since the phase shift ~ ’ ( p )  due to a collision is a function of the impact para- 
meter, summing over all possible collisions in As gives 

(exp (j,’) - l)aTT = n6ds 1 --2x[exp {jq’(p)} - 11 p d p  
J O  

= nads(D, -jgi) (1 1.20) 

where 0, and ui (the optical cross sections) stand for -2x times the real and 
imaginary parts of the integral. 

In  order to write the above integral (equation (11.20)) it has been assumed that 
the phase shift due to each impact may be considered separately and that they are 
completed in time As. Thus  

or 
d+(s) = - n6ds(crr -jgi) +(s) 

+(s) = exp { - n@(u, -jui) s}. (1 1.21) 
Converting to @(s) and performing the Fourier transformation gives finally that 

(1 1.22) 

This is a dispersion or Lorentz profile of half half-width w = n%a, and shift d = nEui 
from the unperturbed central frequency wo. 

The  phase shift ~ ’ ( p )  is easy to calculate in this adiabatic approximation, for, 
since no transitions between levels are caused by the perturbers, the state of the 
emitter is described at all times as if the perturbers were at rest, i.e. by the ordinary 
quantum mechanics of the Stark effect. 

The  frequency shift of the line due to a perturber at distance Y from the emitter is 

(1 1.23) 

where p = 2 for linear Stark effect and p = 4 for quadratic Stark effect (as in 
9 11.3.1). For a neutral emitter the classical path is a straight line and 

Therefore 
Y = { p z  + 3 ( t  -  to)*})'^^ for impact at time to. 

( 1 1.24) 

The  integral should be over the time that the perturber interacts with the emitter, 
but a sufficient approximation results when it is performed from -CO to +CO. 

This expression for the phase shift ~ ’ ( p )  can then be put into the integral of 
equation (11.20) and ui and or determined (see Traving 1960). 
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In  the case of the quadratic Stark effect (p = 4) the integration is performed 

2w = 11.37 C42/3?j1/3n and d/w = J3 (exact). (11.25) 
For the linear Stark effect (p = 2) the integral can be evaluated analytically 

but it diverges at large impact parameters, and has to be cut off at some impact 
parameter pmas. Thus 

numerically with the result that 

(1  1.26) 

This does not depend critically on pmax, but it is reasonable to take pmax about 
equal to the Debye radius pD, since the fields of the perturbers are screened out over 
this distance. However, the impact approximation is never valid for too large p 
(see below). 

These results should be compared with the earlier theories of Lorentz (1906) 
and Weisskopf (1932). In  the Lorentz picture (see White 1934) collisions completely 
interrupt the emission and the half half-width w is equal to the collision frequency. 
According to Weisskopf, collisions are effective if the phase shift exceeds some 
value of the order of unity, i.e. 7 j ’ ( p )  > 7 j 0 -  1. Thus collisions are effective for all 
impact parameters less than pw (the Weisskopf radius) such that (from equation 
I1 1.24) I 

I ,  

(1 1.27) 

The frequency of such collisions is nrfJpTTT2, so that the Lorentz-Weisskopf half- 
width is 

w = nDvpxv2. (1 1.28) 
The result obtained above (11.25) for the width for ,u = 4 is obtained when 
7jo = 0.64. The Lorentz-Weisskopf theory, however, predicts no shift. 

The  validity of the impact approximation can now be examined in more detail. 
From equation (1 1.21) significant contributions to +(s) only occur when nga, s 5 1 
(otherwise exp ( -%%U, s) becomes small) so that times of interest in determining the 
line profile are less than about (nfJur)-l. This condition, nBu,As< 1, ensures that the 
differential form for +(s) can be used in equation (11.21) and equation (11.18). 
As has to be much larger than the times for which there is a non-vanishing per- 
turbation, i.e. the duration T~ of a typical collision, since for an incompleted collision 
7’ would not be independent of 7j(s). Thus 

To  < AS 5 (n@ff,.)-’ = W-’ (1 1.29) 

(w in angular frequency). But, according to Lorentz (1906), the half half-width w 
is equal to the collision frequency, so that the condition T ~ < w - ~  is equivalent to the 
statement that the duration of a collision has to be much shorter than the average 
time between collisions. 

Thus, if T~ < U-1 is fulfilled, both conditions necessary to write equation (1 1.20) 
are satisfied (i.e. each impact may be considered separately and it is completed in 
times of interest). 

From the properties of the Fourier transformation, for a frequency separation 
of AW from the line centre, times of interest s are given by SAW E 1. But for the 



Plasma spectroscopy 73 

impact approximation to be valid these times must be greater than the typical 
collision time T ~ .  Thus 

(1 1.30) 

a condition which gives the frequency range over which the line profile may be 
calculated by the impact approximation. 

Since T~ N pi??, it is obvious that this condition can never be satisfied for very 
large p .  

11.3.3. Modern  S tark  broadening theory f o r  electrons. There have been many 
simplified pictures of the broadening effects of collisions on a spectral line (Lorentz 
1906, Weisskopf 1932, Lenz 1953, Lindholm 1941, Foley 1946), and most of these 
involve the adiabatic assumption, i.e. they replace the full interaction between the 
perturbing electron and the radiating atom by a potential depending only on the 
position of the perturber. However, electrons can, and often do, cause transitions 
to neighbouring states and these inelastic collisions make the adiabatic assumption 
invalid. A related difficulty is the degeneracy of the atomic states, i.e. a collision 
can be elastic and still change the state of the atom, again making the adiabatic 
approximation invalid (Spitzer 1940). Also the broadening of lines, already closely 
split by the ionic field, has to be calculated. Since electron and ion effects are of 
the same order of magnitude, the problem of overlapping lines arises. 

The  first realistic treatment of inelastic collisions was due to Anderson (1949) 
and that of overlapping lines to Kolb (1957, Ph.D. Thesis, University of Michigan), 
Kolb and Griem (1958) and Baranger (1958 a). 

In  this modern theory (Baranger 1962, Griem 1964) the quantum-mechanical 
equivalent of the autocorrelation function O(s) is used. 

A classical path is generally taken for the perturbing electrons (i.e. a straight-line 
path when the radiating species is an uncharged atom, and a hyperbolic path for 
ionic radiators) ; the effect of electrons on the emitting species is represented by a 
time-dependent perturbation P ( t )  which is added to the Hamiltonian of the atom. 
Usually only the dipole interaction is considered and the higher multipole inter- 
actions between the perturber and radiating atom are neglected, since it is found 
that relatively distant collisions (large impact parameter, p )  are the most important. 

I n  order for the classical path approximation to be used, the extent of the wave 
packet which represents the electron has to be negligible. This is valid whenever 
the de Broglie wavelength of the perturbing electron is considerably smaller than 
the impact parameters of all collisions which contribute significantly to broadening, 

i.e. %/ma pmin. (1 1.31) 

A pmin occurs naturally in the impact approximation owing to breakdown of 
the perturbation methods used (see later in this section) and fortunately collisions 
at smaller impact parameters contribute very little to the broadening. The  
assumption is made that the perturber path is fixed and does not depend on 
the energy exchanged between it and the radiator (i.e. the ‘back reaction’ is 
neglected). This means that energy gained or lost in an inelastic collision by the 
perturber (typically equal to the energy separation between the level and the nearest 
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interacting levels) must be substantially less than the energy of the perturber 
(typically -Kc). This is almost always the case for lines in the optical range. 

It is possible to proceed without making the classical path approximation 
(Baranger 1958 b) but the results are analogous and the approximation almost 
always valid. 

After making the classical path approximation, the modern theory makes the 
impact approximation in much the same way as in the Lindholm theory ( 5  11.3.2). 
Thus, after a time As, the perturbers are considered to be statistically independent 
of each other, so that the term equivalent to (exp ( jq ’ )  - l)6v is calculated by assum- 
ing that a single perturber is present and then multiplying by the number of 
perturbers having impacts in time As (equivalent to (11.19) in 4 11.3.2). At first 
sight this seems to be inconsistent for the long-range interaction of Stark broaden- 
ing, since collisions are actually never separated in time. However, when there are 
many weak (large impact parameter) collisions during the time interval As, per- 
turbation theory is used and the lowest non-vanishing terms are additive. Multi- 
plying by the number of perturbers n is therefore a consistent procedure. Another 
possibility is that a strong collision occurs during As. This is a rare event and when 
it occurs not much error is incurred in disregarding all other weak collisions for 
that time interval, and considering a single perturber again. The calculation of 
exp{jq’(p)) of 3 11.3.2 can be identified with a calculation of the S matrix for the 
scattering of the perturbing electron. 

The  resulting integrals over impact parameter are found, for hydrogen, to 
diverge logarithmically for both small and large impact parameters. The divergence 
at large impact parameters is due to the breakdown of the impact approximation 
from two possible causes. First, the duration of a collision ( N p / B )  is necessarily 
long for weak collisions, so that not all collisions can be completed in the times of 
interest As in Fourier integral. Thus, as in equation (11.30), the cut-off should 
come at p L 2 : ? 7 A s ~ 5 / A w  (Lewis 1961) with Aw the frequency separation from the 
line centre. Secondly, the perturbers cannot be regarded as moving independently 
of each other, for correlations give rise to Debye shielding of the electric field of the 
perturber. This divergence can be removed by applying a cut-off usually at 
p = 1 . 1 ~ ~  where pD is the Debye length (Griem et al. 1962 a) ;  however, if pL is 
smaller than this it should be used. 

The  divergence at small impact parameters is due to the inapplicability of 
perturbation methods to strong (i.e. close) collisions. In  fact one collision must 
change the radiator very little if the differential form of @(s) is to remain valid. 
The usual procedure (Baranger 1962, Griem 1964, Anderson 1949) is to cut off the 
integral at some minimum impact parameter pmin, effectively where the phase 
change due to collisions becomes large, and then to represent all collisions with 
p<prlllr,  by a ‘strong’ impact term of the Lorentz-Weisskopf type (i.e. adding 
n’Upmln2 7~ to the width). This procedure generally introduces only a small error in 
the linewidths, for which most of the broadening is due to weak collisions. Similar 
considerations for cutting off the integrals are applicable to other species besides 
hydrogen. For ionized helium lines (Griem and Shen 1961) the hyperbolic classical 
paths, under certain conditions, may provide an automatic cut-off for small p .  
Also for the broadening of lines from isolated levels (i.e. non-degenerate in orbital 
quantum number and having a quadratic Stark effect) (Griem et al. 1962 a) the 
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integrals converge at the upper limit and no cut-off is necessary if the difference in 
frequency between the level under consideration and the nearest interacting level 
is greater than the plasma frequency up. 

T o  obtain finally the correlation function @(s) (and hence the line shape by 
Fourier inversion) after integrating with respect to p, an integration over the 
velocity distribution of the perturbers has to be performed, i.e. over the electron 
Maxwellian distribution. Since the results depend only on the velocity distribution 
of the free electrons being Maxwellian and not on velocities of ions or their popula- 
tion densities, the theory may be used when complete L.T.E. does not hold. 

Before considering details of calculations which have been performed, it is 
worth restating the assumptions involved in the impact approximation. I t  is 
necessary to find a time As, such that the distribution of perturbers around the 
radiator, after the time As has elapsed, is statistically independent of the original 
distribution. Since the largest impact parameter is usually determined by the Debye 
shielding distance, the electron correlation time l / w p  is the most important. Thus, 
it is necessary to have 

(11.32) 

Secondly, As must be sufficiently short for the wave functions of the emitter to 
remain substantially unaltered, and a differential form of @(s) (as in equation 
(1 1.18) ) may be used. Physically As must be shorter than the average time between 
strong collisions, which is approximately l l w  where w is the width. Thus 

l j w  3 As> 1 , ’ ~ ~ .  
The  validity condition is thus 

- 
V 

w < w ,  = - 
P D  

(11.33) 

Therefore (as in 3 11.3.2) the impact approximation is valid if strong collisions occur 
at intervals much longer than the duration of a typical collision (in fact, T~ for a 
typical collision is less than pD/3). On the other hand, the quasi-static approxima- 
tion is good when strong collisions are always going on. Briefly, the impact approxi- 
mation should hold for a frequency separation from the unperturbed line (Am) up 
to the order of the inverse of the duration of a typical collision ( T ~ - ~ ) .  If the width 
and shift are small compared with this ~ ~ - l ,  then the central core of the line is well 
represented by a dispersion shape (see Baranger 1958 a). The  quasi-static approxi- 
mation should be valid for Am $ ~ ~ - 1 ,  

For the modern theory of electron impact broadening to be accurate, the typical 
collision must be weak and a strong collision must be a rare event; this ensures 
that the typical collisions (which cannot be actually separated in time) can be treated 
by perturbation theory, and that the strong collision correction is relatively 
unimportant. 

The  condition for a typical collision to be weak (cf. Baranger 1962, p. 503), for 
a typical impact parameter p and for p the principal quantum number of the upper 
state of the line, may be written as 

(1 1.34) 
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For electrons this is usually easily satisfied if the interparticle distance pill is taken 
as a typical impact parameter. However, under certain circumstances, for a non- 
degenerate level, the typical impact parameter for broadening can become less than 
pm and the weak collision term in the width is no longer dominant (van Regemorter 
1964). Sufficiently far in the wings, the Lewis cut-off pr, = ~il.jAw is less than plllin 
but now the quasi-static approximation is used, since the perturbers do not move 
significantly during the times of interest ( N 1jAw) for the Fourier transformation 
which gives the line shape (Griem 1962 e) (i.e. 

11.3.4. Calculations of Stark broadening parameters and comparison with experiment. 
The  details of the calculations depend on whether the radiation is emitted by a 
neutral atom or an ion, and whether the energy levels are hydrogenic (i.e. degenerate 
in orbital quantum number 1 )  or not. 

In  the hydrogenic case overlapping lines have to be considered ; the 1 degeneracy 
leads to a linear, rather than a quadratic, Stark effect. T o  apply the degenerate 
scheme it is only necessary that the splitting of the states should be small compared 
with the inverse of the duration of a typical collision, i.e. for electronic broadening 
the splitting should be less than about the plasma frequency wp (taking T~ N pI,iz'). 
The  classical path is hyperbolic for ions and straight for atoms. 

Stark profiles for Ha, HP, Hy and H6 and La and LP were computed by Griem 
et al. (1959, 1962 c), using the impact approximation for the electrons and the quasi- 
static approximation for the ions. However, since the linear Stark effect is opera- 
tive, the quasi-static splitting is the dominant factor. The  detailed structure of the 
Stark pattern yields directly the characteristic features of the broadened line 
profiles, i.e. pronounced central peaks in Ha and Hy due to the presence of un- 
shifted Stark components, and a central trough in HP due to the components being 
shifted away symmetrically. 

Griem and Shen (1961) have evaluated the broadening of hydrogenic ion lines 
using hyperbolic classical paths, and in particular have calculated profiles for the 
lines He 11 4686 W and He 11 3203 A. 

Results for the above lines, and also the hydrogenic neutral helium lines 
3965 W and 4471 A, are conveniently tabulated by Griem et al. (U.S. Naval Res. 
Lab. Rep. 5805) and Griem (1964) as a function of the reduced wavelength 

is well satisfied). 

(11.35) 

for various temperatures T, and number densities ne. T h e  widths are only a slow 
function of T, (see 8 16.3). 

Usually only the broadening of the upper level of the line is considered, but for 
HP the broadening of the lower level was also considered (Griem et al. 1962 c). The  
overall error for the width of HP is estimated at about 5%. 

Experimentally the predictions for the Balmer lines have been tested by Berg 
et al. (1962) using a T tube and Wiese et al. (1963) in a wall-stabilized arc. The  
experimental results indicated that the theory was accurate as regards widths to 
about 15% for Ha and Hy, and to about 5% for HP. 

Elton and Griem (1964) have verified the theoretical predictions for La and LP 
to within 10% over three orders of magnitude in relative intensity using a T tube, 
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although Boldt and Cooper (1964), using an arc, find some asymmetry between 
the wings of La. 

Berg et al. (1962) also find satisfactory agreement (10%) for the ionized helium 
Linewidths, but a shift, attributed to plasma polarization ( Q  11.4), was also observed. 

Even for the lines considered above, the impact approximation used to calculate 
electron broadening breaks down in the far line wings and eventually the quasi- 
static approximation has to be used. Griem (1962 e) gives asymptotic wing formulae. 
Experiments of Wiese et al. (1963) indicate, however, that these do not completely 
agree with the observed HP wings. 

For higher series members of the Balmer and other series, the quasi-static 
approximation should sometimes be applicable to both electrons and ions, and the 
Holtsmark profiles of Underhill and Waddell (1959) can be used. Using low 
pressure radio-frequency discharges, Ferguson and Schulter (1963) (in hydrogen) 
and Vidal (1964) (in hydrogen and helium) measured profiles of the Balmer series 
up to about H16. They indicate that in the region of validity of a quasi-static 
description of the perturbations and even in the transition region to the impact 
approximation for electrons, there is good agreement between the experimental 
results and the quasi-static calculations including correlation and shielding. But 
Armstrong (1964 a) argues that for large principal quantum numbers modification 
to the impact approximation, including the Lewis (1961) cut-off procedure, gives 
a better description of Ferguson and Schluter’s results. This point is argued 
against by van Regemorter (1964) who has modified the results of Griem et al. (1962 c) 
to take into account that at low densities the sub-levels of higher series numbers 
cannot be considered as completely degenerate. Yet again, Griem (1965) argues 
that these results are invalid, because in the line wings the Lewis cut-off is smaller 
than the plnalr proposed by van Regemorter. 

As one proceeds up a given series (to higher principal quantum numbers), the 
spacing between the levels decreases and the broadening, proportional to p2 for the 
quasi-static width, increases. The  lines overlap and eventually merge, the point 
at which merging occurs being the well-known Inglis-Teller (1939) limit. The  
complete theory of this transition region is very complicated and has not been 
worked out. Except at high temperatures, when Doppler broadening may domi- 
nate, most estimates give roughly the same result for the principal quantum number 
p, at which merging occurs (Inglis and Teller 1939, Armstrong 1964 b) ;  for singly 
charged perturbers this is logp, r 3.21-0.143 logn,, where ne is the electron 
density in ~ m - ~ .  

For isolated lines, i.e. lines from levels whose components of different orbital 
quantum number 1 are well separated, it is found that the quadratic Stark effect is 
operative and the broadening is caused mainly by electron impacts. The  theory in 
this case was originally worked out for the strong lines of neutral helium by 
Griem et al. (1962 a). 

In  the electron impact theory the shifts d and the widths w ,  which, as in the 
Lindholm theory, are the imaginary and real parts of the same complex function, 
give rise to profiles of the dispersion or Lorentz type, i.e. 

(11.36) 
1 1 I(w).-- __ 

w7T 1 +{ (U  - U()- d ) / w } * ’  
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In  the theory of Griem et al. (1962 a) cut-offs at small impact parameter are adjusted 
so that the results tend correctly to both the high velocity and low velocity limits. 
In the low velocity (low temperature) limit the adiabatic theory of Lindholm 
(9  11.3.2) is adequate; this can be worked out exactly and for quadratic Stark effect 
gives dlw = 43. In  the high velocity limit perturbation theory can be used through- 
out. Here the ratio of line shift to width depends upon the interacting states 
involved, and frequently becomes small when the contributions of the states to the 
shift cancel. 

In  the intermediate region, when perturbation theory breaks down for small 
impact parameters, the ‘ strong’ collision term of Lorentz-Weisskopf type (see 
3 11.3.3) has to be included. In  the expression for the width weak impacts dominate, 
so that the strong collision’s correction is relatively unimportant. Investigations by 
Griem and Shen (1962), based on a dispersion equation relating the widths and 
shifts, and a comparison of various cut-off procedures suggest that uncertainties due 
to ‘strong’ collisions are only about 5% in the case of the widths, but may amount 
to 20% of the width in the case of the shifts. Other cut-off procedures are available 
(see e.g. Vainshtein and Sobel’man 1959) but these have not been used extensively. 

T o  obtain the final line profile for these isolated lines, the ion broadening has 
to be taken into account. The  ion velocities are usually small enough for broadening 
to be taken as adiabatic. In  the adiabatic case a general procedure has been 
developed by Anderson (Anderson 1952, Anderson and Talman 1955) which 
reduces in one limit to the adiabatic impact approximation and in the other to 
almost the exact quasi-static result. Griem et al. (1962 a) use this procedure to show 
that the quasi-static approximation for ions does not cause serious errors if the 
parameter 

(11.37) 

where is the perturber thermal velocity. Since this is usually true, it is reasonable 
to use the quasi-static approximation for the ions throughout the calculations ; 
however, Mazing (1961) considers the impact approximation should be used. 

Final profiles of the lines are expressed in terms of two parameters: 
(i) The  reduced frequency 

where d and w are the impact shifts and half half-widths. 
(ii) The  quasi-static ion broadening parameter 

(11.38) 

(1 1.39) 

The profiles j (a ,  x) (for use when ~7 2 1) are tabulated by Griem et al. (1962 a) and 
Griem (1964); Griem et  al. (1962 a) also give profilesj(x, a,  0) for use when cr < 1. 
For cx small these profiles differ little from dispersion shape. 

The  original calculations of Griem et al. (1962 a) contain quasi-static profiles 
of only the simple Holtsmark type, but a later paper (Griem 1962 c) uses the 
distribution functions of Mozer and Baranger (1960) which take into account both 
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ion-ion correlations and Debye shielding by electrons. Resulting profiles j R ( x ,  a) 
expressed in terms of the Debye-shielding parameter 

mean distance between ions 
Debye radius 

-. - -- 

are contained in the works of Griem (1962 c, 1964). For 015 0.5 and R 5 0.8, simple 
and reasonably accurate expressions are available for the total width and total shift. 
Thus, for neutral atoms 

and 
(1 1.40) 

(11.41) 

In  equation (11.41), the + or - sign is taken according to whether quasi-static 
effects shift the line to the red or blue, respectively (i.e. depends on sign of CJ. 
For singly ionized emitters, 0.7511 has to be replaced by 1.2R. 

Tables of w ,  d/w and 01 at a density of ne = 1OI6 cm-3 are given by Griem (1964) 
as a function of Te for many neutral and singly ionized atoms (helium through to 
calcium and neutral caesium). 

The  parameter 01 scales as ne1’4, d as ne and d/w is independent of ne. 
In  calculating most of these results (neutral helium excepted) the necessary 

oscillator strengths have been obtained by the Coulomb approximation (Bates and 
Damgaard 1949) using LS coupling. The  Coulomb approximation is likely to be 
fairly accurate since in Stark theory only transitions between the upper state and 
nearby perturbing levels need to be considered. I t  is estimated that the overall 
accuracy in the widths is about 20%. No cut-off for large impact parameters was 
used in these calculations, since the integral converges anyway ; thus the results are 
only accurate if the spacing of the nearest perturbing level from the upper level of 
the line is greater than the plasma frequency ol, (see $11.3.3). Violation of this 
condition can cause a serious overestimation of the shifts d (Griem et al. 1962 a). 

With regard to experimental verification of the theory for isolated lines, 
Berg et al. (1962) found fair agreement for the neutral helium lines, although 
Lincke (1964, Ph.D. Thesis, University of Maryland) indicates that there may be a 
small systematic Overestimation of the widths. Lincke in fact proposes that a 10% 
correction should be added to the electron density calculated by comparing the 
neutral helium lines with theoretical estimates. Even excluding this correction, the 
theory seems to be correct to better than 20%. 

The  experimental results for the neutral and singly ionized heavier elements 
(Stampa (1963) for neutral nitrogen, Day (1965, Ph.D. Thesis, University of 
Maryland) for ionized nitrogen, Jung (1963) and Wiese and Murphy (1963) for 
neutral oxygen, and Stone and Agnew (1962) for neutral caesium) show agreement 
between observed and calculated widths to about 10%. The  agreement in shifts is 
only good when the shifts are large, because errors due to the ‘strong’ collision 
term are important for small shifts. 

Further minor modifications of theory, in particular with reference to small 
asymmetries of the HP profile, are discussed by Griem (1964). He argues that, when 
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both electrons and ions are treated by the quasi-static approximation, the correction 
due to the quadrupole term in  the interaction (Kudrin and Sholin 1963 a) can be 
neglected. The  leading quadrupole term, considered by Muller (1965) to be 
important in the quasi-static case, becomes zero in the weak collision term of the 
impact approximation when a simple classical average over angles is performed. 
Yet again, Brschot and van Regemorter (1964 a, b) have found the quadrupole term 
to be important in an adiabatic impact approximation. Nguyen-Hoe et al. (1964) 
found it necessary to include the quadrupole term in quasi-static broadening to 
explain the asymmetries observed by Boldt and Cooper (1964) in the La profile. 
Recently Griem (1965) has determined wing formulae for La in which many 
corrections, including the quadrupole interaction in both quasi-static and impact 
broadening, are included. Here, according to the velocities and frequency separation 
from the line centre, electron broadening is treated by the impact approximation, 
which accounts either for Debye shielding or for the finite duration of collisions 
(Lewis cut-off), or by quasi-static theory. The  results, which, including asym- 
metries, are expected to be accurate to better than lo%, now show reasonable agree- 
ment with experiment. However, the overall importance of quadrupole interactions 
is still not completely clear. The  so-called ‘polarization’ shift is discussed in the 
next section. 

Magnetic fields are considered to be negligible in the above theories and experi- 
ments; however, in the presence of a magnetic field the Stark broadening of the 
components of a line split by the Zeeman effect have to be considered. At high 
magnetic fields these effects cannot be compounded separately using the Stark 
broadening results obtained at zero magnetic field ; for instance, the trajectories of 
the electrons in impact broadening may be considerably influenced by the field 
(Drawin, Herman and Nguyen-Hoe 1965, Euratom-CEA Rep. F C  321, Maschke 
and Voslamber 1965, Euratom-CEA Rep. F C  311). 

In  conclusion, the modern theory gives good predictions for the linewidths, 
but  theoretical uncertainties are much greater for shifts and wing formulae. 

11.4. ‘Plasma polarization’ shift of ionic lines 
This effect was first postulated by Berg et al. (1962) to explain a blue shift of the 

He 11 4686 A line, and should, if true, be applicable to all ionic lines. 
Essentially, in the neighbourhood of an emitting ion, on the average, there are 

more electrons than ions (although when only singly ionized species occur ne = ni 
overall), so that there is a net local negative charge density. In  fact, due to the 
Coulomb field, at radius Y from an ion of charge Ze, the equilibrium densities (by 
Maxwell-Boltzmann statistics) will be 

and 

ni  = ni,exp (--g). 
(1 1.42) 

(11.43) 

Thus, with ne, N n,, E E,, the space charge density is 
2n, Ze3 
rkT, p ( y )  E -___- (1 3.44) 
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and the shift in energy of a level corresponding to an electron in an orbit of radius 
r in a singly charged ion, due to p ( r ) ,  is (Griem 1964) 

(1 1.45) 

where (Y) is the expectation value of the radius (the radial matrix element which is 
proportional to the square of the effective principal quantum number of the state). 

If this shift were true, wavelength perturbations in highly ionized plasmas 
would be quite severe. Many objections have been raised to this view (D. D.  
Burgess 1965, Ph.D. Thesis, University of London, Burgess and Cooper 1965 a, 
Kudrin and Sholin 1963 b, Kudrin and Tarosov 1963). Even at high densities the 
number of electrons within an atomic orbit is very small, 10-5 or less. Further, the 
collision event time scale is much smaller than the period of the electron orbit, so that 
the applicability of a time-averaged potential is very doubtful. (De Witt and 
Nakayama (1964) obtained very different results for calculated energy levels in the 
cases of time-dependent and time-independent screened potentials-see 9 5 .) The 
collisions of the electrons involved should be analogous to those in the impact theory. 
On this picture the major effect of the emitting species being ionized would appear to 
be a slight increase in the number of electron collisions and a slight decrease in the 
number of ion collisions. (The Stark broadening calculations for ionized helium 
(Griem and Shen 1961) already contain hyperbolic classical paths, which, under 
certain circumstances, can provide an automatic cut-off at some minimum impact 
parameter (pmin), and, consequently, make ‘ strong ’ corrections unnecessary. Also, 
in the quasi-static ion calculations, use was made of the ion field strength distribu- 
tions of Mozer and Baranger (1960) which already contain ion-ion correlations.) 

Experimental measurements of line shifts in singly ionized nitrogen (Day 1965, 
Ph.D. Thesis, University of Maryland, Day and Griem 1965) and singly ionized 
argon (Burgess and Cooper 1965 a) failed to detect ‘plasma polarization’ shifts of the 
magnitude predicted.t 

1 1.5. Comparison of broadening mechanisms in a high temperature plasma 
The mechanisms that have been considered are natural broadening, which has 

a dispersion (Lorentz) profile, Stark broadening, with a dispersion profile for 
electron impacts, and Doppler broadening with a Gaussian profile if the emitters 
have a Maxwellian velocity distribution. Shifts of various components of a line 
due to the Zeeman effect will be discussed in $17. 

In  experimental situations instrumental broadening must also be considered. 
If the profiles of a line due to two different broadening mechanisms are +,(A) 

and +z(A), then the resultant profile is obtained by a convolution integral 

(1 1.46) 

f A more recent estimate by Griem (private communication, 7th Int. Conf. on Ionization 
Phenomena on Gases, Belgrade, August 1965) is in terms of shielding which is caused by 
electrons that may be considered as being in doubly excited states of the preceding ion in the 
ionization sequence. The resulting blue shifts are typically an order of magnitude below those 
estimated from equation (1 1.45). 
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When only dispersion and Gaussian profiles need to be convolved together, the 
resultant profile is the well-known Voigt profile (see Allen 1963, Davis and Vaughan 
1963). Under certain conditions one broadening mechanism may dominate the 
resulting profile. Yet, even if Doppler broadening dominates in the line centre, the 
far wings will tend to deviate from Gaussian shape owing to the inclusion of any 
Stark or natural broadening for which the wing intensities decay more slowly. 

In  L.T.E. plasmas at high density and relatively low temperatures, an inspection 
of Griem’s (1964) tables and comparison with the Doppler widths shows that for 
most neutral and singly ionized emitters the Stark effect often dominates. The  
hydrogen lines may in fact be up to 1 O O A  broad, due to the Stark effect alone. 
However, values for the Stark coefficients are only tabulated for neutral and singly 
ionized species, and that only for temperatures up to 80 000 OK. 

Laboratory plasmas which are not in L.T.E. and fall in the coronal domain may 
have electron temperatures of 100 ev t  or more, so that Stark broadening parameters 
of highly ionized species in a high temperature plasma have to be estimated. 

These estimates have again been given by Griem (1962 d) whose results are 
summarized here. 

At sufficiently high temperature the impact approximation, which gives rise to 
line profiles of dispersion type, is valid for the ions as well as the electrons. One 
might think that in high temperature plasmas, in which radiative decay is more 
important than collisional de-excitation, collisional broadening will be less important 
than natural width. However, impact broadening is usually not characterized by 
cross sections similar to those for de-excitation by electrons since the broadening 
calculations involve interactions with energy levels near the upper level of the line. 
Furthermore, in high temperature plasmas most of the broadening of hydrogenic 
ions (linear Stark effect) is not even caused by electrons but by light ions such as 
hydrogen (since the width is inversely proportional to  the perturber velocity; 
compare equation (1 1.26) ). Thus  natural broadening is not necessarily larger than 
the Stark broadening. 

Griem’s (1962 d) estimates give the following half half-width w (in frequency 
units) : 

natural broadening 2wnatural 2 lo9 Z4 sec-l (1 1.47) 

for hydrogenic resonance lines and correspondingly smaller values for higher 
members of the Lyman series. 

For resonance lines the contribution from collisions of light ions such as hydro- 
gen with the emitting hydrogenic ions (charge 2- 1) is approximately 

(11.48) 

where is the ion kinetic temperature in kev and ni is taken equal to ne (i.e. the 
plasma is assumed to be composed mainly of hydrogen (or deuterium)). 

The  impact approximation is valid at high temperatures and relatively low 
densities. At high densities, even if at high temperature, one should use the quasi- 
static approximation as soon as it yields narrower profiles (Griem and Shen 1961) 
and in such cases the electron contribution is no longer negligible. 

t 1 ev = 11 605 OK. 
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For non-hydrogenic ions the equation (11.48) is an overestimate since the ion 
impacts then cause only a quadratic Stark effect. 

For resonance lines natural broadening usually dominates the Stark broadening ; 
however, this is not necessarily true for highly excited states, since the Stark 
broadening scales roughly as ( ~ , / 2 ) ~  where p ,  is the principal quantum number of 
the upper state. Where impact broadening is due to light ions resonance broadening 
can always be neglected. 

If appropriate estimates are used (Griem 1962 d) it may be shown that Doppler 
and Stark broadening are comparable for a number density ne given by 

where Ti is in kev and p ,  is the principal quantum number of the lower state. In  
general, only for transitions between highly excited states will Stark broadening be 
important. If the impact approximation were no longer valid or if the quadratic 
Stark effect only were relevant, the above critical density would be an under- 
estimate. 

Similarly, Doppler and natural widths will be comparable when 

e 10V Z 5  kev. 

For light ions (Z< 10) the Doppler width is in general larger than the natural width. 
In  conclusion, in high temperature plasmas ( -  100 ev) the Doppler effect 

generally dominates the profiles ; however, in low temperature, high density L.T.E. 
plasmas Stark broadening is usually more important. 

12. Continuum radiation 
Bremsstrahlung and recombination radiation will be treated together. Precise 

quantum-mechanical calculations can only be performed for hydrogenic systems 
(i.e. the recombination of an electron with a bare ion). For many-electron systems 
only approximate treatments exist and in general the modification of the continuum 
caused by autoionization is ignored, although in principle this should be included 
(Fano 1961, Fano and Cooper 1965). 

In  this section the form of the hydrogenic results will be considered, and a few 
comments on recent results will be given (for a review see Finkelnburg and Peters 
1957, Unsold 1955). 

In  the recombination of a free electron with velocity v with an ion of charge Z 
to form a bound state of SzPl with principal quantum number q, or, conversely, for 
the photoionization from level q, the relationship between the frequency of emission 
or absorption is given by 

hv = gmzJ + EzP,(co) - EzPl(q). (12.1) 

The  continuum emission is generally derived from the recombination cross section 
uVq. The relation between this and the absorption cross section (cf. equation (10.4)) 
may be evaluated by the principle of detailed balancing in thermodynamic equili- 
brium. Then the number of photoionizations in the frequency interval dv from a 
level q must equal the number of recombinations to this same level from the 
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corresponding interval dv. If it is assumed that photoionization from level q leaves 
the ion in its ground state (i.e. doubly excited states not included), then uCQ is 
defined so that the number of recombinations between ground-state ions and 
electrons per unit volume from the velocity range v and v + dv is given by 

nz(1) n,f(v> 00,  vdv (1 2.2) 

wheref(c) is the electron velocity distribution and n,(l) is the density of ions in the 
ground state. For an isotropic intensity distribution, the photon flux per unit 
frequency range is 4xI(v)/hv; therefore the total number of absorptions per unit 
volume for the frequency range dv is 

(12.3) 

(U,,(.) is written as o,~(v)  to emphasize that the final state is free). 
In  equilibrium the stimulated recombination (negative absorption) to level q is 

obtained, as in 9 10, by multiplying (12.3) by exp ( - h v / k T ) .  Detailed balance then 
gives 

(12.4) 477 
nz-i(q) x ~ ( v )  U,v(v> {I -exp (-;I] = nef(v)  UcQvdv. 

In  thermodynamic equilibrium at temperature T 

f ( v )  dz! = 4r;(&T)3h exp (- - 1 -1 mu2 v 2  dv (Maxwellian distribution) 
2 kT 

and 

I(v) = (exp - 11-l (Planck's radiation law), 

Then, using (12.1) with hdv = mcdv the Milne (1921) formula is obtained, i.e. 

(12.5) 

In  photoionization, the final states p' are continuous, and the wave functions are in 
general normalized such that 

(P" I P ' )  = W P " )  - ' ( P ' ) } .  (12.6) 

Equation (10.4) can then be used directly to give the total photoionization (absorp- 
tion) cross section per unit frequency range as (cf. equation (10.12)) 

(12.7) 

where the summation is now over all initial and final states of fixed energy. Often 
the photoionization cross section for unit energy range is used, in which case the 
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above must be multiplied by h. Bates (1946) gives other possible normalization 
procedures for the continuum wave functions. A review of theoretical and experi- 
mental determinations of photoionization cross sections is given by Ditchburn and 
opik (1962). 

By analogy with equation (10.12) the photoionization can be expressed as a 
differential absorption oscillator strength, i.e. 

ne2 df 
mc  dv' q&) = - - (12.8) 

Menzel and Pekeris (1936) give the photoionization cross section for a hydrogenic 
species of charge Z -  1 as 

(12.9) 

where g,, is the free-bound Gaunt factor. Apart from the Gaunt factor, this is 
identical with the Kramers (1923) result. For frequencies in the optical region g,, 
is generally about unity ; however, in the radio-frequency region it may become 
considerably larger than unity (see Elwert 1948, Oster 1961). These Gaunt factors, 
both free-bound and free-free, have been tabulated by Karzas and Latter (1961). 

Using the Milne relation (12.5) with (for a hydrogenic species) g z ( l )  = 1 and 
gz-l(q) = 2q2, (12.9) becomes 

(12.10) 

For hydrogenic systems, nZ( 1) = n, and E,-,(oo) - E,-,(q) = Z 2  EH/q2 where 
E, = 2n2 e4 mlh2 is the ionization energy of hydrogen. 

The  recombination radiation due to free electrons in L.T.E. (i.e. with a 
Maxwellian velocity distribution at temperature c) is then obtained from equa- 
tion (12.2). 

Thus the total power radiated in frequency interval dv for recombination to 
level q is 

PPR(v) dv = hv ne nz f (a )  z.'(iCq dv  

(12.11) 

where 

The  complete spectral distribution is obtained by summation over the per- 
mitted quantum levels. At any frequency the lowest q permissible in the summation 
is given by the condition 

Z 2  E, Z z  E, 
0 2  0 2  

hv = + __- 2 __- ( 12.12) 

i.e. for any given v 
1 1 

(12.13) 

7 
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Thus the total recombination radiation at frequency v is 

A lower limit to the total power radiated can be obtained by integrating PR(v) 
over all frequencies resulting from capture into the ground state only ( p  = 1 ;  
v 2 z2 EH/h) .  

This is the dominant term, and gives 

PIR = 1.3 x 10-32nZne24 T,-''2 w ~ m - ~  (for T,  in kev). (12.15) 

At large values of q the levels approach a continuum and the summation over q can 
be replaced by an integral. For q > q* 

The choice of q* is rather arbitrary. One possible choice is the principal quantum 
number at which Stark broadening of the level becomes comparable with the spacing 
between neighbouring levels (the Inglis-Teller limit-§ 11.3.4). In  terms of the 
variable up = z 2 E H / q 2 k T e ,  the limits in the above integral are 

uq = 0 and uq = U* = Z2 EH/(q* + 1)' kT,. 

T o  include bremsstrahlung Unsold (1955) finds that it is sufficient to extend 
the above range of integration. The  integration limit u9 = 0 corresponds to ioniza- 
tion, uq > 0 corresponds to bound states, and thus up < 0 corresponds to the free 
continuous states. Integration between 0 and ---CO in (12.16) with respect to uq 
thus gives the recombination into free states, i.e. bremsstrahlung. Thus, 

Z 2 K  hv 
H kT, 

PB(v) dv = ne nzgf f  2E (kT,)-li2 exp ( - -1 dv (12.17) 

where now the free-free Gaunt factor is used. 
The  relative power radiated by bremsstrahlung as a function of wavelength for 

various temperatures is shown in figure 9. The  bremsstrahlung power (as a function 
of wavelength) is maximum when hv = 2kT,, that is, at 6-2/kT, (kev) A ,  

Since both initial and final states are free the total bremsstrahlung is obtained 
by integrating over all frequencies from zero to infinity (and approximating 
g,, = 1) to give 

PB = 5 x n, ne Z 2  T , ' / 2  w ~ m - ~  (T,  in kev). (12.18) 

The  exact form of the Gaunt factors appears to be unimportant; for instance, 
Kogan and Migdal (1961) calculate the power radiated by bremsstrahlung using 
both the Born approximation (valid at high energies) and the semi-classical approxi- 
mation and find only a minor difference in the total power radiated. 

Bremsstrahlung and recombination radiation always exist together in propor- 
tions depending on the electron temperature, and the total is expressed by 
performing the integral in (12.16) from U* to -CO. 
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Thus the total power radiated per unit volume by bremsstrahlung and recom- 
bination in a plasma of fully stripped ions of charge Z is given by 

x ne nZ(--)’” Z 2  EH exp (- &) dv. 
k T ,  

(12.19) 

h (4 )  

Figure 9. Relative bremsstrahlung power distribution PB(h) for temperatures of 10, 100 and 
1000 ev. 

Then, on the assumption that the Gaunt factors are approximately equal to unity: 
(i) At low frequency, v < v* = Z 2  EH/hq*2 (i.e. q > q*) ,  the only term remaining 

in the curly bracket is of the form exp (hvlkT,)  and consequently P B + R ( ~ )  has a flat 
frequency response in the range 0 to v*. 

(ii) At high frequencies, v > v l  = Z 2 E H / h ,  all terms in the summation are 
present and the curly bracket is frequency-independent, and thus PB+R(v) falls off 
as exp ( - hv/kT,) .  

(iii) At medium frequencies the spectrum has a step-like structure with 
exponential fall-off on the high frequency side of steps which themselves are due to 
terms having 1 < q Q q*. 
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The spectrum of PB+”(v) is shown schematically in figure 10. Bremsstrahlung 
completely dominates recombination radiation for kT, 3EH Z 2 .  Even for hydrogen 
various corrections have to be made in equation (12.19) for PB+R(v). Close to the 
plasma frequency wp ( = (4~2, e2/m)’/2) correlations between ions and electrons in the 
plasma become important, and the radiation (caused classically by the acceleration 
of an electron in the field of an ion) is reduced below the value expected from 
(12.19) with exact Gaunt factors (see Dawson and Oberman 1962, 1963, Oster 1964, 
Birmingham et al. 1965), but the appropriate correction is not likely to be important 
for wk2wp.  

” 
‘U 

tndent of Y 

4’ 

\ 

i 

-rtr 1.5 

Figure 10. Schematic representation of the distribution with frequency of bremsstrahlung and 
recombination radiation P + R ( v ) .  

While cyclotron radiation is not being dealt with in this review, it should be 
mentioned that the presence of a magnetic field modifies the continuum emission 
at low frequencies, and Goldman and Oster (1964) have shown that the total 
spectrum cannot be interpreted as a superposition of cyclotron radiation on the 
continuum of bremsstrahlung emission in the absence of the magnetic field. 
Absorption is also high close to the plasma frequency and, of course, radiation is not 
propagated below it (with the exception of the ‘whistler’ mode which can propagate 
in the presence of a magnetic field). 

Griem (1962 b) has shown that the effect of the lowering of the ionization 
potential ( Q  5) is only to multiply the formula for PB+R(v) by exp ( -AEz-l(m)/kQ. 

In hydrogen the H- continuum should also be considered (see Geltman 1962, 
1965). Griem (1964, p. 120) gives a graph of the ratio of negative and normal 
hydrogen continuum emission as a function of wavelength for various temperatures 
at ne = 1016 cm-I3 (the ratio being proportional to ne). For wavelengths in the 
visible this contribution will nearly always be negligible for temperatures greater 
than about 15 000 OK. 
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In  the general case for a non-hydrogenic species, the photoionization cross 
section of equation (12.7) has to be found. As with the calculations for oscillator 
strengths (0 lo), the angular parts of the wave function can be easily handled, but 
now the radial integrals are expressed as 

(12.20) 

where GW1'(r) is the continuum radial wave function. This integral is difficult to 
evaluate because often the positive and negative contributions to the integral are 
nearly equal in magnitude. Cooper (1962) has used Hartree-Fock methods for 
photoionizations from the ground state, but most calculations have used the 
quantum defect method of Seaton (1958) and Ham (1955). This method of cal- 
culation of the continuum wave functions GV1'(r) is similar to the Coulomb approxi- 
mation of Bates and Damgaard (1949), since it makes use of the fact that the main 
contributions to the integral of (12.20) come from regions of relatively large Y for 
which the potential is closely Coulombic. But now the continuum wave functions 
are expressed as a linear combination of two Coulombic wave functions; the 
coefficients of these two functions depend on a generalized quantum defect and are 
chosen so as to produce the correct asymptotic behaviour at large values of Y. 
Calculations have been performed by Burgess and Seaton (1960) and Anderson 
and Griem (1963) (see Griem 1964). These should be reasonable for light atoms, 
provided the kinetic energy of the ejected electron is less than the ionization energy, 
which is usually true at the frequencies of interest. 

As mentioned in $11.3.4, close to  the limit of any series a quasi-continuum 
exists, due to the merging of discrete lines when their broadening becomes greater 
than the spacing between levels (see also $ 16.3). 

Experimentally there are very few reliable measurements of continua from 
atoms and ions of interest in plasma spectroscopy. Direct methods exist for photo- 
ionization cross sections of atoms or negative ions in their ground state (Ditchburn 
and opik 1962). However, about the only practical method for highly excited 
states of atoms or ions is by measuring the recombination radiation from plasmas 
whose properties are accurately known. Work by Olsen (1961) and Maecker and 
Peters (1954) gave results which fitted badly to modified hydrogenic calculations, 
but no comparison has been made with quantum defect calculations. Comparison 
of the measurements of Schluter (1962), using a stabilized argon arc, with the 
calculations of Biberman et al. (1961), who use an oversimplified approximation 
based on the quantum defect method, shows poor agreement both in the absolute 
intensity of the continuum and also its wavelength dependence. However, further 
quantum defect calculations have been performed for neon, argon, krypton and 
xenon (Schluter 1965), and the agreement with continua from an argon arc and 
shock-excited argon, krypton and xenon is reported as " sufficient ". 

Very little is known experimentally about continuum emission from highly 
ionized atoms. In the SCYLLA discharge (Jahoda et al. 1964) it has been found that 
the continuum intensity is about six times larger than the predicted value, and also 
that, although the continuum is dominated by free-bound transitions, there is little 
sign of the expected discontinuity at the termination of the OVIII Lyman series. 



90 J .  Cooper 

13. Radiative transfer 
When the plasma is optically thin, the emission coefficients and the observed 

intensities are directly proportional. However, once some radiation is absorbed, 
radiative transfer has to be considered. 

The  equation of radiative transfer (see Chandrasekhar 1950, Ambartsumyan 
1958) can be written as 

(13.1) 

where I (v ,x )  is the intensity of radiation at frequency v in direction x at point x 
(measured along the line of sight), x(v, x) is the absorption coefficient and J(v, x) 
the emission coefficient (i.e. the power radiated at point x per unit solid angle in the 
x direction per unit volume and frequency interval). The  ratio J ( v ,  x)/x(v, x) = S,(x) 
is known as the source function. If the optical depth 7” is defined by 

dTy = - X(V, X) dx, 

then the equation of radiative transfer can be rewritten as 

(13.2) 

In  evaluating the effective emission and absorption coefficients J(v,  x) and x(v, x), 
not only do spontaneous emission, induced emission and absorption have to be taken 
into account, but also scattering of radiation has to be considered. Scattering of 
radiation is a two-photon process since it involves both an incoming and an out- 
going photon. The  total amount scattered in a given direction at a certain point in 
the plasma depends on the radiation intensity at that point coming from all direc- 
tions; however, it is usual to include scattering in the emission coefficient J ( v , x ) .  
The  only scattering process likely to be important in a laboratory plasma is that of 
resonance fluorescence (see Heitler 1954) ; here a photon corresponding in energy 
to an allowed electron transition is absorbed and then a photon is re-emitted in a 
different direction. In  this process, there is a correlation between the directions of 
the incoming and outgoing photocs, which is expressed in terms of a redistribution 
function, giving the probability of re-emission in a given direction with respect to 
that of the incident photon (see Hummer 1962). 

In  laboratory plasmas the depth is generally quite small, so that radiative 
transfer is often important only for resonance lines, whereas in astrophysical 
plasmas radiative transfer becomes important throughout the spectrum (see Athay 
and Thomas 1961). Consider two atomic energy levels separated by energy hv and 
designated 1 (lower) and 2 (upper), so that n(1) and 4 2 )  are the number densities 
in the lower and upper states respectively. The  corresponding line at frequency v 
is assumed to be well separated from other lines, and background continuum is also 
assumed to be absent. +,, q5,‘ and j ,  are the normalized profiles for absorption, 
induced emission and spontaneous emission respectively. Oxenius (1966) has 
shown that the profile for the stimulated emission is always identical with that 
for spontaneous emission j,, and not with the profile associated with absorption 
# J ~  as has usually been assumed. 
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Close to L.T.E. the lifetimes of excited states are collision-limited and scattering 
(mainly resonance fluorescence) becomes unimportant because essentially there is 
not enough time for this two-quantum process to occur. 

If resonance fluorescence is neglected 

(13.3) hv 
457 J ( v , x )  = E ( V )  = n(2)A(2, l ) - j ,  

X ( " , X )  = - B ( L 2 ) n ( l ) - B ( 2 , 1 , . 0 ) + $ ,  6 '  

(= cr12(v) n( 1) - ~ ~ ~ ( v )  n(2),  in comparison with equation (10.13)), 

B(1,2), B (2 , l )  and A(2 , l )  are the usual Einstein coefficients defined, as in $10, 
with respect to intensity (sometimes called the Milne coefficients). Thus 

and 

(13.4) 
47T hv i +" 

and 
(13.5) 

The  equation of radiative transfer (13.1) becomes 

The  optical depth (including stimulated emission) is given by 

and the source function 

In L.T.E., detailed balancing arguments show that 

by Boltzmann statistics. Thus, in L.T.E., 

(13.7) 

(13.8) 

i.e. the effective absorption and emission coefficients are related by Kirchhoff 's 
law, with the Planck function B,(T,) being at the local temperature T, (a function 
of position only). 

Because scattering is neglected the source function S,(x) is independent of 
direction. Close to L.T.E., when resonance fluorescence is unimportant, 
j ,  = +, = 4,' is a good approximation, and it follows from equation (13.7) that 
(except for the slow v3 variation) S,(x) is constant over the line, i.e. independent of 
direction and frequency. 
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Resonance fluorescence was considered by Hearn (1964 a) in the low density 
limit when atoms, excited by absorption of radiation, can emit spontaneously before 
suffering a collision. He  found that the assumption that S,,(x) is independent of 
frequency and direction gives line profiles and total line intensities correct to better 
than 10% for radiation emitted normally to the plasma boundary, even in extreme 
non-L.T.E. situations. 

In  what follows it will be taken that S,(x) is independent of frequency and 
direction over the small frequency interval covered by the line, and that 

The  solution of the equation of radiative transfer (equation (13.2)) ,  gives that 
the intensity emerging (at x = 0) from a plasma of depth D measured along the line 
of sight is 

j ,  = 4, = A’ ( =  1. 

” 
Tu(Dj 

S, exp ( - 7,’) dry‘ 
.TO 

I ( v ,  0 )  = - (13.9) 

provided no radiation is incident at x = D. The optical depth is by definition 
measured along the line of sight, and is given by 

T,(D) = - lODx(x, v) dx. 

For small optical depth (i.e. optically thin approximation) T,, is small, so that 
exp (T,,) 2: 1. 

Then 

This formula (cf. (10.10)) is the usual one for emission from an optically thin 
plasma and depends directly on the emission profile j ,  and the number of excited 
atoms per unit area along the line of sight (i.e. J f n ( 2 ) d x ) .  

In  the case of large T,(D) 

s,, exp ( - 7,’) dTy’ 

by integration by parts. But, by MacLaurin’s theorem 

Thus, for large optical depths, provided that the higher order terms do not con- 
tribute too much, the observed intensity is roughly equal to the source function at 
an optical depth of T ,  N 1. 
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In  L.T.E. the problem of radiative transfer is relatively easy since the source 
function is only a function of the electron temperature (B,(T)) and the populations 
of states are determined by collisional processes alone. 

In  an emission line which is strongly self-absorbed, a given optical depth 
corresponds to a smaller geometrical depth of plasma at the line centre than in the 
line wings. Since the emitted intensity is now roughly that of a black body at the 
temperature for the point at which the optical depth is about unity, the line centre 
tends to have a lower intensity than at some frequencies further into the line wings, 
assuming the outer layers are cooler than the interior (for L.T.E. calculations, see 
Cowan and Dieke 1948). In  L.T.E. such a central minimum is characteristic of 
optically thick inhomogeneous layers, but this is not necessarily true for non- 
L.T.E.  situations. 

In  the non-L.T.E. situation the problem of radiative transfer becomes extremely 
difficult, since the equation of radiative transfer and the rate equations determining 
the population densities become coupled together. This is because photoexcitation 
processes depend on the local value of I (v ) ,  while the source function and optical 
depth depend on the population densities n(1) and n(2). S,(x) is now not B,(T,) but 
a function of the geometry of the plasma as well as its density and temperature. 
Consider a plasma for which the coronal distribution applies; if the dimensions are 
increased until the optical depth becomes large (and hence photoexcitation becomes 
important), a thermal population will be imposed upon the system. This will 
develop upwards from the ground level, since resonance radiation absorption is 
most important, and not downwards from the continuum as happens in the case of 
increasing density. 

A two-level atomic model, with Doppler profiles for absorption and emission, 
has been treated for systems not in L.T.E. by Hearn (1963) (for a plane parallel 
slab of plasma) and Cuperman et al. (1963, 1964) (for a spherical plasma). Cuperman 
et al. (1964) also consider the influence of a non-Maxwellian electron distribution. 

Hearn (1963) found that a central dip is obtained in the profile of the emitted 
radiation even for a plasma which is homogeneous in the sense that both ne and T, 
are constant. This saturation at large optical depths is easily explained. Near the 
edge of the plasma photons can easily escape and there exists only an outward flux 
of photons. Compared with the centre of the plasma photoexcitation rates are thus 
less and the ratio n(Z>/n(l) decreases towards the edge of the plasma (i.e. the 
effective ‘ excitation temperature ’ increases towards the centre of the plasma). 
The  geometrical depth at the line centre for T, N 1 is less than that for the wings, 
consequently the equivalent S, is less at the centre owing to its dependence on 
n(2)/n(l). Hearn also found that as regards the total rate of loss of energy the photon 
diffusion model of Zanstra (1949) and Osterbrock (1962) gives quite good results. 

Since in most of the non-L.T.E. calculations (97) the plasma is assumed 
optically thin, the circumstances under which the optically ‘thin’ approximation 
can be used will now be considered. 

Consider a homogeneous plasma of depth D measured along the line of sight, 
with the source function S, independent of T, (as in L.T.E.). 

Then equation (13.9) gives 

I ( v ,  0) = S,[1- exp { - T,(D)}]. (13.1 1) 
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Since S, is only slowly varying over the line profile, equation (13.11) can be 
integrated to give the total intensity It 

It = s,Jom{l - exp ( -Tu)>  dv 

which, for small optical depths, can be expanded as 

(13.12) 

From equation (13.6a) T ,  is proportional to 4,. Thus if T~ is the optical depth at line 
maximum and +0 the corresponding value of +,, T ,  may be written as 

Hence 

Two profiles are of interest, for lines of frequency vo: 
(i) Doppler broadening gives a Gaussian profile, such that 

In 2 
WD 

= +(v) = do exp { - -> (v  - vJ2] where do = 

and 

(13.13) 

(13.14) 

(13.15) 

(ii) Dispersion profile of half half-width ws 

The case of the dispersion profile is interesting, since for Stark broadening of 
isolated lines ws is proportional to ne. Under certain circumstances this can mean 
that the optical depth becomes independent of ne for an ionized atom and depends 
only on the geometry and electron temperature (Burgess and Cooper 1965 c). 

If the plasma had been treated as optically thin the result 

4 = SY(TO/+O) 

would have been obtained for the total intensity. 

thin value, it is required that 
Thus, for the actual emitted total intensity to be within 10% of this optically 

or from (13.14) 

(1 3.16) 



Plasma spectroscopy 95 

This gives the following limits on T~ for 10% change in total intensity: 

T~ (Doppler) < 0-28 
T~ (dispersion) < 0.40. 

Similarly, the criteria that the apparent half half-width should not increase by more 
than 10% due to absorption can easily be shown to be 

and 
T~ (Doppler) s 0.55 

T,, (dispersion) 5 0.4. 

Finally, if at any frequency it is required that the intensity should not differ from 
the value obtained from the optically thin approximation by more than loyo, it is 
necessarv that 

(13.17) 

which, expanding equation ( 1 3 . q  gives 

T,(D) < 0.2. (13.18) 

The following processes which contribute to the optical depth will be con- 
sidered (after Wilson 1962): ( a )  absorption of line radiation; ( b )  absorption of recom- 
bination radiation ; ( c )  absorption of free-free radiation and ( d )  scattering of photons 
by free electrons. 

A homogeneous plasma of depth D is considered and the criterion T,(D) < 0.2 is 
used, so that the intensity does not depart from its optically thin value by more 
than 10%. 

( a )  For line radiation resonance line absorption is most serious, and the depth 
at the line maximum has to be considered. Thus, using (13.6~)  

If the population in the upper state is ignored and the result expressed in terms of 
the absorption oscillator strength fiz (equation (10.6) ) 

n( 1) Dfiz(.rre2,”c) $o < 0.2. 
Approximating the population density in the ground state by the number density 
nZ of the absorbing ion or atom, for Doppler broadening of frequency half half- 
width wD (in cis), we find the criterion is 

Dn, 5 l6w,/flZ cm-z. ( 13.19) 
( b )  For photoionization the optical depth in terms of the photoionization cross 

section is (neglecting stimulated recombinations) 

T,(D) = n ( d  U q d 4  D. 
This optical depth is maximum for transitions from the ground state to the absorp- 
tion edge, i.e. hv = E,-,(cc). Using the hydrogenic cross section (equation (12.9)) 
with hv = Z 2 E H  and g,, = 1 this results in 

Dnz5Z*6 x 1Ol6Z2. (1 3.20) 
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This result has been generalized by Wilson (1962) using Elwert's (1952) cross 
sections for non-hydrogenic species. 

(c) The  free-free absorption coefficient is (Spitzer 1956) 

Thus the requirement is that 

Dne2 5 8 x 1035(kT,)1/2 ( h ~ ) ~  Z - I  cm-5 (13.21) 

where AT,  and hv are in ev and 2 is the average charge of ions in the plasma. 
This is best evaluated for the region of maximum bremsstrahlung emission, 

i.e. for hv = ZkT,. 
( d )  The  cross section of an electron for scattering a photon is the well-known 

Thompson cross section (= (8n/3) (e2 /mcP)2  = 6.7 x 

Dn, 5 3 x 1 0 2 3  cm-*. (1 3.22) 
For the intensity at any frequency not to differ from the optically thin value by 
more than lo%, examination of the above criteria ( (13.19)-(13,22)), indicates that, 
for laboratory plasmas, (c) and ( d )  are unimportant, but (a )  and ( b )  may be so. 
Often (a)  is particularly severe. 

T o  obtain the above results the source function S, has been considered as 
independent of frequency. Strictly, these criteria are applicable only to L.T.E.  
situations. However, Hearn (1964 b) indicates that for non-L.T.E. plasmas the 
above criteria on optical depth may, in general, be relaxed. Thus,  if anything, the 
criteria are too severe. 

McCumber and Platzman (1963) have argued that if radiation is reflected back 
into the plasma, under certain conditions, stimulated emission will become impor- 
tant. This is certainly true since laser oscillations occur for transitions in many 
ionized gases (see Bridges and Chester 1965). For a high temperature plasma in 
which the coronal approximation holds this is unlikely to be important since 
radiative decay already dominates over collisional de-excitation, and the total 
radiation loss rate is determined by the rate of excitation by collisions. Thus 
stimulated emission does increase the probability of radiative decay, but not the 
loss rate (see 5 18). 

In  the laboratory it is necessary to be able to interpret the observed radiation 
in terms of the emission coefficient within the plasma, but equation (13.10) shows 
that even in the optically thin case the observed intensity is the integral of the 
emission coefficient along the line of sight. A solution exists for an optically thin 
cylindrical column for which ne and T, are functions of Y only. Then (figure 11) 

cm2). Thus  

from which E ( Y )  is found by Abel inversion 

(13.23) 

Various numerical procedures (for example, Bochasten 1961), analogue computers 
(Yokley and Shumaker 1963, Becker and Drawin 1964) and automatic processing 
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systems (Paquette and Wiese 1964) are available for performing this inversion. 
The  method has been extended to optically thick plasmas by Griem (1964) and 
Elder et al. (1965). 

Figure 11. Cylindrical plasma column; the emission coefficient E(Y) is a function of radius: 

14. Plasma parameterst 
The discussion in this section concerns the application of the details of the 

radiation to the investigation of conditions in a plasma. 
Experimental plasmas fall into two types from the spectroscopic viewpoint. 

Firstly, there are those plasmas whose primary purpose is to act as a controlled 
source of radiation for the measurement of atomic parameters (such as oscillator 
strengths and linewidths). Secondly, there are the plasmas existing in controlled 
thermonuclear fusion devices. 

Much of the theory discussed in this report is tentative in nature since approxi- 
mations of one sort or the other are involved. Thus it is essential to check the 
theories with the use of light sources whose properties are accurately known, in 
order to be able to use the results with confidence. In  general, this means a plasma 
in L.T.E. since only then do the population densities of the quantum states become 
independent of detailed rate coefficients. Thus the temperature and electron 
number density must be measured by methods depending on L.T.E. (such as line 
ratio methods for temperature, $15.3) and independent of L.T.E. (such as the 
continuum step method, 5 15.1). Only if these results agree for a given light source 
under time-varying conditions can L.T.E. be safely assumed. Arcs and shock tubes 
usually fall within the L.T.E. region, but not always (Eckerle and McWhirter 1966). 

For a review on arcs, see Finkelnburg and Maecker (1956) and Lochte- 
Holtgreven (19589, and for conventional and electromagnetic shock-tubes, see Kolb 

+ For further reference see Huddlestone and Leonard 1965, chaps 5-10 
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and Griem (1962) and Fowler (1962). The  requirement for L.T.E. usually means 
that it is difficult to obtain high stages of ionization and hence it is difficult to obtain 
parameters for highly ionized atoms. 

Since most of the plasmas of interest in controlled thermonuclear research are 
not in L.T.E. ,  methods which do not depend explicitly on thermodynamic equili- 
brium will be stressed. Temperatures are often in excess of 100 ev, and in this region 
the Maxwellian distribution of the free electrons plays an essential role. At such 
temperatures the strongest emission is in the soft x-ray and vacuum ultra-violet 
regions of the spectrum. 

It should be said here that, often, even semi-qualitative analysis can only be 
carried out for hydrogen-like and helium-like ions ; the hydrogen-like and helium- 
like spectra of all elements between oxygen (2 = 8) and bromine (2 = 35) lie 
between h = 1 A and 20 A.  

The  controlled thermonuclear research plasmas are often extremely transient in 
nature, so that adequate time resolution is necessary. Photoelectric recording is used 
whenever possible, and often instruments are specially designed (examples of such 
instruments are a time-resolved normal-incidence vacuum ultra-violet spectro- 
graph (Gabriel and Waller 1963, Gabriel et al. 1962), a scanning Fabry-Pkrot 
interferometer for line profile studies (Cooper and Greig 1963), and devices 
for measuring line shifts (Zaidel et al. 1961, Hirschberg 1965, Burgess and 
Cooper 1965 b). 

Many of the methods to be discussed are limited to hydrogen-like systems, 
since only in this case are the calculations likely to be accurate. However, traces 
of impurities, small enough not to cause any appreciable error in, say, the con- 
tinuum radiation, can, with care, be used to extend measurements to more com- 
plicated radiating systems. 

Although this review is concerned with emission spectroscopy, it must be 
mentioned here that radiation can be used as a plasma probe. A few examples are 
briefly discussed below. 

(1) The  incoherent scattering of intense monochromatic light (from a laser !) 
can give information about ne and T, and also about the ion temperature of fully 
ionized hydrogen (a parameter which cannot be determined by other spectroscopic 
methods). I n  principle this method gives the plasma parameter at a point (the 
small region from which scattering occurs) instead of an average along the line of 
sight. This method is experimentally difficult (see, for example, Fiocco and 
Thompson 1963, Funfer et al. 1963, Schwarz 1963, Davies and Ramsden 1964, 
Ascoli-Bartoli et al. 1964, De  Silva et al. 1964, Kunze et al. 1964 a, b). For a 
theoretical treatment reference may be made to Salpeter (1960) or Rosenbluth and 
Rostoker (1962). 

Various other scattering experiments have been proposed but these will not be 
discussed here (see, for example, Kroll et al. 1964, Salat and Schluter 1965, 
Salat 1965). 

(2) Line reversal techniques (Garton and Rajaratnam 1957, Gaydon and Hurle 
1963) permit the determination of the source function S, in a homogeneous plasma 
(cf. 3 13). From this the ratio of population densities in the upper and lower states 
of an optically thick line and hence the effective ‘excitation’ temperature can be 
derived. By applying this method to autoionization levels (which are strongly 
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linked to the continuum) a sensitive test of L.T.E. should be possible (W. R. S. 
Garton, private communication). 

(3)  Refractive index measurements are important for number density deter- 
minations and oscillator strength measurements (for a summary see Griem 1964). 
In  particular ne is determined from the refractive index of free electrons 
( 2: 1 - 2m, e2/mu2 at frequency U). Various interferometric techniques are avail- 
able (see Alpher and White 1959, and 1964 General Electric Research Lab. Rep. 
No. 64-RL-3627C), and one of the most convenient is that using a He-Ne gas laser 
(Ashby and Jephcott 1963). For ne determinations this is often the best and most 
straightforward method. 

(4) Measurement of the Faraday rotation of light (usually from a gas laser) 
enables magnetic fields in the plasma to be determined (see Dougal et al. 1964, 
Falconer et al. 1965). 

15. Temperature measurements 

necessary to solve for ne and T, in a self-consistent manner. 
Often the methods to be discussed involve some knowledge of ne, so that it is 

15.1. Relative continuum intensities 
For frequencies v, such that hv%kT,  (generally in the vacuum ultra-violet or 

soft x-ray region), both bremsstrahlung and recombination radiation fall off as 
exp ( - h v / k T , )  provided the variation of the Gaunt factor is small (Stratton 1962). 
This is independent of L.T.E. in that it only depends on the free electron velocity 
distribution being Maxwellian. In  principle a measurement of the continuum slope 
is required. Although this is certainly true for a pure hydrogen plasma, inter- 
pretation can become much more difficult when impurities (not necessarily hydro- 
genic) are present, since rapid variation of Gaunt factors are possible especially 
close to threshold. A crystal spectrograph has been used (Bearden et al. 1961, 
Sawyer et al. 1963), but the spectrum was considerably confused by large amounts 
of line radiation from impurities in the discharge. A grazing-incidence spectro- 
graph could also be used, but intensity calibration in the vacuum ultra-violet is 
difficult (Griffin and McWhirter 1961, Hinnor and Hofmann 1963). 

Alternatively the x-ray flux transmitted through various absorber foils may be 
used to determine the frequency distribution of the x-rays (Jahoda et al. 1960). 
Owing to the possible contribution from impurity line radiation in high temperature 
discharges, this method should be used with care. However, N. J. Peacock (private 
communication) has shown that, by suitable choice of absorbers, the transmission 
ratio (and hence the measured T,) can remain almost constant in spite of the 
apparent absolute intensity of the continuum varying considerably owing to the 
presence of impurities.? 

Equation (12.19) for hydrogenic continuum radiation shows that the ratio of 
continuum intensities on either side of a series limit is only a function of the electron 

t A. H. Gabriel (private communication) has pointed out that the rapid decrease of intensity 
to short wavelengths beyond the bremsstrahlung maximum (at hv = 2kTe) sometimes enables 
the maximum, and hence T,, to be found relatively accurately from photographically recorded 
grazing-incidence spectra, 
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temperature (McWhirter 1963)-bremsstrahlung on one side and bremsstrahlung 
and recombination on the other (see also Griem 1964). It is usual to use the 
discontinuity across the Balmer series limit at h = 3646 b. T o  apply this result 
with confidence the system must be purely hydrogenic, so that contributions to the 
continuum from other species can be neglected (e.g. if ionized helium is used the 
temperature must be large enough to ignore neutral helium). Because of the smooth 
transition between lines and continuum there is no actual sharp discontinuity in the 
intensity. Thus one must scan the spectrum over and in between the higher series 
members and extrapolate to the series limit. Alternatively the absolute continuum 

TI j"K) 

Figure 12. Intensity ratio across the Balmer discontinuity: I (A4544 A)/I (A3519 A) against 
electron temperature. (After Eckerle and McWhirter 1966). 

intensity has to be measured in two wavelength bands sufficiently distant from the 
series limit for the line radiation to be negligible. Figure 12 shows the ratio of 
intensities for 3.3 b bandwidths at h = 3519 W and h = 4544 b across the Balmer 
limit as a function of T, (after Eckerle and McWhirter 1966). 

The actual wavelength bands are often a question of convenience; for instance, 
Cooper and Kunkel (1965) use intervals at h = 3225 W and X = 5320 A. 

15 -2. Relatize line to continuum intensities 
This method, like the intensity ratio across the series limit, is restricted to pure 

gases, such as hydrogen or helium, where calculations of the continuum are precise. 
The  total line intensity for number density nZ-l(p) in the upper state (and q the 

principal quantum number of the lower) is given by equation (10.10) for path 
length D in the optically thin case: 

(15.1) 
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If the upper state is in equilibrium with electrons and bare ions (hydrogenic 
system), Saha’s equation can be written as 

For a hydrogenic system nZ( 1) = n,. 
I n  terms of the absorption oscillator strength f,, (equation (10.6)) 

hv ne n, h2 8n2 e2  v 2  I - - -  ( ~ )3’Qg2-1(q) ?fq, 
- 8n gz( 1) 2nmkT, 

For a wavelength interval AA = A2Av/c centred at line, the intensity of the con- 
tinuum is, from equation (12.19), 

(15.4) 

Dividing (15.3) by (15.4)) for Z = 1, we find 

(15.5) 
since hv = E,-,@) - Ez-l(q). 

Note that the high density corrections (terms with AE,-,(m) ) cancel out. This 
ratio is plotted in figure 13 (after Griem 1964) for several lines of the hydrogen 
Balmer series for 100 h of continuum centred at the line. It is quite a steep function 
of T,  for temperatures up to about 60000 OK. Below about 10000 O K  corrections 
have to be made for the H- continuum. Further graphs are given by Griem for 
neutral and ionized helium. The  intensity ratios in figure 13 refer to continuum 
bands centred at the lines. The  results are directly applicable only if the spectrum 
is scanned over the whole line profile and if the underlying continuum is determined 
by extrapolation on the line wings. If adjacent continuum bands are used the above 
results have to be corrected: for example, Cooper and Kunkel(l965) have used the 
total intensity of HP (A  = 4861 A) against 1 A continuum bands at X = 5320 A and 

For hydrogen the theoretical errors should be quite small. The  method will be 
applicable when the upper state of the line is in equilibrium with ions and electrons 

A = 3225 A. 

8 
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(i.e. the criterion of equation (9.2) must be applied ( p  = 4 for HP)). This does not 
mean complete L.T.E. The  method may often be used up to about 60000 O K  in 
hydrogen. The  ionized helium line to continuum intensity ratios may be used in a 
pure helium plasma from about 75 000 O K  to 500 000 OK, when contributions from 
the neutral helium continuum are negligible. Berg and Tondello (1964, Institute 
for Plasma Phys., Julich, Germany, Rep. Jul-182) have extended the helium 
results to lower temperatures by taking into account the neutral helium continuum 
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Figure 13. Ratio of the total line intensity (It) and continuum intensity ( IBtR(Ah))  in 100 A 
bands centred at the lines as a function of temperature for hydrogen lines. (After 
Griem 1964.) 

emission. If accurate values were known for oscillator strengths and continuum 
emission coefficients (via quantum defect calculations, perhaps), this method could 
be applied equally well to other species. 

15.3. Relative intensities of lines 

states p to q and p‘ to q’ is given by 
For an optically thin plasma the ratio of total intensities for transitions from 

(15.6) 

The  ratio of the population densities in the upper states depends critically on 
whether the plasma is in L.T.E. or not. 

For lines belonging to the same ionization stage 

(15.7) 

and this will be applicable when L.T.E. extends down to the lower of p and p‘. 
However, owing to uncertainties in the transition probabilities (often w 20%)) 
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errors in intensity measurements, and the fact that E ( p )  - E(p’)  is generally small 
with respect to kT,, make this a rather insensitive and inaccurate method. 

The  effect of the energy separation of the lines being small with respect to kT, 
can be eliminated by taking lines from consecutive ionization stages of the same 
element. Then, for L.T.E. 

(15.8) 

where now E,(p‘) is measured with respect to the ground state of the ion S,. But 
now a knowledge of electron density is necessary. 

For the ratio to be given by equations (15.6) and (15.8) L.T.E. must be a good 
approximation, since it has been assumed in (15.8) that the level p’ is in Maxwell- 
Boltzmann equilibrium with respect to the ground state of s,. For most plasmas 
at high temperatures this is not the case. Calculations of the ionization relaxation 
times show that these plasmas are not in a steady state so that successive ionization 
stages are not in equilibrium with each other. Thus intensity ratios for lines of 
different ionization stages should be used with care; Griem (1964) gives intensity 
ratios for lines of different ionization stages under various types of equilibrium. 

The  method due to Heroux (1963, 1964), for use when the coronal approxima- 
tion ($6) is valid, gets round many of the above difficulties. 

Although the time for the ground state of an ion to come into equilibrium is 
often long (equivalent to the ionization time for the particular species), the relaxa- 
tion time for the upper levels is very fast (typically, about 1/A(p) N sec). In  
general, therefore, the ground state is not in equilibrium, but its population density 
changes comparatively slowly and the population densities of the excited levels 
follow almost instantaneously. 

Then, for coronal equilibrium, equation (6.1) is applicable, i.e. 

(15.9) 

where, as before, A(p)  is the total Einstein probability for spontaneous radiative 
decay from state p and K(1,p) is the collisional excitation rate coefficient for 
excitation from the ground state. Thus for one and the same ion 

(15.10) 

This ratio depends only on a function of T,, and does not depend on either the time 
or space variation of n,. 

Care has to be taken to determine that there are no metastable states likely to 
affect the chosen levels significantly. Metastable states may become highly popu- 
lated owing to both electron excitations and radiative decays, of which they are the 
lower state. Excitation to the level p could therefore also occur from the metastable 
levels, so that (15.10) would no longer represent the system. Metastable processes 
make invalid earlier helium singlet-to-triplet ratio methods (Cunningham 1955, 



104 J .  Cooper 

U.S.A.E.C. Rep. WASH-289, see also Thonemann 1961), although recent cal- 
culations by Drawin (1964 b) take them into account. 

Heroux (1963, 1964) eliminates the problem of metastables by choosing low- 
lying levels in lithium-like ions. The  intensity ratio for the 2S-2P8/2 and 2S-3Pl/2,si2 
transitions are shown as a function of electron temperature for the ions C IV, N v, 
0 VI, Ne VIII, Si x11 and Ar xi71 in figure 14. These curves differ from the original 
ones of Heroux by an appreciable amount, having been recalculated by R. W. P. 
McWhirter (private communication, after Burke and Tait) using more recent 
values of the excitation cross sections (see also e.g. Bely 1962, 1963). 
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Figure 14. Intensity ratio of the transitions 2s *S1,#-2p 2 P ~ ~ s o  and 2s 2S11,-3p 2P~,p,slno against 
electron temperature for lithium-like ions. 

T o  apply the method the coronal approximation must be valid (see $9). In  
principle it is an excellent method ; the overall accuracy, being determined by 
errors in the cross sections and in calibration in the vacuum ultra-violet, is probably 
ab out 1 0 yo. 

15.4. Ionization times 
In  a transient plasma the times of appearance of spectral lines from various 

ionization stages of an element are relatively easy to measure. These times of 
appearance can only be related to the electron temperature by solution of the time- 
dependent rate equations. Estimates of electron temperature have been made in 
this manner (e.g. Goldman and Kilb 1964, Burton and Wilson 1961). Major 
inaccuracies occur through only approximate knowledge of many of the cross 
sections involved. 

15.5. Shift-to-width ratio of Stark-broadened isolated lines 
For many transitions with non-degenerate upper levels the Stark broadening 

due to ions is negligible (i.e. 01 in equations (11.40) and (11.41) of 9 11.3.4 is small). 
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Thus the ratio of line shift d to half half-width w is due primarily to electron impact 
broadening and is then only a function of the electron temperature T, (D. D. Burgess 
1964, Burgess and Cooper 1965 a). This value of d/w depends only on the free 
electron velocity distribution and is thus independent of assumptions concerning 
L.T.E. This ratio is shown in figure 15 as a function of temperature, for transitions 
arising from multiplets in various elements. A quite usable temperature variation 
is often obtained for temperatures up to 60000 OK. 
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Figure 15.  Shift-to-width ratio due to electron impacts for some common elements : from the 
tables of Griem (1964). Each curve refers to a given multiplet of the element (multiplet 
number in brackets), and one wavelength of the multiplet is quoted. 

Although the high and low temperature limits of d/w are likely to be fairly 
accurate (as explained in § 11.3.4), in the intermediate region the theoretical 
uncertainty can be quite large. All the same, once this method has been calibrated 
under conditions of L.T.E. or at least where T, is otherwise known, it will be useful 
for temperature measurements in non-L.T.E. situations. For the method to apply, 
Stark broadening due to the electrons must dominate Doppler and other broadening 
mechanisms. Corrections for finite 01 are easy to apply, owing to its slow (n:/4) 

variation with electron density. 
Apparatus exists (D. D. Burgess 1965, Ph.D. Thesis, University of London, 

Burgess and Cooper 1965 b) which permits the measurement of d/w down to 0.1 
with 10% accuracy. Since a single line is used absolute intensity calibration is 
unnecessary, which is a substantial advantage. 

15.6. Doppler projiles 
In  the case of a highly ionized species the resonance lines are in general always 

dominated by the Doppler effect (see 0 11.5). However, this is not always due to 
thermal motion of the emitting species, but can be caused by macroscopic, usually 



106 J .  Cooper 

unresolved, motion of turbulent elements. I t  is therefore necessary to measure 
profiles of lines of ions of different mass M and charge Z and to check if the 
individual profiles are Gaussian. If all profiles yield the same temperature one can 
assume that the turbulent motion is negligible. Should the mean square velocities 
be equal to each other then macroscopic motion overshadows thermal motion. 
Measurements for controlled thermonuclear research plasmas (Hirschberg and 
Palladino 1962, Jones and Wilson 1962, Wilson 1962, Sawyer et al. 1963, Hirschberg 
1964) indicate that the average ion energy was some function of both Z and M .  

15.7. kfiscellaneous methods 

paragraphs is not exhaustive. 
The  list of methods of measurement of temperature given in the preceding 

Other possible methods are listed as follows : 
(1) In  the infra-red, strong absorption may occur and the plasma radiates as a 

black body, from which a temperature may be derived (see Kimmitt and Niblett 
1963, Harding and Roberts 1962, and 3 16.1). 

(2) When the optical depth at the centre of a line is very large, saturation occurs 
and a black-body temperature may again be derived (Wiese et al. 1963). 

(3) The  total intensity of lines from singly ionized species is under some 
conditions a rapidly varying function of T, (as well as a function of E& and this 
may be used to measure T, (Day and Griem 1965, Day 1965, Ph.D. Thesis, 
University of Maryland). 

(4) Under certain conditions the peak intensity of Stark-broadened lines from 
singly ionized species may be a function of the electron temperature only (Burgess 
and Cooper 1965 c). 

(5) In  a very high temperature plasma Doppler broadening may dominate 
Stark broadening even for high members of a series. The  merging of the lines (as 
in the Inglis-Teller limit-@11.3.4 and 16.3) thus enables the ion temperature to 
be determined (see Stratton (1962), who gives also regions where this will be valid). 

16. Density measurements 
All the methods to be discussed, except those involving the Stark effect, depend 

on absolute intensity measurements and a knowledge (to some extent) of the 
electron temperature, so the overall accuracy is not likely to be high (20% may be 
regarded as quite good). It is worth emphasizing that, as discussed briefly in $14, 
one of the most reliable methods for determination of the density of free electrons 
is via the refractive index. 

16.1. Absolute continuum intensities 

since, in the formula (12,19), (q*+  1)2 = Z2EH/hv. 
bremsstrahlung. Thus 

At low frequencies the continuum spectrum becomes constant with frequency 
This is known as visible 

(16.1) 
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Then for a length D of plasma (assumed uniform), consisting of one electron and 
bare ions, the continuum intensity is 

(16.2) 

For an almost pure hydrogen plasma this becomes 

The  summed term in parentheses represents the contribution of impurities. Karzas 
and Latter’s (1961) values of Gaunt factors for hydrogen should be employed. 

Although IB+”(v) depends only weakly on T,, large errors may be incurred as a 
result of inhomogeneities. The  observed I B + R ( ~ )  is proportional to the integral of 
n,2/T,112 along the line of sight and this is weighted towards regions of low T,, 
whereas ne is usually of most interest where T, is highest. T o  measure the con- 
tinuum intensity it is first necessary to ensure that line radiation does not contribute 
significantly. Absolute intensity measurements can often be made with an accuracy 
to better than 20%, which corresponds to an uncertainty of 10% in ne for a hydrogen 
plasma under favourable conditions. (For an example of the use of this method, 
see Eberhagen and Keilhacker (1964).) 

Harding and Roberts (1962) discuss the continuum measurements in the infra- 
red region. Here absorption becomes important and D in equation (16.3) should 
be redaced bv 

(16.4) 

where x f ( v )  is the free-free absorption coefficient. For low frequencies (including 
the effects of stimulated emissions) this may be written as (Allen 1963) 

(16.5) 

Thus, if ( x f ( v )  D )  is large, I ( V ) B + R  tends to 2v2 kT,/c2, which is the black-body value. 
Harding and Roberts (1962) point out that by suitable reduction of data in the 
infra-red region both ne and T, can in principle be determined. 

However, as pointed out in $12, at low frequencies the spectrum becomes 
complicated. This is due, firstly, to possible effects of cyclotron radiation and, 
secondly, to collective effects appreciably modifying the spectrum in the region 
close to the plasma frequency, The  rapid fall-off of emission close to the plasma 
frequency w p  (=  (4.nnee2/m)l12) has been used by Kimmitt and Niblett (1963) to 
estimate the electron number density. 

For completely ionized hydrogen plasmas containing no impurities, ne = n, by 
quasi-neutrality. Separate measurements of ion densities in controlled thermo- 
nuclear research plasmas are only required if impurity ions are present. I n  a pure 
hydrogen plasma the absolute intensity of the x-ray continuum (hv > kT,) could be 
used to obtain electron (ion) densities employing temperatures deduced from other 
measurements. When impurities do not contribute significantly the resulting ne, 
within experimental errors, will be the same as that obtained from visible brems- 
strahlung measurements. Should the results disagree, the amount of contamination 
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may be estimated from the discrepancy. A procedure is outlined by Griem (1962 d), 
but only very crude estimates of the impurity concentration can be made in this way. 

The  above discussion has been limited to hydrogen and hydrogenic systems ; 
however, in principle the method would apply equally to other species, provided 
accurate data for the emission coefficient (or trustworthy calculations) were 
available. 

16.2. Absolute line intensities 

from level p to level q in a uniform optically thin plasma of depth D is 
The  total line intensity of radiation emitted per unit solid angle in a transition 

(16.6) 

where n,-,(p) is the population density of the upper state. If the transition proba- 
bility (or oscillator strength) is known this method enables n,-,(p) to be determined. 
In  measuring line intensities corrections must be made for the underlying con- 
tinuum and the effects of overlapping line wings (and the effect of exclusion of 
part of the line wings if a monochromator is used). The  expression above- 
equation (1 6.6)-depends on optical thinness and so self-absorption should be 
guarded against (see 9 13). Although at high densities perturbations of the wave 
functions from those corresponding to an isolated atom are sufficient to cause 
normally forbidden transitions to become allowed, the effect on A(p,q) of an 
allowed transition is negligible (Griem 1962 b). 

can be related by Maxwell-Boltzmann statistics to the total 
number density n,-,, but the final value depends on knowing the electron 
temperature. 

Alternatively, n,-,(p) at or near L.T.E.  may be related to the population 
density of the ground state of the next ionization stage, as in equation (15.2). Only 
in the hydrogenic case when ne = n, = .,(I) does this reduce to a simpler case, 
and even then to determine ne, T, must be known. 

In  L.T.E. 

In  the coronal case equation (6.1) is applicable, i.e. 

(16.7) 

But, owing to the facts that the rate coefficient K(1,p) is generally a steep function 
of T, and that often the absolute magnitude of the cross section is poorly known, 
this will give only a crude estimate of nZ-l. 

16.3. Stark broadening 
When the Stark effect dominates Doppler and other broadening mechanisms, 

the profile is determined by the number (and, to a smaller extent, temperature) of 
perturbers in the region of the emitting atom. For quasi-static broadening the 
width of the line is proportional to n,”3 and for impact broadening it is proportional 
to ne (except possibly for a slow logarithmic variation). No assumptions are made 
in the theory concerning the distribution of atoms amongst the various quantum 
states, so that measurements will be independent of L.T.E. 
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In  the relatively low temperature region, Stark broadening, especially of the 
hydrogen lines, is particularly large and hence easy to measure. However, as 
indicated in 5 11.5, Doppler broadening tends to dominate for multiply ionized 
species at high temperatures. Also effects of continuum radiation, of overlap with 
neighbouring lines and of possible self-absorption have to be considered. 

It is generally sufficient to measure only half-widths, although the best possible 
results will be obtained by comparing the experimental profile with that theoreti- 
cally predicted. Shifts could also give good indication of perturber densities, but, as 
already indicated in $11.3.4 the theory is particularly unreliable, and it is difficult to 
measure shifts which are only a few per cent of the linewidth. 

The  theory for widths of the hydrogenic lines is the most accurate, and best for 
HP where the overall error is about 5%. For hydrogenic systems a relatively large 
portion of the broadening is due to quasi-static effects (proportional to ne2’3) and it 
is possible to write 

ne = C(ne, T,)AX,3:2 (16.8) 

where AX, is the measured full half-width and C(ne, T,) is weakly dependent on T, 
and ne. The  table gives values of C(ne, Te) for hydrogenic systems (after Griem 
1964); a similar tabulation has been compiled by Hill (1964). The  dependence 
on T, is, in fact, extremely slight; for HP, for a given half-width, the values of ne 
at 5000 O K  and 20 000 O K  differ by less than 4% from the value at 10 000 OK.  The  
density may also be determined from the measured ratio of intensity in a small 
wavelength band at the line centre to the total line intensity (Griem e t  al. 1962 b). 
This method (with HP) has also been used by Irons and Millar (1965). 

The  widths of isolated lines (i.e. not degenerate in orbital quantum number) 
are only slow functions of electron temperature, and are given by the following 
formula (equation (11.40), see 3 11.3.4) for the total half half-width: 

~ t ~ t ~ l h { l +  1*750((1-0*75R))w (16.9) 

where w ,  the electron impact half half-width, scales as ne, and a,  the ion-broadening 
parameter, scales as ne1’4 (and for singly ionized emitters replace 0.75R by 1.2R). 
This should be accurate to about 20%, provided the spacing of the nearest per- 
turbing level from the upper level of the line is greater than the plasma frequency. 
For CY small (as is often the case), wtotal is almost exactly proportional to n, and the 
line profile has dispersion shape. In  the isolated line calculations for both neutral 
and singly ionized species, Griem (1964) used straight-line classical paths. 

Very complete tables of w and CY, as well as data concerning profiles for both 
hydrogenic and isolated lines, are given by Griem (1964). 

In  the calculations only singly ionized ions were considered, so that if multiple 
ionization is appreciable a correction to the ion broadening has to be applied. This 
amounts to approximately 2 ’ 1 3  for species exhibiting the linear Stark effect and 
approximately 2 ’ 1 3  for quadratic Stark effect, where Z is the average ionic charge. 
Since Stark broadening usually only dominates at low temperatures and for low 
ionization stages, this effect can often be neglected. For the neutral helium lines 
Lincke (1964, Ph.D. Thesis, University of Maryland) has proposed that an empirical 
correction of 10% be added to the electron density calculated by comparing experi- 
mental linewidths with theoretical estimates. Electrons of highly excited atoms, 
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which are ‘almost free’, will make some contribution to the broadening but even at 
very high densities this correction is negligible (Griem 1964, p. 306). 

When Doppler broadening becomes important, the experimental half-width 
will have to be corrected. This is particularly easy for transitions from levels which 
are predominantly broadened by electron impacts (isolated lines), since their 
profiles are closely similar to the dispersion type and Voigt profile analysis can be 

Coefficients C(n,, T,) (in A-3/2 ~ m - ~ )  for electron density determinations 
from (full) half-widths of Stark broadened hydrogen and hydrogenic 

lines (after Griem 1964), i.e. ne = C(n,, T,)Ah,3’2 

? ~ ~ ( c m - ~ )  
Te (OK) 

1014 1015 1018 1017 10‘8 1019 

10 000 
Ha 20000 

40 000 

6.16. 1015 3.61, 1015 3.23. 1015 
7.13. 1015 3.88. 2.79.10” 
4.22, 1015 6.01. 1015 2.67. 

5000 3.84.101& 3.68.1Ola 3.44.1014 
10 000 3.80. 10la 3.58. lola 3.30. 1014 2.98. lo1& 

HP 20 000 3.72. lo1* 3.55. 10l4 3-21. lo1& 3.03. lo1* 
40 000 3.76. 10l4 3.52. 10l4 3.30. lo1* 2.87. 

10 000 
Hy 20000 

40 000 

10 000 1.36. 1014 
H6 20000 1.35.1014 

40 000 1.07. 10l4 

5000 
10 000 

4686A 40000 
He I1 20 000 

80 000 

10 000 
He11 20000 
3203 A 40000 

80 000 

4.41.1014 
3.68.1014 
3.77. 1014 

1.18. lo1* 

1.22.1014 

1.58. 10l6 
2.41 . 1 0l6 
2.86. 10l6 
4.34.1016 

1.21.1014 

2.90. lo1‘ 2.73. 1014 
3.01. IO1& 2.81. 1014 
3.46. lo1‘ 2.30. lo1‘ 

1.04. 1014 

1.01.101a 
9.79.1013 

1.09 . 1 016 
2.30.1016 1.24.1016 
2.74.101a 1.37.1016 9.87.1015 6.24.1015 

1.65. 10l6 9.07. loL6 6.74.10” 

2.65.1015 
2.56. 1015 2.57, 1015 2.65. 1015 
2.14. 1015 2936.10” 2.40.1016 

2.34. IOt5 1.98. 1015 1.93. lo1‘ 

for ne = 3.  ~ m - ~  J He I 
3965A 20000 9.99.1014 

He I 
4471 A 20000 4.15.1014 

applied (Allen 1963). For hydrogenic lines more involved folding procedures 
should be used (see Hansen 1964), but even here estimates using a Voigt analysis 
give surprisingly good results (Peacock et al. 1964). At high temperatures, when 
Doppler broadening dominates, estimates of ne can probably be made by fitting the 
profile in the line wings. Although this is less reliable than the continuum intensity 
measurements, it may be a useful check when impurities cause ambiguities in the 
continuum analysis. 
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For high members of a series the broadening is almost always quasi-static (see 
3 11.3.4). The  electron density may now be estimated, with the use of the Inglis- 
Teller relationship, from the principal quantum number p, of the last discernible 
line. Thus 

log ne = 23.26 - 7.5 logpm + 4.5 log Z ( 16.10) 
where ne is in cm-3 and Z- 1 is the net charge of the atom. This relationship should 
lead to the electron density within a factor of about 2 owing mainly to uncertainties 
in defining the last discernible line. Vidal (1964 and private communication) has 
improved the situation by considering how the ratio of the maximum intensity of a 
line to the minimum intensity between that line and the adjacent line varies as the 
series limit is approached. He considers that the spectrum may be represented by 
a superposition of quasi-static profiles corresponding to each principal quantum 
number. If this superposition procedure is accurate, the method should lead to 
determinations of the electron density to about 5 to 10%. However, there is some 
doubt as to the validity of this procedure. One would expect that, when considering 
the merging of broadened lines, perturbation matrix elements between states of 
different principal quantum numbers and also higher terms in the multipole inter- 
action (due to large spatial extent of the wave functions) should be taken into 
account. None the less, Vidal obtains good agreement with his experimental 
results. 

17. Magnetic field measurements 
Magnetic fields are commonly used to contain controlled thermonuclear 

research plasmas. The  fields may be quite high (several tens of l t ~ )  so that it is 
important to consider the Zeeman effect (see White 1934). 

The  splitting of energy levels in a magnetic field B is 

(17.1) 

where (mgL) is the magnetic quantum number times the Land6 factor (not to be 
confused with the electron mass m in the denominator). 

The  actual broadening of the line profile due to the splitting of these energy 
levels (normally degenerate in magnetic quantum number) depends of course on the 
levels involved. But for an order-of-magnitude estimate (with (mgL) = 1) the 
Zeeman splitting is 

X 2 e  
4nmc2 AX,, 2 - B. (17.2) 

Along the field lines there are two components, circularly polarized in opposite 
directions, which lead to a total broadening of about 2AX,, N (9.3 x 10-11 A2 B )  A 
(where X is in A and B in gauss). This should be compared with the Doppler (full) 
half-width 

(17.3) 

where Ti is in OK and A is the mass number. 
At lo6 OK and in a field of 30 kG, Doppler and Zeeman effects for oxygen ( A  = 16) 

are comparable for A-3000 A. Owing to the h2 variation of (17.2) the Zeeman 
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effect is not likely to be important in the soft x-ray region; however, in the visible 
region the above comparison should always be made. 

The fact that, along the magnetic field, the two circularly polarized components 
shift in opposite directions with respect to the unperturbed wavelength has been 
employed to measure magnetic fields in plasmas. (See Jahoda et al. (1963) and 
Hubner (1964), who extend the technique used by Babcock (1953) for a solar 
magnetograph.) 

As mentioned in $14, the Faraday rotation of light passing through a plasma 
can also be used to infer the average magnetic field along the line of sight. 

18. Radiative energy losses 
In  a high temperature plasma the effects of radiative energy losses can be 

extremely important. This problem has been investigated by several authors, their 
attention being mainly directed to thermonuclear plasmas (Knorr 1958, Kogan 
1959, Post 1961, Vasil'ev et al. 1962, Kolb 1963, Kolb and McW7hirter 1964, 
Artsimovich 1964, Hinnov 1964, Griem 1964, etc.). 

Solutions of the steady-state coronal equations have shown that, although light 
elements (such as hydrogen) are completely ionized at temperatures greater than a 
few ev, heavier ions are not fully stripped even at extremely high temperatures 
(figure 4). 

Small impurities of high 2 in a hydrogen plasma can greatly increase the 
radiation losses, even to the extent of rendering thermonuclear plasmas impossible 
on this ground alone. In  this section is indicated the extent to which the losses due 
to impurities in a hydrogen plasma are important. 

The  bremsstrahlung power loss is given by equation (12.18), i.e. 
PB = 5 x 10-31 n, ne 2 2  T, ' / 2  U' cm-3 (T,  in kev). (18.1) 

Although this bremsstrahlung power loss varies as Z2, it will be shown that line 
radiation is even more important. 

For full thermodynamic equilibrium at a temperature T the radiation losses 
RB, depend only on the surface area and temperature. Thus, by Stefan's law, 

RBB N_ lo1' T 4  w cm-2 ( T  in kev). (18.2) 

The  thermal equilibrium (Planck) value is important, for the radiation losses 
must lie between a lower bound given by the bremsstrahlung losses (lowest of 
course for 2 = 1) summed over the volume of the plasma, and an upper bound 
given by the Planck value, summed over the surface area of the plasma. 

Also, in general, it is not possible for the plasma to radiate at a rate greater than 
the local spectral intensity of the Planck radiation law, which gives the radiation 
loss per unit frequency interval: 

(18.3) 

This immediately indicates that at high temperatures the major radiation loss will 
be at short wavelengths. 

T o  estimate these radiative losses, the coronal approximation is considered. 
Radiation occurs when electron collisions produce excitation of bound states of the 
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ion. Excitation is immediately followed by radiation, since, in the coronal approxi- 
mation, the lifetime of the excited states is short compared with the time between 
excitations. The  electron thus loses a definite amount of energy for each collision 
causing excitation, which is immediately lost from the optically thin plasma. 

Thus the total power radiated per unit volume for an ion S, (number density nZ) is 

PZL = c nz ne Kz(1, P) (AV,,) (18.4) 

since K,(l,p) is the excitation rate coefficient from the ground state to  level p and 
n,( 1) II nz. The  population densities n, have been determined from the steady- 
state ionization equations (equation (6.2) ) for hydrogen-like and lithium-like 
species. The  total power radiated per unit volume by line radiation (i.e. equation 
(18.4) ) is then determined. For hydrogen-like ions the Lyman a: (2 + 1) transition 
accounts for the bulk of the radiation and, similarly, the 2p-2s transition is most 
important for lithium-like ions. The  2p-2s transition leads to particularly intense 
radiation, since the 2p level is rather low lying and easily excited. 

The  results for these dominant transitions are shown in figure 16 in terms of 
the power PHB radiated by hydrogenic bremsstrahlung ( PHB = 5 x ne2 c1/2, the 
lowest possible value) on an atom-for-atom basis. Thus to find the actual radiation 
loss it is necessary to multiply the value given in the curves by the total abundance 
fraction of the element in question (the degree of ionization at any given temperature 
having already been taken into account in the steady-state ionization equations). 
Therefore, if the total abundance of, for example, oxygen is 1%, the ratio given in 
the curves must be multiplied by 0.01. The  high temperature limit in figure 16 is 
the pure bremsstrahlung for completely stripped ions which is Z 2  times the 
hydrogenic value. Since only the dominant transitions have been considered these 
results must be considered as an underestimate. 

It can be seen that steady-state radiation losses, due to line radiation, can be 
expected to be large at low temperatures and to fall with increasing temperature. 
Various approximations for the cross sections may be made, but they all lead to high 
power losses due to the presence of high Z impurities (see Griem 1964). Methods 
of extending these results to radiation loss when radiative transfer effects become 
important have been considered by Cuperman et al. (1963). 

Recombination radiation also leads to energy loss from the plasma. Recombina- 
tion to the ground state (the dominant factor) gives (equation (12.15)) 

PIR = 1.3 x 10-32n,neZ4q-1/2 w ~ m - ~  (18.5) 
This may often increase the loss rate, but in general its contribution is much less 
than that due to line radiation. 

The  results that have been indicated so far are for steady-state plasmas ; how- 
ever, most experimental plasmas are transient, and ionization does not reach its 
steady-state value. T o  determine the radiation loss from transient plasmas it is 
necessary to determine the rate of approach of ionization equilibrium and to deter- 
mine the radiation losses occurring during this time. Generally speaking, during 
the approach to equilibrium, the line radiation from impurity ions partially stripped 
of their electrons will be greater than in the steady state. During transient build-up 
of a plasma many stages of ionization will be passed through as the steady final 
state is approached. 

P 

(T, in kev). 
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Between each successive ionization event many collisional excitation events may 
occur, each of which results in a loss of energy. Thus to ionize a high Z atom up 
to a highly ionized state will require an inevitable ‘fee’ in line radiation losses. 
This ‘fee’ may be much larger than the sum of the ionization energies. 

.: io4 - 

p I O J -  
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m e 
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Figure 16. Steady-state radiation loss: the curves show the ratio of the energy lost by line 
radiation, PzL, to the energy lost by hydrogenic bremsstrahlung, P H ~ ,  for the Lyman-ol 
and 2s-2P transitions of various one- and three-electron ions respectively. T h e  lines 
at high temperature represent the bremsstrahlung radiation produced by completely 
stripped ions. T o  obtain the actual radiation loss it is necessary to multiply by the total 
abundance fraction of the element. (After Post 1961 .) 

The complete solution of this problem requires the solution of the time- 
dependent rate equations describing the ionization. This has been done numerically 
by McWhirter and Hearn (1963) for hydrogen-like ions, and even in this case the 
energy lost by the electrons per ionization can be many times the ionization energy 
(see figure 17). 

A particularly simple approach is that of Post (1961). In  the initial stages of 
ionization recombination is unimportant and the rate equations take on the following 
simple form (in the coronal approximation): * = n, K,-~( 1, c’) - n, ne K,(I, c’) 

% = - n , n , ~ , ( ~ , c ’ )  for z = 0. dt  

of S, (to S,,,) is given by 

for Z B  1 (18.6) dt 
and 

(18.7) 

From these equations (18.6) and (18.7) a characteristic time T ,  for ionization 

(18.8) 
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But Kz-l( 1, c’) varies roughly as 

115 

for E,-,(co) > K T ,  (Allen 1963). Thus, since the ionization energy EZ-l(m) increases 
approximately as 2 2 ,  the characteristic time T~ to ionize a highly charged species 
obviously becomes long compared with the time T ~ = ~  to ionize the neutral species. 

8 I I I , , , , I  I I 

T / Z Z  t K )  
2 3 5 IO 20 30 xi04 

Figure 17. Optically thin hydrogenic ion plasma: energy absorbed from the free electrons per 
ionization. (After McWhirter and Hearn 1963.) 

The  above set of equations is similar to those describing radioactive decay and 
can easily be solved when the Kz(l,c’) coefficients (for all 2 )  are constant. The  
result then corresponds to the ionization of a group of test particles of a high 2 
impurity immersed in a plasma of constant electron temperature (since the Kz( 1, c’) 
are a function of E). 

Post (1961) gives a specific example of the transient ionization of oxygen 
immersed in a plasma. He  shows that the time to ionize to highly ionized states 
may be easily up to 1000 times as large as that for the first ionization of the neutral 
atom (e.g. the time to ionize 0 VI in a 50 ev plasma (190 p e c  for ne = cm-3) is 
500 times that for the neutral atom). 

Now the total energy released as line radiation during transient ionization will 
be the integral of PzL over time, summed over all stages of ionization and excitation. 
However, to find the total ‘fee’ for ionization, the additional losses occurring when 
recombination becomes important are separated out. Thus the integral of PzL is 
carried out for all time, but only up to the final ionization stages reached (i.e. only 
for those 2 (2’ say) for which the steady-state number densities ( t  = 00) are 
negligible). The  solution of the ionization equations (6.2) show that, in a steady 
state, all stages of ionization, except those adjacent to the dominant ionization 
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state, have negligible populations. Thus,  the fee for ionization QL is 

(1 8.9) 

For ions immersed in a plasma of constant T, the Kz( l ,p )  are also constant. Kow, 
equation (18.6) may be integrated directly for all ZGZ’, since n, ( t  = a)  = 0 and 
n, ( t  = 0) = 0 (Zf 0), i.e. 

and 

ne KO( 1, c’) dt = no(0) (18.10) 

where n,(O) is the initial number density of atoms in the neutral state. Thus  (18.9) 
becomes, for constant T,, 

(18.11) 

where PzL(no(0)) represents the power radiated in line radiation for the entire 
population of impurity ions in the state of charge 2. 

Equation (18.11) shows that, during transient ionization, each successive stage 
of ionization radiates as if it possessed the entire population of impurity ions for 
one time constant T ~ ,  after which the population jumps discontinuously to the 
next higher state of ionization, and so on. 

It is clear that the most important contributions come from the higher ionization 
stages since they exist longer. For example, for oxygen in a 50 ev plasma the ‘fee’ 
for ionization through the 0 VI ionization stage is about 8 kev per atom, compared 
with the sum of the ionization energies of about 0-43 kev (Post 1961). At higher 
temperatures and for higher Z impurities the fee would be even larger. This type 
of analysis gives a simple way of estimating transient energy losses and demon- 
strates their importance. 

When a magnetic field is present, as it is in all thermonuclear devices, cyclotron 
radiation has to be considered. Since this occurs at relatively low frequencies, 
self-absorption is important. (For a treatment of this problem, see Trubnikov 
(1958), Drummond and Rosenbluth (1961, 1963), Rose and Clark (1961) and 
Trubnikov (1961).) 

It is found that many thermonuclear discharges are radiation-cooled owing to 
line radiation from high 2 impurities (e.g. Hinnov 1964). The  importance of 
purity in such devices has been stressed by various authors. In  particular, the work 
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of Kolb and McWhirter (1964), in which they couple the rate equations for 
populations of the quantum states with the magnetohydrodynamic equations, shows 
that impurities of only a few per cent (C, N, 0 and Ne were considered) can have a 
drastic effect on the electron temperature. 

Thus for thermonuclear machines the purity of the discharge is as much of a 
problem as stability. Each high Z atom which comes off the wall into the discharge 
collects its ‘fee’ in energy loss. 

19. Conclusions 
Some of the more recent progress in plasma spectroscopy has been reviewed in 

this article. 
I t  has been seen that the radiation from the plasma is characterized not only by 

the properties of the isolated radiating species, but also by the properties of the 
plasma in the immediate environment of the radiator. This dependence on the 
plasma properties is a consequence of the fact that ions and electrons interact with 
themselves and other species via the long-range Coulomb potential. 

Electrons completely dominate collisional excitation and de-excitation pro- 
cesses in plasmas which are more than a few per cent ionized, and the solution of 
the rate equations describing the detailed population and de-population processes 
of quantum states in a plasma (in the collisional-radiative decay model) has led to a 
more complete understanding of both L.T.E. and non-L.T.E. situations. Even in 
L.T.E. (when the plasma is collision-dominated) there have been improvements in 
the theory concerning the lowering of the ionization potential and in the treatment 
of internal partition functions (which diverge for an isolated atom). 

Great improvements, too, have been made in the understanding of the details 
of the radiation. In  particular, line broadening theory, especially that part con- 
cerned with impact broadening by electrons, now enables fairly accurate calcula- 
tions to be made of the profiles of Stark broadened lines. Detailed and fairly 
accurate calculations of oscillator strengths and ionization cross sections (and 
ultimately recombination radiation) have been made for many species using, for 
instance, Hartree-Fock wave functions or the Coulombic approximation of the 
quantum defect and Bates-Damgaard procedures. Calculations of radiative 
transfer in non-L.T.E. situations have also been performed. 

However, there is still plenty of scope for yet further advance, both experi- 
mentally and theoretically. Experimentally, highly ionized species are important, 
yet there is a lack of a really satisfactory light source, whose properties are accurately 
known, to measure their properties. 

Most of the quantitative theory is only available for hydrogen and hydrogenic 
species, since only for these are the wave functions really accurately known, and so 
there is a need for detailed measurements to be made on other species. 

Apart from improvement to calculations of matrix elements and wave functions 
of non-hydrogenic species (and hence further improvement in oscillator strengths, 
ionization cross sections, etc.) there are many situations which need further investi- 
gation (both for hydrogenic and non-hydrogenic species). Many of these topics 
have been discussed in the text, but, for convenience, some of them will be 
mentioned again here. 

9 
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Although advances have been made in the theory of partition functions and of 
the lowering of the ionization potential, further understanding will probably come 
through a physical model describing the time dependence of the fluctuating micro- 
field (§ 5). Convincing experimental evidence for the lowering of the ionization 
potential is also needed. 

The  influence in the collisional-radiative decay model for non-hydrogenic 
species of metastable levels and dielectronic recombination (9 8) will have to be 
examined, and at the same time it is hoped that more required cross sections and 
rate coefficients will be forthcoming. 

There are many problems still outstanding in the details of Stark line broadening 
theory, for although linewidths are fairly accurate, the situation with line shifts and 
the detailed shape of line wings is not so good (9 11.3.4), especially for ionic lines 
and non-hydrogenic species. The  importance of the quadrupole interaction and 
higher order terms in the perturbation expansions is still unclear, both in the impact 
and quasi-static approximations ( $ 5  11.3.1 and 11.3.4), as is the existence of a plasma 
polarization shift (§ 11.4). The  present treatment of ‘strong collisions’ (9  11.3.3) 
yields fairly accurate linewidths, but, for isolated lines, the error in the shift may 
become very large. No really satisfactory broadening theory exists either in the 
regions of merging of lines (the Inglis-Teller limit-§§11.3.4 and 16.3) or in the 
regions where the main approximations (classical path, impact and quasi-static) 
break down. 

The  overall effect of autoionization on the continuum emission of non-hydro- 
genic species is not completely understood, and still further improvements should 
be possible in the region of the spectrum close to the plasma frequency, where 
collective effects become important. 

Although there has been a substantial change in our knowledge of plasma 
spectroscopy in the last few years (for instance, since the review by Lochte- 
Holtgreven 1958), there still remain several areas in which detailed theoretical 
treatment and accurate experimentation are required. 
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Nomenclature 
Some modifications of standard nomenclature have had to be made to prevent 

disparity of meaning of symbols in different parts of the text. It is hoped that this 
does not lead to confusion. 

A Mass number 
A($, q)  and A(2, l )  Spontaneous transition probability from level p to 

level q 

A($) (= A($, 4) )  Total spontaneous transition probability from level p 
9,P 
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d 

E,  ( = 2.rr2 e4 m/h2)  
fr,, orf12 

Spontaneous transition probability from doubly 
excited level d" to  level p 
Autoionization transition probability of doubly 
excited level d" 
Amplitude of classical oscillator 
Magnetic field 
Induced-emission probability coefficient 
Absorption probability coefficient 
Excitational part of partition function of S, at T, 
Planck (black-body) function at T, 
Velocity of light (3  x lozo cmsec-l) 
Denotes state of the continuum 
Stark coefficient 
Stark coefficient for linear Stark effect 
Stark coefficient for quadratic Stark effect 
Coefficients for electron density determination from 
Stark linewidths 
Shift of energy level from unperturbed value 
(occasionally refers to a d electron) 
Dipole moment of a radiating species 
Denotes doubly excited state 
Depth of plasma along line of sight 
Electron charge (4.8 x e.s.u.) 
Electric field 
Mean electric field at a radiating species (=  e/pm2). 
Energy of level p of S, 
Ionization energy of S, 
Energy of doubly excited state d" of Sz-l, above the 
first ionization potential of S,-l 
Ionization energy of hydrogen 
Absorption oscillator strength from lower level q to 
upper level p 
Dipole moment of classical oscillator 
Complex conjugate off(t) 
Electron velocity distribution 
Helmholtz free energy 
Helmholtz free energy of plasma, for no interaction 
between the plasma particles 
Helmholtz free energy representing Coulomb inter- 
actions between the plasma particles 
Fourier component off(t) 
Statistical weight of level p of Sz-l 
Statistical weight of doubly excited level d "  of Sze1 
Bound-bound Gaunt factor 
Free-bound Gaunt factor 
Free-free Gaunt factor 
Land6 factor 
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h 
ii 

I ( w )  and I ( v , x )  
I B +"( A A) 

m 

ne 
n2 

ne, and ni, 

Pt 

Normalized continuum radial wave functions multi- 
plied by Y 

Planck constant (6.63 x 

Intensity of radiation at frequency v or o 
Intensity of bremsstrahlung and recombination 
radiation in wavelength interval Ah 
Total line intensity 
Ionization energy of level p 

Reduced Stark profiles for isolated lines 
Normalized profile for spontaneous emission 
Total angular momentum quantum number 
Emission coefficient 
Boltzmann constant (1-38 x 
Rate coefficient for collisional ionization from level 
p of Sz-l to all possible levels c' of the continuum 
Rate coefficient for three-body recombination from 
the continuum to level p 
Rate coefficient for collisional de-excitation from 
upper level p to lower level q 
Rate coefficient for collisional excitation from lower 
level q to upper level p 
Rate coefficient for collisional processes from level p 
to all other levels 
Orbital angular momentum quantum number 
The  larger of 2' and I "  
Total orbital angular momentum quantum number 
Total orbital angular momentum quantum number 
for parent configuration of excited state of Sz-l 
Mass of electron (9.1 x 
Magnetic quantum number times Land6 factor 
Mass of atom or ion 
Electron number density 
Number density of ions of charge 2 (i.e. of S,) 
Equilibrium number density of electrons and ions 
respectively 
Number density of level p of S, 
Number density of level p in Saha equilibrium 
Number density of perturbers (ions or electrons) 
Initial number density of neutral atoms 
Total number of electrons 
Total number of ions of charge 2 (i.e. of S,) 
Denotes a singly excited quantum state (level) of 
principal quantum number p (or p') (occasionally 
refers to a p electron) 
Principal quantum number of the 'thermal limit ' 

erg sec) 
-- hj2n 

= J - 1  

erg deg K-l) 

g) 
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P,  and Pl 

P,,, 

P 
PZL 

Q.2 

QZ 

QL 

R B B  
S 

S 
SI 

Principal quantum number of upper and lower level 
respectively 
Principal quantum number of reduced ionization 
limit 
Principal quantum number at which merging of 
levels occurs (Inglis-Teller limit) 
Pressure 
Total power radiated per unit volume in line radia- 
tion from S, 
Power radiated per unit volume and frequency 
interval by recombination to level q 
Total power radiated per unit volume and frequency 
interval by recombination 
Total power radiated per unit volume by recombina- 
tion to the ground state 
Total power radiated per unit volume and frequency 
interval by bremsstrahlung and recombination 
radiation 
Total power radiated per unit volume per unit fre- 
quency interval by bremsstrahlung only 
Total power radiated per unit volume by brems- 
strahlung only 
Total power radiated per unit volume by hydrogenic 
bremsstrahlung 
Probability of finding the nearest ion at distance I 

from a radiating species 
Probability of a radiating species being subjected to a 
field E 
Denotes a singly excited quantum state (level) of 
principal quantum number q 
Total partition function of complete system of 
particles 
Total partition function for electrons only 
Total partition function of Sz 
'Fee' for ionization due to line radiation 
Radius 
Radial matrix element (expectation value of radius) 
Debye shielding parameter 
Normalized radial wave function multiplied by Y 
Power radiated by a black body per unit area and per 
unit frequency interval 
Total power radiated per unit area by a black body 
Time, used in autocorrelation function (occasionally 
refers to s electron) 
Total spin quantum number 
Total spin quantum number for parent configuration 
of an excited state of Szp1 
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S 
sz 

tee  
T 
T, 
Ti 
% 

U (Ue and U,) 

W D  

WS 

WdP) 
X 

X 

X 
2 z 

P 
P2 

P ( P )  

S matrix (scattering matrix) 
Denotes a species (ion or atom) of charge 2 
Denotes the singly excited level of principal quantum 
number p of S, 
Denotes doubly excited state of S, 
Collisional-radiative ionization coefficient 
Collisional excitation rate from the ground state to 
levels pt above the thermal limit 
Source function 
Time 
Electron-electron relaxation time 
Temperature (1 ev = 11 600 O K )  

Electron temperature 
Ion temperature 
= 2' EH/q2 kT,  
Individual partition function (for an electron or ion 
respectively) 
Velocity of free electron 
Mean velocity of a perturber (= (rkT/2m)'/2) 
Volume 
Potential as a function of Y 
Interaction potential as a function of t 
Time-dependent perturbation 
Half half-width (in frequency units) due to electron 
impacts 
Half half-width in frequency units due to Doppler 
broadening 
Half half-width in frequency units due to natural 
broadening 
Half half-width in frequency units due to Stark 
broadening 
Holtsmark ion field strength distribution function 
Coordinate or reduced frequency ( = (w - wo - d ) / w )  
Atomic coordinate, such that ( p  I ex1 q )  is the dipole 
matrix element between states Ip) and I q )  

Charge of an ion (2 = 0 for neutral atom) 
Average charge of ions in the plasma 
Quasi-static ion broadening parameter 
Collisional-radiative recombination coefficient 
Dielectronic recombination coefficient 
Radiative decay rate coefficient from levels p ,  above 
the thermal limit 

= nelnz 

= E/Eo 
= 2 k ~ : 1 0 2 / M ~ 2  
Radiative recombination rate coefficient from the 
continuum to level p 
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AE 

As 
AX 

A, E ( a )  

4 3  

AX, 
' h e  

AV and Aw 
E(W) and E(V) ( =  J (v ,  x)) 

X 
A ( = (3 /2e3)  (k3  T,3/71.n,)'"2) 

P 

V 

V P  4 

Vt.p 

Change in energy 
Lowering of the ionization potential in species S, 
Interval of time considered in impact approximation 
Change in wavelength or wavelength interval 
Doppler (full) half-width (A) 
Stark (full) half-width (A) 
Zeeman splitting of level (A)  
Change in frequency 
Emission coefficient-power radiated per unit 
volume and frequency interval 
Emission coefficient as a function of r 
Total power radiated per unit volume for a particular 
transition 
Sum of phase shifts of classical oscillator in time t 
Additional phase shift in time interval As 
Phase shift for which collisions are effective in the 
Weisskopf picture (qO N 1) 
Wavelength 
1nA is a slou-ly varying function of ne and T, of the 
order of 10 
Coefficient describing Stark broadening: 
p = 2 for linear Stark effect, and 
p = 4 for quadratic Stark effect 
Frequency 
Frequency of line radiation between levels p and q 
Frequency of recombination from continuum (elec- 
tron of velocity U) to level p 
Impact parameter 
Maximum and minimum impact parameters respec- 
tively 
Average distance between perturbers 
Change density as function of Y 
Ratio of number density of level p to its thermal 
equilibrium value 

Z 

z=1 
Debye length (= kT,/[471.e2(n, + C Z2n, 

Impact parameter for Lewis cut-off 
We'isskopf radius 
Parameter in time-dependent ion broadening 
Square of radial matrix element 
Optical cross sections 
Absorption cross section for transition from lower 
level q to upper level p 
Photoionization cross section from level q to the 
continuum 
Recombination cross section for an electron with 
velocity v to level q 
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Duration of a collision 
Characteristic time for ionization of S, 
Optical depth 
Optical depth at line maximum 
Translational part of individual partition function of 

Normalized line profiles (J+(v)  dv = J+(w) dw = 1) 
Normalized profile for absorption 
Normalized profile for induced emission 
Value of +(v) at line maximum 
= @(s) exp ( - jwo s) 
Autocorrelation function 
Absorption coefficient 
Mean free-free absorption coefficient 
Angular frequency 
Unperturbed angular frequency 
Plasma frequency 
Denotes time average 
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