Comparison of classical and quantum mechanical uncertainties

John Peslak, Jr.

Division of Science, Hardin-Simmons University, Abilene, Texas 79601

(Received 30 January 1978; accepted 13 May 1978)

A comparison of classical and quantum uncertainties is presented for the particle-in-a-box,
the harmonic oscillator, and the one-electron atom. It is found that the quantum results
reduce to the classical in the limit of either very large quantum numbers or h—0. A
classical uncertainty principle is derived and compared with its quantum analogue. A
possible relationship between zero-point motion and the uncertainty principle is noted.

I. INTRODUCTION

The usual textbook development of the uncertainty
principle!-3 generally follows Heisenberg’s original elab-
oration where the inequality

AxApy = h/4r, (1)

is presented as a uniquely quantum-mechanical result which
sets a lower bound on the product of the observational
uncertainties in a single simultaneous measurement of a
particle’s position and momentum.* Although this approach
is commended by its heuristic success, it is somewhat ped-
agogically incomplete because the initiate to quantum
mechanics recognizes little similarity between this discus-
sion and his previous experiences with classical physics.
Additionally the statistical interpretation®-8 of the uncer-
tainty principle, which emphasizes that Eq. (1) applies not
to observational uncertainties in a single measurement but
instead to the position and momentum standard deviations
in an ensemble of similarly prepared systems, is not always
developed.!

Brown® has recently demonstrated, in the limit of A
~— 0, that the modulus squared of the WKB approximation
to the wave-packet solution of the Schrédinger equation
approaches the classical probability density for a system
whose initial coordinates have been imperfectly specified.
Consequently a comparison of uncertainties calculated from
the classical probability density with those obtained from
quantum mechanics would appear to be of interest. We thus
present herein such a comparison for the particle in a box,
the harmonic oscillator, and the one-electron atom; addi-
tionally, we derive a classical uncertainty principle and
compare it with its quantum-mechanical counterpart. Also,
where appropriate, the above results are discussed in terms
of the statistical interpretation of the uncertainty princi-
ple.

II. PRELIMINARIES

The uncertainty, both classically and quantum me-
chanically, of any quantity F is defined to be equal to the
standard deviation about its mean, i.e.,

AF = (F?2 — F2)1/2, (2)

where F represents the mean value of F.
Classically, the mean value of any quantity F over a time
interval 7 is calculated from!©

F= j;TF(t)dt/j;Tdt, 3)
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or equivalently, where v = dx /dt is the classical velocity,

F= j; TZF(x)v(x)“'dx / J; lxzv(x)“dx. 4)

In quantum mechanics F is calculated from a knowledge
of the system’s normalized wavefunction ¥(x) through the
expression

F= f RSO (5)

III. PARTICLE IN A BOX

We consider a particle moving under the influence of the
potential

V(x) =, x <0,
Vix) =0, for0<x <]
V(x) =, x|, (6)

i.e., it moves freely along the interval 0 < x < /. A deter-
mination of its position uncertainty requires a knowledge
of x and x2 over one full period of its motion.

Since the magnitude of the particle’s velocity is constant,
the classical values of the latter quantities are conveniently
calculated from Eq. (4). It is found that

x=p! <J;dex—j;0xdx>
X[v" <J;Idx—j:0dx)]_]=é (7)

x2=yp! (ﬁlxzdx— J:ox2dx>
X [v“ <J;ldx - J:odx)]_l =l3—2. (8)

Thus the classical position uncertainty is given by
Axg= (x2=x%)2= /23 (9)
For a quantum mechanical particle in a box of length /,
it is known10 that
(x2=%2) =121 — 6/n272) /12, (10)

where n, the quantum number of the nth stationary state,
is a positive integer. Thus the corresponding position un-
certainty is

and

Axg = I(1 —6/n2x)1/2/2V/3 (1)
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Table I Quantum and classical position uncertainties for a particle in
a 10-m box.

n Axq(m) Axc(m)
1 1.8076 2.8868

5 2.8514 2.8868

10 2.8780 2.8868
100 2.8867 2.8868
1000 2.8868 2.8868

Upon comparing Egs. (9) and (11), it is indeed found that
Ax, approaches Ax,; in the classical limit of n — . It is
also observed that both Ax, and Ax,; are independent of
the particle’s mass; consequently the position uncertainty
of a garbage truck in a given box will be the same as that for
an electron. Of greater note however, and in contrast to the
usual expectation, Ax, is found to be less than Ax,;; this is
illustrated in Table I for a particle in a 10-m box. Table 1
also suggests that Ax, indeed represents an ensemble
standard deviation and not an observational uncertainty in
a single measurement. Namely if the latter interpretation
is correct, one would find, depending upon the particle’s
energy, that its position in a 10-m box could not be deter-
mined more precisely than plus or minus several meters in
a single measurement. However if it is the former inter-
pretation which is valid, one would find that the standard
deviation about the mean for an ensemble of position
measurements would range, depending upon the particle’s
energy, from 1.8076 to 2.8868 m. Since we can generally
determine the position of a macroscopic particle within at
least several centimeters, one suspects, at first blush, that
it is the ensemble interpretation that contains a greater
measure of truth.

The momentum uncertainty is determined by calculating
p and p2. Classically, the average momentum of a particle,
such as one in a box, which is executing periodic motion is
zero,!! i.e.,

=0 (12)
since the energy of a particle in a box is given by
E =p?2m, (13)
we find that
p?=2mE, (14)

and therefore the classical momentum uncertainty is
Aper = (p> =PV =V2mE . (15)

The development of Ap, parallels that of Ap.;. That s,
since the average momentum of a quantum-mechanical
system déscribed by a real wave function is zero, and since
Eq. (14) also applies to the permitted quantum levels E,,
one can write

Apy = (p2 = p)'V2 =V2mE,, (16)

for the quantum-mechanical momentum uncertainty.
Obviously for the allowed quantum levels, Ap, = Apy
for the particle in a box. Additionally, it is observed that the
physical origin of Ap,, resides in the vector nature of mo-
mentum. That is, although from Eq. (13) the magnitude of
the momentum of a particle of energy £ will be known prior
to observation, its direction will be unknown. Consequently
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in a very large number of observations on similarly prepared
systems, half of the particles will be found to have mo-
mentum p = —mw and half a momentum p = mw. Thus
p =0, p?=m2?=2mE, and Ap,; = V2mE. It is
tempting to apply a similar interpretation to the origin of
Eq. (16).

IV. HARMONIC OSCILLATOR

A harmonically oscillating particle is subject to the po-
tential

V(x) = kx?/2, (17)

where k is the force constant. In classical mechanics, the
position of such a particle of mass m is expressed as!?2

x(t) = A sin(wt + ¢g), (18)

where A is the amplitude of the motion, w is the angular
frequency given by

w = (k/m)!72, (19)

and ¢y is the initial phase. Consequently, ¥ and x2 are best
calculated by employing Eq. (3). For 7 = 27 /w, the period
of oscillation, it is found that

X=A J;Tsin(w~r+¢0)dt/‘£1dt=0 (20)

— . . 2
x2= A2 f sinz(w~r+¢o)dt/f dt=A—. (21)
0 0 2

Since the energy of the oscillator is £ = kA2/2, one can also
write, with the aid of Eq. (19), that

x2 = E/mol (22)

Thus the classical position uncertainty for the harmonic
oscillator is

Axg = (x2 = X2)V2 = (E/mw?)\/2. (23)

The quantum-mechanical values of ¥ and x2 for the
harmonic oscillator!2 are, respectively,

x=0 (24)

and x2 = E,/mw?, where E, is the energy of the nth
quantum level. Consequently, the quantum-mechanical
position uncertainty for the harmonic oscillator is

Ax, = (x2 = X2)12 = (E,/mw?)/?, (26)

which, for £ = E,, is identical to the classical expres-
sion.

Equation (26) also suggests that Ax, represents an en-
semble standard deviation. Namely, for a 1-kg particle
oscillating harmonically with 1 J of energy on the end of a
spring with force constant 1 N/m, one calculates that Ax,
= +1 m which is 70.7% of the classical amplitude of 1.414
m. Again, it would seem that the position of the particle
could, in actuality, be determined much more precisely in
any given single measurement.

Since f = 0 for both the classical and quantum-me-
chanical cases, the determination of the momentum un-
certainty simply requires knowledge of p? which, from the
virial theorem, is found classically to be given by

p? = mkx2 = mE; 27

and
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and quantum mechanically by
p? = mkx? = mE,. (28)

Thus, the classical and quantum-mechanical momentum
uncertainties are found, respectively, to be
Ape = (p* — pA)'/? = (mE)'/? (29)

and
Apg = (p2 — pA)YV2 = (mE,)V/% (30)

or, for E = E,, Apg = Ap..

Recalling the harmonically oscillating 1-kg mass dis-
cussed above, its quantum-mechanical momentum uncer-
tainty is calculated to be £ 1 kg m/sec which corresponds
to a velocity uncertainty of + 1 m/sec. Thus it would here
also seem relatively straightforward to test whether Eq. (30)
applies to observational uncertainties of single measure-
ments; considering that the magnitude of the classical ve-
locity varies from 0 to 1.414 m/sec, one suspects that it does
not.

V. ONE-ELECTRON ATOM

From classical mechanics,!3 the radial position of a
particle moving in an elliptical trajectory under the influ-

ence of a central force F = K/r2, with K = —Ze2 for a
one-electron atom, is known to be
r=a(l — e2)/(1 + e cost), 31

where r is measured from the center of the force to the
particle; 6 is ‘the angle, measured in a counterclockwise
sense, between the major axis of the ellipse and the radial
vector; ¢ is the ellipse’s eccentricity, i.e.,

e = (1 + 2ELYmK?)12, (32)

with L representing the particle’s angular momentum; and
a is given by

a=|-K/2E|. (33)

The mean value of r is calculated by first recalling!?
that

dé/dt = Limr? (34)
and then using Egs. (3) and (31) to write

7= . " 13(6)d8 /. " 12(0)do
=a(l — ) J;zw (1 + cosf)~3

27
Xdo/ J; (1 + ecosb)=2d. (35

The integrals in Eq. (35) are executed in the Appendix and
found to be

f (1 +cost)2db = —2"—  (AD)
0 (1 —e2)3/2
and
2w Q2+ e)rn
-3 . L L
J; (1 + e cos)—3de 1= (A10)
thus
F=a(l + e/2). (36)
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In a similar manner, r2 is written

7o j;  r4(0)do / j; 7 r(6)ds

27
=a2(1 — €2) j; (1 + ecosf)™*

2n
X df / j; (1 + € cos6)=2d6, 37)

with
2r a2+ 3D
‘I; (1 + € cosf) 4d0—(—17)7/2; (A13)
therefore
rZ = a3+ 2)/2. (38)

The classical uncertainty in the radial position of the
particle is then written

Arg = (r2=F)2 = ae(1 — €/2)'/2/vV2 . (39)

However to facilitate the comparison of the classical and
quantum results, we further substitute from Egs. (32) and
(33) to find that

Arg = |K| (1/E2 — 4L*/m2K*)'/2/4. (40)

The quantum-mechanical result has effectively been
provided by Wilhelm!4 who shows, with

a = h%4n2m|K|, (41)
that
(r2 =72 = (a/2)2[n2(n2 + 2) — I2(1 + 1)?], (42)

for a one-electron atom whose principal and angular mo-
mentum quantum numbers are n and /, respectively.
Thus

Arg= (72 = 7212 = (a/2)[n¥(n? + 2) — I2(] + 1)2]V/2,

(43)
Or, upon substituting from Eq. (41), recalling that
En= —272mK%/n?h? (44)
and
L2=I(l+ 1)h%/4x2, (45)

Arg can be rewritten
Arg = |K|(1/E% = 4L4m2K* + hYx2mK2|E,|)"/?/4.
(46)

In comparing Eqgs. (40) and (46), one finds, for E = E,,,
that in the classical limit of A — 0, the quantum and clas-
sical results are identical. It is also observed, however, that
Ar, is otherwise greater than Ar,; additionally it is noted
that Ar, is always greater than zero, in contrast to the
classical case where Ar,; = 0 fore = 0,0r E = —mK?2/2L2,
i.e., when the classical trajectory is a circle.

The classical expression for the radial momentum!3 is

_Ladr _ _Lesind
r2de a(l — &)’
which, with Eq. (34), yields

Pr (47)
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=j; p,dt/j; dt

2n
=___a(1‘L 5 j; sinf(1 + € cosf)~2 df
—_— €

2% -1
X ( j; (1+e cos())‘2d0> (48)
However,
27
j; sind(1 + € cosf) =2 d = 0 (A14)
and thus
p-=0. (49)

The evaluation of p2, which is also necessary for a de-
termination of the momentum uncertainty, is completed by
recalling!3 that the total energy E, of a particle moving
under the influence of a inverse square force may be ex-

pressed as
E=p}2m+ LY2mr? + K/r; (50)

therefore upon solving for p?, taking mean values, and re-
calling from the virial theorem that (K/r) = 2E, we can

write
pE=—2mE — L2(1]rY). (51)

Now upon employing Eqs. (31), (34), and (A7), one finds
that

Lz=f1r‘2(t)dt/frdt
r 0 0

27 2r
a—2(1—62)—2£ d()/j; (1 + € cosf)—2d6

1
T 21— )/ (52)

and if one substitutes from Eqs. (32) and (33), (1/72) can
be rewritten

(177 =

2|E|(~2mE)V2/|K|L. (53)

Thus
pr==2mE = 2L|E|(=2mE)/Y/|K|  (54)

and the classical radial momentum uncertainty is found to
be

Aprd (p2 _pr)l/z

= [=2mE = 2L|E|(=2mE)/Y/|K|]"/2.  (55)

Although it is noted that the radial momentum opera-

tor,
ke
pr= l27r<6r+r )

is, in general not Hermitian,!> we nonetheless calculate

Ap,, in order to provide a comparison with the classical
16 2

result. Since p, Pr = 0,16 we need only determine p; which is

most readily calculated from the quantum-mechanical

analogue of Eq. (51), i.e.,

(56)

= —2mE, — L*(1/r?). (57)
Since (1/r2) is known!” to be
(1/r2) = 2/(21 + 1)n3a?, (58)
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one finds, after substituting from Eqs. (41) and (44),
that

P! = —2mE — 8xL2|E,|(—2mE,)"%/(2l + 1)h|K|.
(59)

Thus the quantum-mechanical radial momentum uncer-
tainty is found to be

Aprq = (pr _pr)l/2
= (=2mE, — 87L?|E,|
X(=2mE,)V2/(21 + 1)h|K])/2.  (60)

Upon comparing Ap,, and Ap,,, it is indeed again found,
in the classical limit, that the two expressions are identical
for E = E,. Namely, Eq. (60) reduces to Eq. (55) in the
limit of very large values of the angular momentum quan-
tum number where

lim (21 + 1)k = 2lh = 4xL.

==

(61)

VL. CLASSICAL AND QUANTUM
UNCERTAINTY PRINCIPLE

In each of the three examples considered above, it has
been found that the quantum-mechanical position and
momentum uncertainties retain finite values in the classical
limit. It is thus not unreasonable to inquire into the existence
of a classical uncertainty principle and its relationship to
the quantum-mechanical result.

Let us begin by considering two variables 4 and B from
which we define

D =064+ \oB, (62)

where X is an arbitrary parameter and 64 and B are the
deviations of 4 and B from their respective means, i.c.,

bA=A—-A (63)
and
B=B—-B. (64)
It is observed that
D=0 (65)
or
(8A2+ 2X86A8B + A\26B2) = (. (66)
However since
0A2 = (AA)?, (67)
8B2 = (AB)?, (68)
and
3A3B = AB — AB, (69)

one finds, from Eq. (66), the following positive-definite
quadratic relationship in A,

(AA)2 + 2M(AB — AB) + \X(AB)2 =0, (70)
which implies that
(AA)2(AB)2 = (AB — A B)2. (71)
Or,
AAAB > |AB — A B|: (72)
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the desired classical uncertainty principle where AB —
A B is the covariance of 4 and B.!8 For 4 = x and B = p,,
one finds

Xpx —PxX =0, (73)
and therefore
AxApy = 0. (74)

Although Egs. (1) and (74) are observed to be compatible
for h = 0, it is nonetheless of interest to inquire into the
relationship of Eq. (72) to the results of quantum me-
chanics. Let us thus examine the derivation of the Heisen-
berg principle.!?

One begins by defining the kets |v) and |3) from the
Hermitian operators 4 and B:

lv) =(A = 4)|¢) (75)
and
|8) = (B - B)|¢); (76)
thus after noting that
(vlv) = (a4)%, (1)
(B|8) = (AB)?, (78)
and invoking the Schwarz inequality,
(v[v)(B18Y = [(v]8) ]2, (79)
it is found that
(AA4)2(AB)? = C2/4 + D?, (80)
where
C = (AB — BA)/i = [A,B]/i 81)
and

D= [(A—A)B - B)+ (B—B)(4— A)]/2. (82)

One now restricts the argument to operators, A and B,
for which

[4,B] = iR, (83)
and after noting that D2 is positive definite, one finds
AAAB = |R/2|, (84)

which for A = x, B = p,, and R = h/2x indeed reduces
to

AxAp, = hf4x. (85)

Although the above argument successfully rationalizes
Eq. (1), it is overly restrictive when attempting to compare
the classical uncertainty principle with the results of
quantum mechanics. Namely, it is observed that

D=(AB+ BA)/2—AB (86)

is the Hermitized form of the classical covariance; and thus

for operators obeying Eq. (83), we here write instead
that

AAAB > {[(AB + BA)/2 — A B]? + R%/4}!/2, (87)

a form of the uncertainty principle first derived by Schré-
dinger.20

A comparison of the classical and quantum uncertainty

principles, Eqs. (72) and (87), respectively, reveals that the
latter differs from the former by the term R2/4; however
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it is also observed that the operators 4 and B commute in
the classical limit and thus the quantum result does reduce
to the classical form. Further, an interesting special case
of Eq. (87) occurs for operators, suchas 4 = x2and B =
p?, which are intrinsically real and are applied to systems

with wavefunctions which are themselves real. Namely, one
finds2! '

[4B] =0 (88)
and Eq. (87) then reduces to
AAAB = |(AB + BA)/2 — A B|, (89)

which is essentially identical to the classical result.

Also of interest is a comparison of the physical implica-
tions of the quantum and classical uncertainty principles
for position and momentum, i.e., Egs. (1) and (74). In the
usual interpretation,!* one concludes, due to the finite
lower bound on the product of Ax and Ap,, that Eq. (1)
prohibits an exact simultaneous determination of a parti-
cle’s position and momentum. Presumably if this argument
is applied to Eq. (74), it is found that classical physics does
not include such a prohibition.

However if one considers Eqgs. (1) and (74) in the context
of the statistical interpretation, the conclusions are some-
what different. That is, Eq. (74) would seemingly now
permit the preparation of an ensemble of classical particles
for which Ax and/or Ap, is zero. This implies the per-
missibility of finding a classical particle in the same position
after a repeated number of observations, i.e., to observe it
at rest. In contrast, Eq. (1) would now imply that neither
Ax nor Ap, can be found to be zero and thus a repeated
number of observations of a quantum particle will find it
occupying different positions at different times, i.e., it will
never be observed at rest. This, as noted by several oth-
ers,?223 seems to suggest a relationship between the quan-
tum uncertainty principle and zero-point motion.

VII. SUMMARY

It has been demonstrated, in the classical limit, that the
quantum position and momentum uncertainties of the
particle in a box, the harmonic oscillator, and the one-
electron atom approach those calculated from the classical
probability density; additionally it has been suggested, in
several cases, that the magnitude and nature of these
uncertainties are consistent with a statistical interpretation.
Further a classical uncertainty principle has been derived
and compared with the quantum mechanical result; it has
also been found, in the statistical interpretation, that there
appears to be a relationship between position uncertainty
and zero-point motion.

A question not entertained, but nonetheless of signifi-
cance, is whether the statistical interpretation of Ax and
Ap, implies the Heisenberg interpretation, i.e., the existence
of a finite limit on the precision of a single simultaneous
observation of a particle’s position and momentum. It is
observed that Jammer24 notes the possibility that the former
does imply the latter.
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APPENDIX

Real integrals of the form

2n
j; R(sind, cosf)dd, (A1)

can be evaluated with the aid of Cauchy’s residue theorem
after making the substitutions2’

do = —idz/z, (A2)
costl = (z + 1/z)/2, (A3)
and
sind =(z—1/z)/2i. (A4)
One finds that

27
j; (1 + e cost)—2d6

—4i -2
=€—2[ z<zz+%z+l> dz,

|lz| =1, (A5)

but since the integrand of Eq. (AS) has a second-order pole
atz = (=1 + V1 - )/e,

-2
f z<22+gz+ 1) dz
€

-2 = A/ )
= 27wiRes [z(z2 + Zz + 1) s g]
€ €
_ wi2
=i (A6)
thus
2 2n
24 = =T
J7 0+ costy2ap e (D
Further,
2
j; (1 + ¢ cosf) 3 df
—Ri —3.
=% 22<22+Zz+1> dz,
. € €
lz] =1 (A8)
where

-3
fzz <22+22+ 1) dz
€

= 2wiRes [22 <22 +gz + 1>—3’1+*_ ”1_‘2]

€ €

_ w2 + &)é

=S = (A9)
since there is a third-order pole at z = (—I
+ V1 - é€)/e
Therefore
bl _ _ 2+
§7 01+ ccost) sdr= TS (A1)
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Also,

2w
. j; (1 + ¢ cos)~4d#

~4
= (—16ie%) fz3 <22+22+ l) dz,
€

lz| =1, (A1)
and
2 —4
f z3<22+—z+ 1) dz
€
-4 ]+ V=)
= 27iRes [23 <z2 +2.4 1> —]i—l——i]
€ €
_mi(2 4 3l
=B (A12)
since there is a fourth-order pole at z = (-1
+VI1—-é)/e
Consequently,
2 2+ 3e)n
I+ ~4 gp = =T 2T
S+ ccosnye s aghe (A1D)
Finally,
.21r
j; Sind(1 + ecos)=2d0 =0,  (Al4)

as may be readily observed after making the substitution

x = cosd (A15)

and

df = —dx(sinf). (A16)
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