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Abstract
We point out two interesting features of position-momentum uncertainty
product: U = �x�p. We show that two special (non-differentiable)
eigenstates of the Schrödinger operator with the Dirac delta potential [V (x) =
−V0δ(x)],V0 > 0, also satisfy Heisenberg’s uncertainty principle by yielding
U > �

2 . One of these eigenstates is a zero-energy and zero-curvature bound
state.

Keywords: uncertainty principle, Schrödinger equation, boundstates, position-
momentum uncertainty product, Fourier transform, exactly solvable potentials,
Dirac delta potential between two rigid walls

That the position (x) and momentum (p) of a particle, in the quantum world, cannot be
measured precisely and simultaneously in the same direction is called Heisenberg’s uncertainty
principle. This is one of the most important features of the quantum world and in the realm of
the Schrödinger equation it is precisely stated [1–3, 6–10] as

�x�p � �

2
, (1)

as the commutator [x, p] = i�. The uncertainty �A in an observable corresponding to an
operator A for an energy eigenstate ψ(x) is defined as

�A =
√

〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2. (2)

The equality sign in (1) is well known to occur for the ground state, ψ0(x) = Ae−αx2
, of a

one-dimensional harmonic oscillator. For the ground state, ψ0(x) = A sin(πx/a), of the well-

known infinitely deep well (IDW) potential, this product turns out to be �

2

√
π2−6

3 [3], which
is (approximately 0.5678�) a little more than �/2 and does not depend on the value of the
width of the well. In textbooks, these two potentials are usually discussed for the uncertainty
product. We shall be denoting the uncertainty product (1) as Uψ(x) as it is a property of the
eigenstate.

In this work, we point out two interesting features of U . Firstly, for potentials which
possess a finite number of discrete bound states, U admits the minimum value of �

2 when their
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depth tends to infinity. Secondly, Uψ(x) = Uφ(x), where φ(p) is the Fourier transform of ψ(x).
Then we obtain U for two eigenstates of a Schrödinger operator with Dirac delta potential.
Both of these eigenstates are non-differentiable at x = 0 and finding U for them becomes
tricky, as acknowledged in [6]. More interestingly, one of them is a novel zero-energy and
zero-curvature bound state [11, 12]. One may wonder whether these eigenstates would satisfy
the uncertainty principle by yielding U > �

2 .
Using special higher-order functions, beautiful expressions of the uncertainty products

for the exactly solvable symmetric Rosen–Morse potential, VSRM(x) = s(s + 1) tanh2(x) [2],
and the Morse oscillator, VM(x) = λ2(1 − e−x)2 [2], have been obtained [4] in terms of poly-
gamma function, 	 ′(z) [5] (not to be confused with the wave function, ψ(x)). For the ground
state of VSRM, we have [4]

�x�p = �

2

√
s2	 ′(s)
s + 1/2

, s > 0. (3)

For the Morse oscillator we have [4]

�x�p = �

2

√
(2λ − 1)	 ′(2λ − 1), λ > 1/2. (4)

For large values of z, 	 ′(z) ∼ 1
z + 1

2z2 . Also we have a recurrence relation 	 ′(z + 1) =
	 ′(z) − 1/z2, with 	 ′(1/2) = π2

2 , 	 ′(1) = π2

6 . When s or λ increases, the number of bound
states possessed by these two potentials increases and the ground state lies deeper and deeper.
Interestingly, in the limit when s, λ → ∞, both the uncertainty products (3,4) can be readily
checked to tend to the minimal value of �/2 for ground states. Perhaps, this could be a common
feature of one-dimensional potentials possessing a finite number of discrete eigenvalues.

Let φ(p) be the momentum space representation of the eigenfunction which is the Fourier
transform of the eigenstate ψ(x); then physical quantities like 〈x〉,�x, 〈p〉,�p and U are
known [1–3, 6–10] to be independent of the representation (use φ(p) or ψ(x)). The proof of
this is often left as an exercise. In principle, one can do all calculations in momentum space
just as well (though not always as easily) as in position space.

Now if we are given ψ(x) and φ(x) (notice that it is x and not p which is the argument of
φ), here, we point out that the well-known equivalence of results using ψ(x) or its momentum
representation, φ(p), manifests in

(�x)ψ(x) = (�p)φ(x), (�p)ψ(x) = (�x)φ(x),⇒ Uψ(x) = Uφ(x). (5)

Therefore, if one finds Uψ(x), one has found Uφ(x) as well. However, it may turn out that one
may not be attainable as easily as the other one. In table 1, we display several pairs of ground
states, ψ0(x) and φ0(x), which may look similar (see rows 2 and 3) or dissimilar (see rows 1,
4-7) but they essentially give rise to the same value for U . For the proof of the equivalence in
(5) see the appendix. Next, in the following, we present the determination of the uncertainty
product for two special eigenstates: Case(I) and Case(II).

Case (I)—Dirac delta well

This potentialV (x) = −V0δ(x),V0 > 0 is well known to have a single bound state at E = −mV 2
0

2�2

and its normalized eigenfunction is given as [6–9]

ψ0(x) = √
α e−α|x|, α = mV0

�2
. (6)

The expectation value of x for this state vanishes as it is an even parity state. The expectation
value of x2 for this state is given as

〈ψ0|x2|ψ0〉 = α

∫ ∞

−∞
x2 e−2α|x| dx = 1

2α2
. (7)

2
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Table 1. The ground states, ψ0(x), of various potentials, V (x), the corresponding φ0(x)
and the position momentum uncertainty products, U . φ0(p) is the Fourier transform of
ψ0(x). Here IDW is the infinitely deep well potential of width a, HO is the harmonic
oscillator, V (x) = x2/4, VSRM(x) and VM(x) are given above equation (3). The pairs of
wave functions ψ0(x) and φ0(x), which are Fourier transforms of each other, may look
incidentally similar (see rows 2 and 3) or generally dissimilar (see rows 1,4–7) they
would however give rise to the same value for U .

SN V (x) ψ0(x) φ0(x) U Reference

1 IDW
√

2
a sin πx/a, 0 � x � a; 2

√
aπ 1+eiax

(π2−a2x2 )

�

2

√
π2−6

3 [3]
0, otherwise

2 HO e−x2/2

π1/4
e−x2/2

π1/4
�

2 [1–3, 6–10]

3 VSRM(s = 1) 1√
2
sech x

√
π

2 sech xπ
2

�π

6 Equation (3) [4]

4 VSRM(s = 2)
√

3
2 sech2x

√
3π

8 x cosech xπ
2 �

√
π2−6

15 Equation (3) [4]

5 VM(λ = 1)
√

2e−(ex−x/2) 1√
π

( 1

2 + ix) �π

2
√

6
Equation (4) [4]

6 −V0δ(x) 1√
a e−|x|/a

√
2a
π

1
1+a2x2

�√
2

Equation (12)

7 Equation (19)
√

3
2a (1 − |x|/a), |x| � a

√
3a
π

(
sin ax/2

ax/2

)2 √
3
10 � Equation (25)

0, |x| > a

When the momentum operator p = −i� d
dx operates over ψ0, we have

pψ0(x) = i�α
√

α e−α|x| d|x|
dx

= i�α
√

α e−α|x|sgn(x), (8)

where sgn(x) is called the signum function and is defined as

sgn(x) =
⎧⎨
⎩

−1, x < 0,

0, x = 0,

+1, x > 0.

(9)

So it follows that

〈ψ0|p|ψ0〉 = 〈ψ0(x)|pψ0(x)〉 = iα2
�

∫ ∞

−∞
e−2α|x| sgn(x) dx (10)

vanishes as sgn(x) is an odd function. This conforms to the fact that, for a bound state, the
expectation value of momentum is zero. Next we find

〈pψ0|pψ0〉 = α3
�

2
∫ ∞

−∞
e−2α|x|(sgn(x))2 dx = α2

�
2, (11)

as (sgn(x))2 = 1, except at x = 0. The momentum being a Hermitian operator, equation (11)
gives nothing but 〈ψ0|p2|ψ0〉, giving us, from equations (2), (7) and (11)

Uψ0 = �x�p = �√
2
. (12)

We can also write

sgn(x) = 2θ (x) − 1, (13)

where θ (x) is called the Heaviside step function, which is defined as [1, 2, 6, 7]

θ (x) =
{

1, x > 0
0, x < 0

(14)

3
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and the Dirac Delta function, δ(x), is defined as [1, 2, 6, 7]

δ(x) = dθ (x)

dx
. (15)

Differentiating equation (8) with respect to x and multiplying it by −i�, we can write

p2ψ0 = −�
2√α[α2 e−α|x|(sgn(x))2 − 2αδ(x) e−α|x|]. (16)

We can get 〈ψ0|p2|ψ0〉 alternatively as

〈ψ0|p2|ψ0〉 = −�
2α

[
α2

∫ ∞

−∞
e−2α|x| dx − 2α

∫ ∞

−∞
e−2α|x|δ(x) dx

]
= �

2α2. (17)

The second integral in (17) is 1 using the property that [1, 2, 6, 7]∫ ∞

−∞
f (x)δ(x) dx = f (0) =

∫ b

−a
f (x)δ(x) dx, ab > 0. (18)

We would like to mention that Ex-4 on p 47 in [8] and Ex 1.1 on p 16 in [9], finding the
uncertainty product for a hypothetical Lorentzian eigenstate ψ0(x) = A[x2 + α2]−1, lead to
the same result as (12). This is only a verification of the equivalence (5). It may be verified
(see row 6 in table 1) that for the Lorentzian state ψ0(x), φ0(x) is nothing but the symmetric
exponential function appearing in equation (6).

Case (II)—Dirac delta between two rigid walls

This potential

V (x) =
{∞, |x| � a
−V0δ(x), |x| < a

V0 > 0 (19)

possesses [11, 12] an interesting zero-energy, zero-curvature bound state conditionally when
maV0
�2 = 1. The normalized ground state can be written as

ψ0(x) =
√

3

2a

(
1 − |x|

a

)
, −a � x � a. (20)

Notice that ψ0(x) vanishes at x = ±a due to the presence of rigid walls. Due to the symmetry
of this state, 〈x〉 = 0 and 〈x2〉 can be found as

〈ψ0|x2|ψ0〉 = 3

2a

∫ a

−a
x2

(
1 − |x|

a

)2

dx = a2

10
. (21)

The action of p over ψ0(x) is

pψ0(x) = i�

√
3

2a3
sgn(x), (22)

which being an odd function gives the expectation value of p as

〈ψ0|pψ0〉 = i�
3

2a3

∫ a

−a

(
1 − |x|

a

)
sgn(x) dx = 0. (23)

However, we have

〈pψ0|pψ0〉 = �
2 3

2a3

∫ a

−a
(sgn(x))2 dx = 3�

2

a2
, (24)

which is nothing but 〈ψ0|p2ψ0〉, then from equations (2), (21) and (24) we have the uncertainty
product for the zero-energy and zero curvature eigenstate [11, 12] as

Uψ0 = �x�p =
√

3

10
�, (25)

4
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which is approximately 0.5477� greater than �/2 and rightly so. Alternatively, if we
differentiate equation (22) with respect to x and multiply it by −i�, then we can write

p2ψ0 = 2�
2

√
3

2a3
δ(x). (26)

We recover the result (24) as

〈ψ0|p2ψ0〉 = 2�
2 3

2a2

∫ a

−a

(
1 − |x|

a

)
δ(x) dx = 3�

2

a2
, (27)

by using (18). In table 1, see that the Fourier transform of the eigenstate, ψ0(x), given by

equation (20) is φ0(p) =
√

3a
π

(
sin ap/2

ap/2

)2
,−∞ < p < ∞. By using φ0(p), the result (25) can

be recovered again but by carrying out apparently different integrations, which may not be
easier to do.

Lastly, we would like to remark that these two special eigenstates of two potentials could
be a new addition to the exercises of finding the uncertainty products and confirming that
in one dimension these are greater than �/2. Our exposition that the ground state attains the
minimum uncertainty product ( �

2 ) when the depth of the potential tends to infinity requires
further confirmation. Students may find the equivalence of the uncertainty product revealed
here interesting and enriching. The handling of the notional functions such as sgn(x), θ (x)

and δ(x) here is also instructive.
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Appendix

The basic definition of the Dirac delta function is
1

2π

∫ ∞

−∞
ei(a1−a2)b db = δ(a1 − a2). (A.1)

We can differentiate (A.1) with respect to a1, n times, to get the definition of derivatives of the
Dirac delta function as

(i)n

2π

∫ ∞

−∞
bn ei(a1−a2 )b db =

(
∂

∂a1

)n

δ(a1 − a2) = δ(n)(a1 − a2) (A.2)

Using integration by parts, we can write∫ ∞

−∞
f (a1)δ

(1)(a1 − a2) da1 = f (a1)δ(a1 − a2)|∞−∞

−
∫ ∞

−∞
f (1)(a1)δ(a1 − a2) da1 = − f (1)(a2). (A.3)

Similarly repeated integrations by parts lead to∫ ∞

−∞
f (a1)δ

(n)(a1 − a2) da1 = −
∫ ∞

−∞
f (n)(a1)δ(a1 − a2) da1 = (−1)n f (n)(a2). (A.4)

Now let ψ(x) be an eigenstate whose Fourier transform or momentum representation is φ(p).
So we can write

φ(p) = 1√
2π�

∫ ∞

−∞
e−ipx/�ψ(x) dx, or, ψ(x) = 1√

2π�

∫ ∞

−∞
eipx/�φ(p) dp. (A.5)

5
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We find 〈ψ(x)|x|ψ(x)〉 denoting it as

〈x〉ψ(x) =
∫ ∞

−∞
ψ∗(x)xψ(x) dx =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φ∗(p1)x e−i(p1−p2 )x/�φ(p2) dx dp1 dp2. (A.6)

Carrying out the x−integration using (A.2) and then carrying out p1−integration using (A.3),
we get 〈ψ |x|ψ〉, which we denote as

〈x〉ψ(x) =
∫ ∞

−∞
φ∗(p2)(−i�)

∂

∂ p2
φ(p2) dp2 =

∫ ∞

−∞
φ∗(x)(−i�)

∂

∂x
φ(x) dx = 〈p〉φ(x). (A.7)

Normally, one would like to term the second part in the above equations as 〈φ(p)|x|φ(p)〉,
namely the expectation value of x in momentum space, which is the same as 〈ψ(x)|x|ψ(x)〉.
Here we depart from this and instruct that the third part in the above equations is merely due to
the fact that in a definite integral the name of the variable is only a dummy one so p2 could be
changed to x. Then follows the last part wherein we identify −i� ∂

∂x as momentum operator p.
Similarly, we can prove that 〈x2〉ψ(x) = 〈p2〉φ(x), 〈p〉ψ(x) = 〈x〉φ(x), 〈x2〉φ(x) = 〈p2〉ψ(x). Hence
the claim in (5) is proved.
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